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Abstract: It has recently been shown in the Eastern Mediterranean that by combining natural time
analysis of seismicity with earthquake networks based on similar activity patterns and earthquake
nowcasting, an estimate of the epicenter location of a future strong earthquake can be obtained. This
is based on the construction of average earthquake potential score maps. Here, we propose a method
of obtaining such estimates for a highly seismically active area that includes Southern California,
Mexico and part of Central America, i.e., the area N35

10W120
80 . The study includes 28 strong earthquakes

of magnitude M ≥ 7.0 that occurred during the time period from 1989 to 2020. The results indicate
that there is a strong correlation between the epicenter of a future strong earthquake and the average
earthquake potential score maps. Moreover, the method is also applied to the very recent 7 September
2021 Guerrero, Mexico, M7 earthquake as well as to the 22 September 2021 Jiquilillo, Nicaragua, M6.5
earthquake with successful results. We also show that in 28 out of the 29 strong M ≥ 7.0 EQs studied,
their epicenters lie close to an estimated zone covering only 8.5% of the total area.

Keywords: natural time analysis; order parameter fluctuations; earthquake nowcasting; Mexico;
Central America

1. Introduction

Earthquakes (EQs) in Mexico and the surrounding region of Southern California and
Central America are very common and extremely strong, see, e.g., References [1–4] and
references therein. When focusing in the region N35

10W120
80 (shown in Figure 1), more than

twenty-eight EQs with a magnitude M ≥ 7.0 have occurred there since 1989. In the present
paper, we employ the natural time analysis (NTA) [5–10] and earthquake nowcasting
(EN) [11–18] aiming at forecasting the epicenter of such a strong future EQ.

Recently, our group has combined [19] NTA and EN together with the properties of
the earthquake networks based on similar activity patterns (ENBOSAP) [20,21] for a similar
purpose in the Eastern Mediterranean region where seismicity is much less intense than in
the region N35

10W120
80 of our present interest. We see that when strong EQs are frequent, as is

the present case, we can simplify the approach of Reference [19] just by using NTA and EN.
Natural time was introduced [5] in 2001 as a general method to analyze time-series

resulting from complex systems [7]. It has been applied to a variety of fields, such as
condensed matter physics [22–24], geophysics [6,25–34], civil engineering [35–38], climatol-
ogy [39–42], and biomedical engineering [43,44]. Within the concept of NTA, it has been
shown that the variance κ1 of natural time χ may be considered as an order parameter
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for seismicity [3,45–49] as well as in acoustic emission before fracture [28,50] or in other
self-organized critical phenomena such as ricepiles [51] and avalanches in the Olami–Feder–
Christensen [52] earthquake model [53] or in the Burridge–Knopoff [54] train model [55].
Especially for seismicity, the study of this order parameter by means of its variability [56]
revealed [9,21,57–63] the presence of characteristic minima before the occurrence of strong
EQs. Interestingly, the precursory Seismic Electric Signals (SES) activities [64,65], which are
a series of low frequency electric signals ( f ≤ 1 Hz) observed before strong EQs [64–70]
have been shown to appear [19,71,72] almost simultaneously with the variability minima.
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Figure 1. Map of the study area N35
10W120

80 together with the plate boundaries (blue) according to
Bird [73]. The epicenters of the 28 strong EQs with M ≥ 7.0 during 1989 to 2020 are shown with cyan
bullets while those of the EQs with M ≥ 4.0 by red dots.

Earthquake nowcasting has been introduced by Rundle et al. [11] and allows the
evaluation of the current state of seismic hazard for strong EQs by the number of smaller
EQs that occur in the time interval between two strong ones. It has been applied for the
estimation of seismic risk to global megacities [12,15] as well as of the risk of great earth-
quakes that may generate mega-tsunamis [74]. EN has also been applied for the estimation
of induced seismicity [75,76] and offers unique possibilities for the estimation of the seismic
risk worldwide through global sources of seismic catalogs, see, e.g., References [77–80], cf.
local EQ catalogs have also been used, such as the one from the Institute of Geodynamics
of the National Observatory of Athens [81–83] for EN in Greece (Chouliaras, personal
comm. 2019).

