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Abstract 25 

Meaningful variation in internal states remains challenging to discover and characterize. Using 26 

modularity-maximation, a data-driven classification method, we identify two subsets of trials 27 

with distinct spatial-temporal brain activity and differing in the amount of information required 28 

to reach a decision. These results open a new way to identify brain states relevant to cognition 29 

and behavior not associated with experimental factors.  30 
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Main Text  31 

Brain activity is highly variable during simple and cognitively demanding tasks1,2 impacting 32 

performance3,4. This variability is present in the activity of individual neurons5 up to changes 33 

among large-scale neural networks6. Discovering, characterizing, and linking variability in brain 34 

activity to internal processes has primarily relied on experimentally inducing changes (e.g., via 35 

attention manipulation) to identify neuronal and behavioral consequences7 or studying 36 

spontaneous changes in ongoing brain dynamics8. However, changes in internal processing could 37 

arise from many factors, such as variation in strategy or arousal9 that are independent of 38 

experimental conditions but are relevant to cognition and behavior10. Moreover, traditional 39 

approaches often rely on knowing, a priori, what features of brain activity (e.g., oscillations) or 40 

cognition (e.g., attention) are relevant to measure or manipulate.  41 

 42 

Here, we leverage a data-driven approach to characterize the variability in brain activity among 43 

individual trials and link this variability to behavior and underlying latent cognitive processes. 44 

Subjects performed a motion discrimination task where they judged the global direction of a set 45 

of moving dots (left/right) with six levels of coherence (Fig. 1A). Even in a simple task such as 46 

this, trial-to-trial spatial and temporal variation in brain activity measured with 47 

electroencephalography (EEG) is evident (Fig. 1B).  48 
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 49 
 50 

Figure 1. Task description and trial-to-trial spatial-temporal variation. A) Subjects viewed a dot 51 

motion stimulus for 300 ms with net motion direction either to the left or the right at varying 52 

levels of motion coherence (arrowed dots). Using a single button press, subjects provided a 53 

choice and confidence (1-4) judgment. B) EEG activity from two trials from stimulus onset (0 54 

ms) to 500 ms after onset from the same subject. The brain activity between the trials exhibits 55 

stark differences. 56 

 57 

We explore the link between trial-to-trial variation and decision-making processes using a data-58 

driven classification method we developed previously11. Briefly, modularity-maximization is 59 

used to identify consistent patterns of activity among trials12. Trials from all subjects were 60 

pooled together to calculate the spatial and temporal similarity using Pearson correlation from 61 

stimulus onset (0 ms) to 500 ms after onset. The modularity-maximization classification 62 

procedure identified two subgroups of trials, Subtype 1 (Ntrials = 10674) and Subtype 2 (Ntrials = 63 

10284; Fig. 2A), across all subjects (Fig. 2B). 64 

 65 
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 66 

Figure 2.  Subtypes of individual trials in motion perception task. A) Modularity-maximization 67 

based clustering identified two subtypes of trials, Subtype 1 and Subtype 2. The colored squares 68 

correspond to the trials composing each subtype. Pearson correlation was used to calculate the 69 

spatial-temporal similarity of the EEG activity among individual trials from 0 to 500 ms post-70 

stimulus. B) The proportion of trials in each subject classified as either subtype 1 or 2. C) ERP 71 

topographies of Subtype 1 and Subtype 2 from 200 ms before stimulus onset to 1000 ms after 72 

stimulus offset. Note that the clustering algorithm was applied to the data from stimulus onset (0 73 

ms) to 500 ms, black box. D) ERP activity from the centro-parietal sensor per subtype. Each 74 

waveform shows the mean (thick line) and standard error of the mean (shaded area). Statistical 75 

testing was conducted using independent samples t-tests, and FDR corrected for multiple 76 

comparisons. Statistically significant differences in amplitude are marked at the top of the panel. 77 

E) The topographical similarity between subtype-derived ERPs to ERPs derived from 78 

experimental – motion direction (Left/Right), motion coherence (0.01, 0.045, 0.08, 0.12, 0.25 79 

0.4) – and behavior factors – Correct/Incorrect response, Fast/Slow response time, High/Low 80 

confidence. Pearson correlation was used to calculate the spatial-temporal similarity of the EEG 81 

activity from individual trials for 0 to 1000 ms after the stimulus. The ERP from one of the 82 

subtypes, Subtype 1, exhibits strong similarity (r > 0.60) to ERPs derived from experimental and 83 

behavioral factors highlighting the utility of Modularity-Maximization based clustering to 84 

identify variation in internal processing relevant to cognition.  85 

 86 

To understand the nature of the two subtypes, we plotted their average event-related potentials 87 

(ERPs) to test for differences in stimulus-driven activity13. Qualitatively, the ERPs for each 88 
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subtype exhibited an opposite pattern of anterior vs. posterior event-related potentials (Fig. 2C). 89 

These qualitative topographical differences were present even when comparing ERPs for each 90 

motion coherence level (Fig. S1A, B). To confirm these impressions, we compared ERPs from 91 

the centro-parietal sensor, which has been linked with decision-making processes14 and evidence 92 

accumulation15,16. Significant differences were present in amplitude between the subtypes 93 

