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ARTICLE INFO ABSTRACT

Article History: Background: The tumor microenvironment can be classified into immunologically active “inflamed” tumors
Received 30 September 2019 and inactive “non-inflamed” tumors based on the infiltration of cytotoxic immune cells. Previous studies on
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liver cancer have reported a superior prognosis for inflamed tumors compared to non-inflamed tumors.
However, liver cancer is highly heterogeneous immunologically and genetically, and a finer classification of
the liver cancer microenvironment may improve our understanding of its immunological diversity and
response to immune therapy.
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ﬁfx"rvz::ier Methods: We characterized the immune gene signatures of 234 primary liver cancers, mainly virus-related,
Tumor microenvironment from a Japanese population using RNA-Seq of tumors and matched non-tumorous hepatitis livers. We then
Tumor-associated macrophage compared them with the somatic alterations detected using the whole-genome sequencing.

Regulatory T cell Findings: Liver cancers expressed lower levels of immune marker genes than non-tumorous hepatitis livers,

indicating immunosuppression in the tumor microenvironment. Several immunosuppression mechanisms
functioned actively and mutually exclusively, resulting in four immune subclasses of liver cancer: tumor-
associated macrophage (TAM), CTNNB1, cytolytic activity (CYT), and regulatory T cell (Treg). The CYT and
Treg subclasses represented inflamed tumors, while the TAM and CTNNB1 subclasses represented non-
inflamed tumors. The TAM subclass, which comprised 31% of liver cancers, showed a poor survival, expressed
elevated levels of extracellular matrix genes, and was associated with somatic mutations of chromatin regu-
lator ARID2. The results of cell line experiments suggested a functional link between ARID2 and chemokine
production by liver cancer cells.

Abbreviations: TAM, tumor-associated macrophage; Treg, regulatory T cell; TME, tumor microenvironment; HCV, hepatitis C virus; HBV, hepatitis B virus; HCC, hepatocellular car-
cinoma; ICC, intrahepatic cholangiocarcinoma; cHCC-ICC, combined hepatocellular carcinoma-intrahepatic cholangiocarcinoma; WGS, whole genome sequencing; ICGC, Interna-
tional Cancer Genome Consortium; FPKM-UQ, fragments per kilobase of exon per million fragments mapped with upper quartile normalization; CYT, cytolytic activity; CNA, copy
number alternation; PCAWG, Pan-Cancer Analysis of Whole Genomes; HR, hazard ratio; CI, confidence interval; OR, odds ratio; GSEA, gene set enrichment analysis; ECM, extracellu-
lar matrix; FDR, false discovery rate; SNV, single nucleotide variant; INDEL, insertion and deletion; TCGA, The Cancer Genome Atlas
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Interpretation: Primary liver cancer was classified into four subclasses based on mutually exclusive mecha-
nisms for immunosuppression. This classification indicate the importance of immunosuppression mecha-
nisms, such as TAM and Treg, as therapeutic targets for liver cancer.
Funding: The Japan Agency for Medical Research and Development (AMED).
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Research in context

Evidence before this study

Tumors are composed of both cancer cells and other types of
cells, including fibroblasts, endothelial cells, and leukocytes.
The composition of leukocytes in tumors is of particular interest
due to its relation with the patient’s prognosis and response to
therapy. A previous study revealed that liver cancer can be clas-
sified into leukocyte-rich “inflamed” cancer and leukocyte-poor
“non-inflamed” cancer, where patients with “inflamed” liver
cancer have a better prognosis.

Added value of this study

Liver cancer can be classified into four immunological sub-
classes. Inflamed liver cancer can be subclassified into the
“CYT” and “Treg” subclasses, while non-inflamed liver cancers
are divided into the “TAM” and “CTNNB1” subclasses. The TAM
and Treg subclasses are infiltrated by immune suppressive leu-
kocytes and are associated with a poor prognosis.

Implications of all the available evidence

This study revealed the immunological heterogeneity of liver
cancer. The immunological classification presented in this work
may be used to guide patient stratification for immune check-
point therapy.