2. Materials and Methods
2.1. EQ Data and the Tectonics of the Study Area

The area of interest here is Southern California, Mexico, and Central America, see
Figure 1. We used the United States National Earthquake Information Center (NEIC)
PDE catalog—these data are available from the United States Geological Survey (USGS),
cf. [84]—in the region N35

10W120
80 and considered all EQs recorded during the period of almost

50 years from 1 January 1973 to 21 September 2021 with magnitude M ≥ Mthres = 4.0.
The interaction of the continental block with the oceanic provinces that surround

Mexico has resulted in the current geographic layout. Mexico is located in a region
where five tectonic plates: North America, Pacific, Rivera, Cocos, and Caribbean, are in
regular interaction. The major fault zones, the spreading zones, and the subduction zones
determine the boundaries between these plates [85]. The North America’s displacement
is to the southwest, the Eastern Pacific’s to the northwest, the Cocos and Rivera’s to the
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northeast, and the Caribbean’s to the east; this disposition enhances the likelihood of a large
seismic occurrence. Mostly, the interplay that occurs on the Mexican Pacific’s southern
coast, where the Cocos plate subducts beneath the North American plate, is the primary
source of earthquakes in this country.

Oceanic plates are considered to be substantially more rigid than continental plates due
to their olivine-rich composition. The Pacific Plate, the largest of the Earth’s tectonic plates,
is extensively an oceanic plate. The plate border deformation zones in the continental crust
are, without a doubt, far larger (tens to hundreds of kilometers) than the normally narrow
(10 km) boundaries seen in oceanic plates [86]. In the Pacific region, the Baja California
Peninsula is moving northwest, separating from the rest of the continent; the oceanic plate
of the Cocos is being assimilated by the continent in the southern Pacific of Mexico, from
Cabo Corrientes in the state of Jalisco to Central America; this subduction occurs along
an oceanic trench known as the Acapulco or Mesoamerican megashear [87]. Further, in
the seismic regions of the Gulf of Mexico and the Caribbean there are geological forces
of cortical separation (also referred as tension or distensive) operating on the continental
limits, and as a result of the movement of the continental tectonic plates of North America
towards the west and the Caribbean towards the east, they advance on the deepest bottoms
of the oceanic basins. In the Pacific Plate, in southern California and in Baja California, the
plates are migrating northwesterly relative to the North American plate along a series of
transformation faults (San Andreas fault) connecting the extension centers, whose activity
is gradually separating this territory from the rest of the continent, for which it will become
an island in approximately 10 million years. Similarly, oceanic faults allow magma to
escape, generating an expansion of the ocean floor [88,89].

The Rivera microplate is located in southern Baja California, right at the gateway to
the Sea of Cortez where the magnetic lineaments of the ocean floor indicate how the gap
between the Pacific plate and the Rivera plate, positioned between fracture zones, grows.
Due to the movement that the Cocos and Rivera plates have towards the northeast of the
Mexican Republic, a portion of these plates dips under the North American plate, causing
great earthquakes to occur along the coast of Jalisco, Colima, Michoacán, Guerrero, Oaxaca,
and Chiapas; yet we cannot determine if these large earthquakes were caused by the Cocos
or Rivera plate movement. The Cocos plate is built in the Eastern Pacific mountain range,
that goes from the Rivera fault zone to the Galapagos mountain chain. It is located off the
coastlines of Michoacán, Guerrero, Oaxaca, and Chiapas, and it dips into the continental
crust, leading to a displacement that causes earthquakes throughout the Pacific coast.

Cocos plate subducts beneath the North American plate at a rate of about 12 cm/yr
from 20 Ma to 11 Ma and 6 cm/yr from 11 Ma to present [90]. Along the central portion of
the Middle American Trench, the subduction interface shows a significant variety in along
strike dip angles; also, the middle section of the plate, near Acapulco, has a horizontal
slab. The trace/strike of the Neogene volcanic arc, which trends at a 17 degree angle
to the trace/strike of the trench, demonstrates the along strike change in the dip. The
dip is 50 degrees to the northwest near the Rivera Plate junction, and 30 degrees to the
southeast near the Tehuantepec Ridge [91]. The slab in central Mexico has returned to its
current location near the southern boundary of the Neogene volcanic arc, as shown by the
southward movement of the volcanic arc [92].