(independent samples t-tests, p < 0.001, FDR corrected; Fig. 2D) and for each motion coherence 94 

level (independent samples t-tests p < 0.001, FDR corrected; Fig. S1C). Subtype 1 contained 95 

significant positive amplitude in the parietal area compared to Subtype 2 from stimulus onset (0 96 

ms) to 1000 ms after the stimulus extending beyond the 500 ms window used in the clustering.  97 

 98 

One possibility is that these subtypes reflect different experimental or behavioral factors, such as 99 

leftward/rightward moving trials or fast/slow responses. To better assess the nature of these 100 

subtypes, we compared the topographical similarity between subtype-derived ERPs to ERPs 101 

derived by averaging trials associated with experimental (motion direction and coherence levels) 102 

and behavioral (accuracy, response times, and confidence) factors. The topographical similarity 103 

was estimated between ERPs from stimulus onset (0 ms) to 1000 ms after the stimulus. 104 

Interestingly, a strong similarity was found in Subtype 1 (r > 0.60), but not in Subtype 2 (r < 105 

0.10) to ERPs derived from experimental and behavioral factors, indicating that the variation in 106 

the stimulus-locked ERP in 43% of trials in our study were induced by other factors (Fig. 2E).   107 

 108 

We then investigated if these differences between the two subtypes were due to underlying 109 

differences in the composition of trials. The distribution of trials with leftward and rightward 110 

motion was the same between subtypes (Wilcoxson rank sum test: Z = 0.13; p = 0.89; Fig. S2A). 111 
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Although Subtype 1 contained a higher proportion of trials with lower motion coherence 112 

(Wilcoxson rank sum test: Z = -4.06; p = 4.72 x 10-5; Fig. S2B), this difference accounted for 113 

less than 3% of trials per condition (Fig. S2C). Thus, experimental factors were not the main 114 

driver of the spatial-temporal variation in brain activity among trials.  115 

 116 

However, the subtypes reflect alterations in underlying cognitive and decision-making processes. 117 

Subtype 1 trials consistently exhibited faster response times across all motion coherence levels 118 

(independent samples t-test: t(20956) = -6.97; p = 3.29 x10-12; Fig. 3A, Fig. S2A). On the other 119 

hand, there was no significant difference between the two subtypes in accuracy (independent 120 

samples t-test: t(20956) = 1.35; p = 0.17; Fig. 3B, Fig. S2B), and only marginally higher 121 

confidence in Subtype 1 trials (independent samples t-test: t(20956) = 1.79; p = 0.07; Fig. 3C, 122 

Fig. S2C).  123 

 124 
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 125 

Figure 3. Behavioral differences between subtypes. Differences in (A) response times, (B) 126 

accuracy, and (C) confidence between subtypes. Error bars show the mean ± sem. Drift-diffusion 127 

parameters showed that (D) the drift rate was the same between subtypes, (E) the response 128 

boundary was higher in Subtype 2, and (F) the non-decision time exhibited no differences 129 

between subtypes. Statistical testing was conducted using independent samples t-tests, and FDR 130 

corrected for multiple comparisons. ns = not significant 131 

 132 

Having identified two trial subtypes with underlying differences in stimulus-dependent brain 133 

activity and decision-making processes, we sought to identify the latent cognitive processes that 134 

would give rise to the behavioral differences by computationally modeling the response times 135 

and accuracy using the drift-diffusion model17. We fit the drift-diffusion model to the behavioral 136 

data from each subtype separately. We let the drift rate vary with motion coherence level, but the 137 

decision boundary and non-decision time were fixed across the different coherence levels. 138 

Examining the latent factors, we found the drift rate was the same between subtypes 139 

(independent samples t-test; p > 0.05; Fig. 3D), but Subtype 2 trials featured significantly higher 140 
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response boundary (independent samples t-test: t(24) = -3.81; p = 0.001; Fig. 3E). Further, no 141 

differences were present in the non-decision time (independent samples t-test: t(24) = 0.28; p = 142 

0.81; Fig. 3F).   143 

 144 

To ensure our results are generalizable and robust, we conducted two additional analyses. First, 145 

we trained a Support Vector Machine (SVM) classifier by randomly separating trials into 5 bins 146 

containing 20% of trials. The classifier was trained on EEG data from four of the bins (80% of 147 

trials) and tested on the remaining bin (20% of the trials). The procedure was repeated until each 148 

bin was tested. The SVM classifier correctly predicted subtype labels with greater than 98% 149 

accuracy (Fig.  S4). Second, we replicated the analysis using a longer time window (1000 ms) to 150 

verify that the results were not dependent on the time range used in the clustering analysis. The 151 

classification similarity between the 500 ms and 1000 ms time windows was strong (>84%; Fig. 152 

S5A-C) which is reflected in the ERP and behavioral analysis (Fig. S5D-O).  153 

 154 

Through a combination of data-driven classification of brain activity, behavior, and 155 

computational modeling, we identify two brain states with differing stimulus-driven activity. 156 

These states reflect changes in latent cognitive factors which could indicate different modes of 157 

processing during perceptual decision-making in humans18  and other animals19. These modes 158 

could arise from changes in a single information processing sequence induced by alteration in the 159 

balance between top-down20 and bottom-up signaling21. Alternatively, the different stimulus-160 

driven activity could indicate the existence of two independent information processing 161 

sequences. Taken together, the analytical approach and findings open a new avenue for 162 

understanding the brain-behavior relationship.  163 
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