1. Introduction

Tumor tissue not only contains tumor cells but also other cells,
such as leukocytes, endothelial cells, and fibroblasts, which collec-
tively constitute the tumor microenvironment (TME). Cells in the
TME closely interact with tumor cells and exert both pro- and anti-
tumor effects. The key players of the anti-tumor effect are immune
cells, including cytotoxic T lymphocytes and natural killer (NK) cells.
Based on the level of cytotoxic immune cells infiltrating into the
TME, tumors can be classified as immunologically active “inflamed”
tumors or immunologically inactive “non-inflamed” tumors.
Inflamed tumors have a better prognosis than non-inflamed tumors
in lung, colorectal, and ovarian cancers, among others [ 1—4]. Further-
more, infiltration by cytotoxic immune cells can be used to predict
responses to immune checkpoint inhibitors, albeit to a limited degree
[5]. This demonstrates the clinical utility of this binary classification,
while at the same time suggesting the need for a finer immunological
classification of TME.

Liver cancer is the 4th leading cause of cancer-related death in the
world. Liver cancer mostly develops from chronic hepatitis and is
infiltrated by various immune cells. Its TME can also be classified into
inflamed and non-inflamed tumors [6]. An inflamed TME of liver can-
cer is associated with a significantly better overall survival [7—9] and
disease-free survival [10,11] compared to non-inflamed TME. In addi-
tion, some liver cancers appear to respond well to immune check-
point inhibitors [12,13]. Whether or not the response correlates with
inflamed TME is currently unclear. However, because the response

was found to be correlated with PD-L1 expression [13], TME may be
a key factor for the response of liver cancer to immune checkpoint
inhibitors.

While the “inflamed or not” classification of liver cancer is useful, it
may oversimplify and neglect the immunological complexity of clinical
samples. For example, a single-cell RNA-Seq study revealed that
diverse subpopulations of T cells infiltrate into liver cancer [14]. The
ratio of Tregs to CD4" or CD8" T cells is high in some liver cancer tis-
sues, and these cancers are associated with a poor prognosis [11,15].
The level of infiltrating CD68" macrophages also differs among liver
cancers, and has been shown to have a negative impact on the survival
of patients [16]. This immunological heterogeneity among liver can-
cers requires a finer classification of the immunological microenviron-
ment beyond inflamed/non-inflamed tumors. A more precise
classification and its correlation with genomic alterations may be used
to guide clinical decision-making for treatment with immuno-check-
point inhibitors in cancer genomic medicine, as well as provide a basis
for the development of novel therapeutic targets.

Here, we performed immunogenomic analyses using the tran-
scriptome and whole-genome sequencing data on 234 liver cancers
in a Japanese population [17]. The majority of the liver cancers were
positive for hepatitis C virus (HCV) or hepatitis B virus (HBV) and
thus etiologically distinct from the Western cohorts. We found that
inflamed and non-inflamed liver cancers were each divided into two
subclasses based on their immunosuppression mechanisms. The sub-
classes had unique associations with etiology, prognosis, molecular
subtypes, and somatic alterations. Our results shed light on the het-
erogeneity of TME in clinical samples of liver cancer.

2. Materials and methods
2.1. RNA-Seq and whole genome sequencing for liver cancers

In a previous study, we performed whole genome sequencing
(WGS) for 300 liver cancers and RNA-Seq for 259 of 300 tumors, as
part of the International Cancer Genome Consortium (ICGC) [17]. In
this study, we computationally re-analyzed 234 out of the 259
tumors. The data for the other 25 tumors was omitted because they
were not submitted to mutation calling by the Pan-Cancer Analysis of
Whole Genomes (PCAWG) project (see below) [18]. The RNA-Seq
data of matched non-tumor liver tissues were available for 196 out of
the 234 cases. The clinical information of the patients is summarized
in Table 1. All patients provided written informed consent for their
participation in the study following the ICGC guidelines. Institutional
review boards at RIKEN and all groups participating in this study
approved this work. We re-analyzed the RNA-Seq reads of liver can-
cers and non-tumorous livers. Read mapping onto reference human
genome (GRCh37) with TopHat2, and the read counting for GENCODE
release 19 with HTseq, were orchestrated by the iRAP pipeline [19].
Fragments per kilobase of exon per million fragments mapped with
upper quartile normalization (FPKM-UQ) were computed and used
as the gene expression levels throughout the study. When log expres-
sion was required, 0.01 was added to FPKM-UQ as offset.