A triple point to the southeast of the Tehuantepec Ridge divides the North American
plate from the Caribbean plate, and the Cocos plate begins to subduct under it; this poses
substantial natural hazards to most of central and southern Mexico. The Yucatan Peninsula,
for its part, is rotating clockwise, and the Trans-Mexican Volcanic Belt is still active [93].

2.2. Natural Time Analysis Background: An Order Parameter for Seismicity and Its Minima

The natural time χk for the occurrence of the k-th EQ of the energy Qk in a time series
comprising N EQs is defined as χk = k/N. Hence, the evolution of the pair (χk, pk) is
studied in the NTA, where

pk =
Qk

∑N
n=1 Qn

(1)
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is the normalized energy and Qk is estimated by means of the relation [94] Qk ∝ 101.5Mk ,
where Mk stands for the EQ magnitude. The variance κ1 = 〈χ2〉 − 〈χ〉2 of natural time χ
weighted for pk, namely

κ1 =
N

∑
k=1

pk(χk)
2 −

(
N

∑
k=1

pkχk

)2

, (2)

can be considered as an order parameter for seismicity [45]. The fluctuations of this
order parameter of seismicity in an EQ catalog can be studied by using a fixed-length
sliding natural time window containing a number W of consecutive EQs by means of the
procedure described in References [9,95]. The window length W is selected to correspond
to the average number of EQs that occur within the crucial scale [96] of a few months, or so,
which is the average lead time of SES activities. To this end, we estimate all the κ1 values
from the subexcerpts of consecutive 6 to W EQs within the excerpt of the EQ catalog of W
EQs and use them for the calculation of their average value µW(κ1) and standard deviation
σW(κ1). The variability of the order parameter of seismicity κ1 is given by [7,56]

βW ≡
σW(κ1)

µW(κ1)
, (3)

while its temporal evolution can then be pursued by sliding the natural time window of
W consecutive EQs, event by event through the EQ catalog, see Figures 2 and 3. In such a
procedure, we assign to βW the occurrence time of the EQ which follows the last event of
the excerpt of W EQs in the catalog.

2.3. Earthquake Nowcasting and Earthquake Potential Score

Rundle et al. [11] proposed EQ nowcasting as a method for estimating the seismic
risk through the current state of fault systems in the progress of the EQ cycle identified on
the basis of natural time (cf. more recently the construction of time series resembling the
EQ cycle has been extensively studied in References [16,18,97]). To estimate the seismic
risk, EN uses an EQ catalog to calculate from the number of ‘small’ EQs, defined as
those with magnitude M < Mλ but above a threshold Mσ, i.e., M ∈ [Mσ, Mλ), the
level of hazard for ‘large’ M ≥ Mλ EQs. As mentioned in the Introduction, the EQ
catalogs adopted [11,12,19,77,78,78–80,98] are global seismic catalogs such as the Advanced
National Seismic System Composite Catalog or the NEIC PDE catalog and for Mσ the
completeness threshold of the EQ catalog is usually selected [11]. Along these lines, the
magnitude threshold Mσ = 4.0 has been considered [12,78] for applications in areas such as
Greece, Japan, and India that lie outside the United States. In EN, one employs the natural
time concept and counts the number n of ‘small’ EQs that occur after a ‘large’ EQ—n stands
for the waiting natural time or interoccurrence natural time. Then, the current number n(t)
of the ‘small’ EQs since the last occurrence of a ‘large’ one is compared to the cumulative
distribution function (CDF) of the interoccurrence natural time Prob[n < n(t)]. To estimate
Prob[n < n(t)], it should be ensured [11] that we have enough data to span at least 20 or
more ‘large’ EQ cycles. In EN, the EQ potential score (EPS) equals the CDF value,

EPS = Prob[n < n(t)], (4)

and measures the level of the current hazard, see Figure 4a. In References [11,12,77–79] the
seismic risk for various cities of the world was estimated through the following procedure:
After calculating the CDF Prob[n < n(t)] within a large area, the number ñ of the small
EQs around a city, i.e., those occurring within a circular region of epicentral distances r < R
since the occurrence of the last ‘large’ EQ in this circular region, is found. Given that EQs
exhibit ergodicity—see, e.g., References [99–101]—Rundle et al. [12] suggested that the
seismic risk around a city can be estimated by using the EPS corresponding to the current
value of ñ by inserting n(t) = ñ in Equation (4).
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Figure 2. The variabilities βW for W = 100, 150, and 200 consecutive EQs versus the conventional
time for the period 1989 to 21 September 2021. The EQ magnitudes (right scale) are depicted by the
(black) vertical lines ending in circles. The cyan vertical lines indicate the dates at which minima of
βW have been observed and have been selected for drawing the 〈EPS〉maps.
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Figure 3. Excerpts of Figure 2 in expanded time scale. Each excerpt (a)-(j) corresponds to a different time period, in which
strong M≥ 7.0 EQs occurred: (a) 1992-1993, (b) 1995-1997, (c) 1999-2001, (d) 2003-2004, (e) 2009-2010, (f) March and April
2012, (g) August, September, and November 2012, (h) 2014, (i) 2017-2018, and (j) 2020-2021. In each panel, the variability
β200 is drawn while β150 and β100 are drawn only in the cases in which a βW minimum is identified based on W = 150 or
100 (see the text and Table 1).

In the present study, the area considered is N35
10W120

80 , which for Mσ = 4.0 and Mλ = 6.0
leads to the CDF shown in Figure 4a. When focusing on the period from 1 January 1989 to
1 January 2021, the empirical CDF comprises 218 EQ cycles and is shown in Figure 4a. In
this figure, we observe that the fit

Prob[n < n(t)] = 1− exp

{
−
[

n(t)
83.46

]0.953
}

(5)

using the Weibull distribution provides a fair approximation with root mean square of
residuals [102] equal to 0.0177. This property of the Weibull distribution is in accordance
with the results found by Pasari and Sharma [79] for Himalayan EQs as well as with those
later found in Reference [19] for Eastern Mediterranean.
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Figure 4. The empirical cumulative distribution function (red plus symbols) of the number n of
EQs with M ≥ 4.0 that occur between two EQs of magnitude M ≥ 6.0 in the study area N35

10W120
80 of

Figure 1 during the period 1989 to 2020. This equals to the EPS according to EQ nowcasting and has
been calculated on the basis of 218 EQ cycles. The corresponding Weibull model fit [79] is also shown
with the blue curve in lin–lin (a) and lin–log (b) diagram.

2.4. Construction of Average Earthquake Potential Score Maps

Upon the selection of a date, one can estimate by means of the EQ catalog the number
of ‘small’ EQs ñ that occurred since the last ’large’ EQ inside a circle of radius R for each
point in the study area. By inserting ñ in Equation (5) we can obtain the corresponding
EPS value. The 〈EPS〉 maps are constructed by evaluating first the value of EPS, EPSij,
at the points (xij, yij) of a ‘square’ lattice that covers the study area and then by spatially
averaging these EPS values within disks of the same radius R:

〈EPS〉(x, y) =
1
N

d(x,y;xij ,yij)≤R

∑
i,j

EPSij, (6)

where the summation is restricted to the lattice points whose distance d(x, y; xij, yij) from
the observation point (x, y) is smaller than or equal to R; N stands for the number of lattice
points included in the sum.

In Section 3 of Reference [19], it has been shown that the 〈EPS〉mean value mn(R, R′)

mn(R, R′) =
1

Nij
∑
ij
〈EPS〉(xij, yij), (7)

where the summation is made over all the Nij lattice points (xij, yij), estimated numerically
in an 〈EPS〉map drawn with self-consistency radius R and covering an area A of average
radius R′(≈

√
A/π) may take the form

mn(R, R′) =
(

R
R′

)d f

, (8)

where d f is related to [19] the fractal dimension [103] of EQ epicenters.