2.2. Immune signature

Cytolytic activity (CYT) was computed as the geometric mean
between the FPKM-UQ of PRF1 and GZMA. The gene expression
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Table 1
Clinical information of the cohort.
Number of patients 234
Age, median (Q1-Q3) 68.5 (62—74)
Gender, male (%) 174 (74)
Histology (%)
HCC 208 (89)
ICC 19(8)
cHCC-ICC 7(3)
Virus (%)
HCV 128 (55)
HBV 58 (25)
NBNC 44 (19)
HBV, HCV 4(2)
Tumor size, > 3 cm (%) 113 (48)
Vascular invasion (%) 80 (34)
Stage (%)
[ 39(17)
11 106 (45)
11 69 (30)
I\ 20(9)
AFP, > 200 ng/mL (%) 65 (28)
Platelet count, < 100,000/L 51(22)
Five-year overall survival (95% CI) 0.63 (0.56-0.70)
Five-year disease-free survival (95% CI)  0.33 (0.27-0.40)

signatures of CD8 T cells, NK cells, B cells, interferon-o response, inter-
feron-y response, and Wnt/g-catenin signaling were computed using
the single-sample GSEA module on the GenePattern server (https://
genepattern.broadinstitute.org/). The signature genes for the CD8 T
cells, NK cells, and B cells were retrieved from a previous study [20].
As the signature gene sets for interferon responses and Wnt/B-catenin
signaling, we downloaded “HALLMARK INTERFERON ALPHA
RESPONSE,” “GO CELLULAR RESPONSE TO INTERFERON GAMMA,” and
“CHIANG LIVER CANCER SUBCLASS CTNNB1 UP” from the Molecular
Signatures Database (MSigDB, version 6.1). The member genes of these
signatures are listed in Supplementary Table 1. The molecular sub-
classes of Chiang et al. [21] and Hoshida et al. [22] were assigned to
our liver cancer samples by using the nearest template prediction on
GenePattern. The signature genes for the molecular subclasses were
obtained from MSigDB. The immune classification of liver cancer was
performed in a similar manner, using a previously published gene set
[9]. The ESTIMATE immune score and stromal score were computed
using the ESTIMATE R package. The prediction of the immune cell frac-
tions by CIBERSORT was performed by submitting FPKM-UQ to the
public server (https://cibersort.stanford.edu).

2.3. Immunohistochemistry

From 70 formalin-fixed, paraffin-embedded tissue samples, which
were analyzed previously by RNA-Seq and WGS in their frozen tissues
[17], five 4-pum-thick sections were serially cut and mounted on pre-
coated slides. A FOXP3 assay was then performed using the Ventana
Benchmark XT system (Roche). For antigen retrieval, Cell Conditioning
1 (Roche) was poured onto the sections, which were then heated on a
slide heater at 95 °C for 64 min. The tissue sections were incubated
with x 200 dilution of FOXP3 antibody (Cell Signaling Technology). A
CD163 assay was performed using DAKO Autostainer Link 48 (Agilent
Technologies). For antigen retrieval, the sections were heated at 97 °C
for 20 min with Target Retrieval Solution, High pH (Agilent Technolo-
gies). The tissue sections were incubated with x 200 dilution of CD163
antibody (Novocastra, Leica Biosystems).

2.4. Somatic mutation call from whole genome sequencing data

Somatic mutation calls for SNVs, indels, SVs, and copy number alter-
nations (CNAs) were previously generated by the Pan-Cancer Analysis
of Whole Genomes (PCAWG) project [18] as part of efforts to analyze

2800 pan-cancer WGS using uniform pipelines. The somatic SNVs and
INDELs were called as a consensus of four individual variant callers. For
the somatic CNA calls, a consensus of six individual CNA callers were
used. These data is available online at https://dcc.icgc.org/pcawg.