3. Results

A self-consistent method of producing 〈EPS〉 maps using a radius R has been sug-
gested and applied to Eastern Mediterranean in Reference [19], as already mentioned. The
date on which βmin has been observed -on the basis of the analysis of the properties of
ENBOSAP [21]- has been selected for drawing these 〈EPS〉maps. The latter are produced
by first estimating EPS for disks of radius R centered at each point of a square 0.25◦ × 0.25◦

lattice covering the whole region of study and then by averaging these EPS values within
the same radius R (see Section 2.4). A clear relation between the such made 〈EPS〉maps
and the epicenter of an impending strong EQ has been observed. Moreover, the stability of
the method when changing the lattice ‘constant’ from 0.25◦ to 0.10◦ has been secured.
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Here, we focus on the area N35
10W120

80 of intense seismicity depicted in Figure 1. For
example, during the 32 year period from 1 January 1989 to 1 January 2021 we have in
total 19,184 EQs with M ≥ Mσ = 4.0, i.e., approximately 50EQs/month, 28 of which
have magnitude M ≥ 7.0, i.e., approximately 0.875 EQs/year (see Table 1). Due to this
frequent occurrence of EQs of magnitude M ≥ 7.0, the application of the properties of
ENBOSAP k-cores in order to identify the minima preceding these strong EQs as made in
Reference [19] is not considered necessary. In other words, since on average every year
we have approximately one strong EQ we just need to identify minima of the variability
βW for a reasonable value of W as suggested by Varotsos et al. [96]. We selected W = 200
corresponding to the number of EQs that occur on average every four months.

This way, the dates of the minima βW,min identified six months before each strong
EQ are shown by the vertical cyan lines in Figure 2 and are also inserted in the second
column of Table 1. In the case of some strong EQs, i.e., those numbered 2, 17, 18, and 27 in
Table 1, a minimum of β200 cannot be identified clearly before the strong EQ, thus minima
of β150 and/or β100 have been used. The detailed behavior of the variability of the order
parameter of seismicity before each strong EQ can be seen in the excerpts shown in Figure 3.
An inspection of the latter figure together with Table 1 reveals that some minima may
correspond to more than one strong EQ. This does not impose any actual problem, because
the 〈EPS〉maps produced for such a date can be easily compared with the epicenters of the
strong EQs that followed the minimum due to the large dimensions of the study area.

Table 1. The dates of the variability minima βW,min for W = 200 observed within 6 months before all
the strong M ≥ 7.0 EQs in the study area N35

10W120
80 that have been selected for drawing the 〈EPS〉

maps shown in Figure 5. The lines corresponding to EQs of magnitude M ≥ 7.5 are indicated by
typing the magnitude in bold. In the last line, the β200,min, which was observed before the very recent
2021 Guerrero, Mexico EQ, is inserted (almost two weeks later the 2021 Jiquilillo, Nicaragua, M6.5
earthquake took place with an epicenter at 12.16◦ N 87.85◦ W).

No βW ,min Date EQ Date M Epicenter Location

1 7 March 1992 28 June 1992 7.3 34.20◦ N 116.44◦ W
2 17 August 1992 a 2 September 1992 7.7 11.74◦ N 87.34◦ W
3 18 May 1993 10 September 1993 7.2 14.72◦ N 92.64◦ W
4 2 September 1995 14 September 1995 7.4 16.78◦ N 98.60◦ W
5 2 September 1995 9 October 1995 8.0 19.05◦ N 104.20◦ W
6 2 September 1995 21 October 1995 7.2 16.84◦ N 93.47◦ W
7 25 January 1996 25 February 1996 7.1 15.98◦ N 98.07◦ W
8 15 July 1996 11 January 1997 7.2 18.22◦ N 102.76◦ W
9 3 April 1999 15 June 1999 7.0 18.39◦ N 97.44◦ W
10 3 April 1999 30 September 1999 7.5 16.06◦ N 96.93◦ W
11 3 April 1999 16 October 1999 7.1 34.59◦ N 116.27◦ W
12 19 December 2000 13 January 2001 7.7 13.05◦ N 88.66◦ W
13 1 August 2002 22 January 2003 7.6 18.77◦ N 104.10◦ W
14 9 April 2004 9 October 2004 7.0 11.42◦ N 86.67◦ W
15 27 April 2009 28 May 2009 7.3 16.73◦ N 86.22◦ W
16 12 March 2010 4 April 2010 7.2 32.30◦ N 115.28◦ W
17 13 March 2012 a 20 March 2012 7.4 16.49◦ N 98.23◦ W
18 6 April 2012 b 12 April 2012 7.0 28.70◦ N 113.10◦ W
19 1 July 2012 27 August 2012 7.3 12.14◦ N 88.59◦ W
20 1 July 2012 5 September 2012 7.6 10.09◦ N 85.31◦ W
21 4 November 2012 7 November 2012 7.4 13.99◦ N 91.89◦ W
22 27 February 2014 18 April 2014 7.2 17.40◦ N 100.97◦ W
23 8 October 2014 14 October 2014 7.3 12.53◦ N 88.12◦ W
24 11 May 2017 8 September 2017 8.2 15.02◦ N 93.90◦ W
25 11 September 2017 19 September 2017 7.1 18.55◦ N 98.49◦ W
26 14 December 2017 10 January 2018 7.5 17.48◦ N 83.52◦ W
27 10 January 2018 a,b 16 February 2018 7.2 16.39◦ N 97.98◦ W
28 16 April 2020 23 June 2020 7.4 15.89◦ N 96.01◦ W
29 10 June 2021 8 September 2021 7.0 16.98◦ N 99.77◦ W
a This date comes from W = 100. b This date comes from W = 150.

In Figure 5, using a 0.2◦ × 0.2◦ grid, we depict the 〈EPS〉 maps determined for
R = 100 km for each βW,min date of Table 1 together with the location of the epicenters of
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the strong EQs that followed within the next six months. We observe that the EQ epicenters
compare favorably with the contours of 〈EPS〉. This relation will be further elaborated in
the next section.
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Figure 5. Maps of the study area N35
10W120

80 together with the plate boundaries (blue) according to Reference [73] depicting
by color scale the 〈EPS〉 for R = 100 km at the dates of βW,min inserted in Table 1. The EQ epicenters are shown by the (black)
open circles in each case and their magnitude is typed boldface when M ≥ 7.5.

4. Discussion

We first studied the statistics of the 〈EPS〉 values closest to the epicenters of the strong
EQs with M ≥ 7.0 during the period 1 January 1989 to 1 January 2021, i.e., the first 28 EQs
of Table 1. The results for the mean value µ(R) and the standard deviation (STD) σ(R) are
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plotted versus R in Figure 6a, which indicates a characteristic behavior of a monotonically
increasing µ(R). A further inspection of Figure 6a reveals that it is compatible with the
functional form

µ(R) =
1

2π
log
[

R
6.68(6)

]
− R

3580(50)
(9)

which includes the characteristic logarithmic singular part of the Green’s function in two di-
mensions, see, e.g., Equation (9.96c) in paragraph 3 of Section 9.2.2.3 of Bronshtein et al. [104],
together with a linear (non-singular) correction term. The presence of this singular logarith-
mic part when analyzing 〈EPS〉 closest to the strong EQ epicenters should be considered
as a strong indication of the interrelation between the location of the epicenters and the
corresponding 〈EPS〉 maps. It signifies that the future epicenters seem to act similar to
sources in the two dimensional 〈EPS〉 field.
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Figure 6. Dependence of the 〈EPS〉 statistics on the coarse grain radius R: Panel (a) depicts the
average value µ(R) (red bullets) and the STD σ(R) (green crosses) of the 〈EPS〉 values closest to each
epicenter of the first 28 EQs of Table 1. The fitting function µ(R) (blue) and the average value of σ(R)
(green horizontal line) are also shown. Panel (b) depicts the mean value 〈EPS〉 over all the grid points
of the 〈EPS〉 maps shown in all but the last panel of Figure 5. This mean value labeled mn(R, R′)
(open red circles) is plotted vs. R together with the corresponding power law fit (blue straight line).

The above point is further strengthened by the fact that when considering the 〈EPS〉
mean value 〈EPS〉 over all the lattice points of the grid (square lattice) for all the 〈EPS〉
maps of Figure 5 that correspond to the first 28 EQs of Table 1 the singular behavior
disappears, see Figure 6b. The functional form observed in Figure 6b indicates a value of d f
= 0.95(2) which is compatible with the almost one-dimensional fault structure of Figure 1
(cf. the latter is dominated by the faults along the Pacific coast). Moreover, a comparison of
Figure 6b with Equation (8) reveals that R′ = 2160(80) km, which compares favorably with
the quantity

√
A/π ≈ 2000 km when considering the study area A of 25◦ × 40◦.

Furthermore, we studied the statistics of 〈EPS〉 values closest to the epicenters of
the 8 EQs with M ≥ 7.5 (shown with bold letters in Table 1 and Figure 5). It was found
that for R = 250 km, a particularly interesting behavior is observed: Namely a bimodal
distribution appears with mean value 0.55 and two lobes ±0.15 from the mean. This, in
conjunction with the fact that at R = 250 km, Figure 6a reveals an average value of 0.50,
encouraged us to investigate the maps of |〈EPS〉 − 0.5| for values of R around 250 km (cf.
in previous studies [19,58] R = 250 km has also been found of particular importance). Such
a study revealed that |〈EPS〉 − 0.5|maps may be useful and the optimum results (shown
in Figure 7) were obtained when using R = 200 km.

An inspection of Figure 7 reveals that if we ignore the case of the 1997 Michoacan
M7.2 EQ [105] that corresponds to the β200,min observed on 15 July 1996, the epicenters of
all the other 28 strong EQs of magnitude M ≥ 7.0 lie inside or up to 120 km away from
the region shaded with tones of cyan color, i.e., with |〈EPS〉 − 0.5| ∈ [0.1, 0.24]. This latter
region on average covers only 8.5% of the total area with a STD of 2.3%. Additionally, 25
out of the 29 strong EQ epicenters of Table 1 lie within 65km away from the same region
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(cf. the 1993 M7.2, the 2012 M7.3, and the 2020 M7.4 EQs lie away 118 km, 87 km, and
115 km, respectively).
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Figure 7. Maps of the study area N35
10W120

80 together with the plate boundaries (blue) according to Bird [73] depicting by
color scale the quantity |〈EPS〉 − 0.5| for R = 200 km at the dates of βW,min inserted in Table 1. The EQ epicenters are shown
by the (red) circles with pluses in each case and their magnitude is typed boldface when M ≥ 7.5.

The results shown in Figure 7 do not, of course, solve the very difficult problem of
finding the epicenter of a future strong EQ since the areas covered by the tones of cyan
color are spatially distributed in a rather large area, but clearly indicate that 〈EPS〉maps
definitely include information concerning the epicenter of a future strong EQ. Our efforts
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to improve these results are in progress by applying this method to other seismically active
areas around the globe (cf. the operation of SES measuring stations [106] is an essential
factor for such an improvement since additional information on the future epicentral area
can be thus obtained).

5. Conclusions

Here, we studied the variability βW of the order parameter of seismicity κ1 (introduced
by natural time analysis) together with earthquake nowcasting within the highly active
seismic region N35

10W120
80 that covers Southern California, Mexico, and part of Central

America. We suggest a self-consistent method of constructing 〈EPS〉 maps to obtain
an estimation of the epicenter location of a future strong EQ of magnitude M ≥ 7.0 in
this region. The study of 〈EPS〉 values closest to the strong EQ epicenters showed a
logarithmic behavior, which is reminiscent of the Green’s function in two dimensions.
This is compatible with the view that the future epicenters act like ‘sources’ in these two
dimensional maps. Using NTA and EN the epicenter of a future strong M ≥ 7.0 EQ was
estimated to lie in the vicinity of a region covering on average only 8.5% of the total study
area with a hit rate 28/29(≈96.5%).
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