2.5. Clustering of liver cancer

To immunologically classify the liver cancers, we selected four
gene expression signatures: macrophages M2, Wnt/S-catenin signal-
ing, Tregs, and cytolytic activity. The first three signatures represent
known immunosuppression mechanisms, whereas the last one rep-
resents anti-tumor immunity. For Tregs and macrophage M2, we
used the fraction of these cell types in tumor tissue estimated by
CIBERSORT. For Wnt/B-catenin signaling, we computed a signature
using single-sample GSEA with the genes listed in Supplementary
Table 1. Cytolytic activity was transformed using logarithm. These
four signatures were scaled across samples, and distances between
samples were defined as 1 - Pearson’s correlation. The hierarchical
clustering of the 243 samples was performed using the Ward linkage,
and the dendrogram was cut into four clusters after visual inspection.

2.6. Microarray analysis and RNA-Seq of HCC cell lines

Two HCC cell lines, JHH4 and JHH5, were analyzed. The CRISPR/
Cas9-mediated knockout of ARID2, cell culture, RNA extraction, and
microarray profiling of these cells were performed as previously
described [23]. The gene expression levels were quantified from CEL
files using the robust multi-array average (RMA) method imple-
mented in the Bioconductor “affy” package. Log-fold changes of gene
expression between the knockout and wild-type cells were com-
puted using the Bioconductor “limma” package. GSEA was performed
by uploading the RMA expression measures to the GenePattern
server. We also performed RNA-seq of the wild-type and knock-out
JHH4 cells (triplicated) by using the TruSeq stranded mRNA library
Prep kit (Illumina) and the data analysis was performed by the same
method for the liver cancer samples.

2.7. Statistical analysis

All statistical tests were two-sided and performed using R soft-
ware (version 3.6.0). The log-rank test for trend was performed using
the “survMisc” package of R. For a single hypothesis testing, the sig-
nificance threshold was p < 0.05. For multiple hypothesis testing, the
significance threshold was a false discovery rate (FDR) < 0.05 after
the Benjamin—Hochberg correction.

2.8. Data availability

WGS and RNA-Seq reads for matched tumor and non-tumor tis-
sues are available in the European Genome-phenome Archive data-
base (accession number EGAS00001000678). The gene expression
data for cell lines were deposited to the NCBI's Gene Expression
Omnibus. The accession number is GSE144021 for microarray and
GSE143941 for RNA-Seq.

3. Results
3.1. Inflammation in liver cancer confers better prognosis

Previous studies have reported that inflamed TME in liver cancer
is associated with a better prognosis [7—11]. To confirm this, we first
compared the level of inflammation in liver tissues with the progno-
sis of patients. As a measure of inflammation, we examined cytolytic
activity (CYT), which is defined as the average expression of gran-
zyme A (GZMA) and perforin (PRF1) [24]. We computed CYT for both
tumors and adjacent non-tumorous livers, and examined their effect
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Fig. 1. Inflammation of liver cancer and non-tumorous liver were oppositely corre-
lated with prognosis. Kaplan—Meier plots of overall and disease-free survival after
surgical treatment of liver cancer. The patients were stratified by the cytolytic activ-
ity of the tumor (Q1, N = 59; Q2, N = 56; Q3, N = 57; Q4, N = 57) or the liver (Q1,
N =49; Q2, N = 49; Q3, N = 49; Q4, N = 49). The p-values were computed using the
log-rank test for trend.

on overall survival and disease-free survival (Fig. 1). Patients with
high tumor CYT had a significantly better overall survival compared
to low tumor CYT (p = 0.0014 by log-rank test for trend). The prog-
nostic value of tumor CYT was independent from age, gender, and
tumor stage (p = 0.002 by Cox proportional hazards model).

We also compared other measures of inflammation with progno-
sis. The ESTIMATE immune score [25] and the immune classes pro-
posed by Sia et al. [9] reflect broader aspects of immune response
than CYT, taking 141 and 112 genes into consideration, respectively.
Concordantly with tumor CYT, a high tumor ESTIMATE immune score
was associated with a better overall survival (p = 0.033 by log-rank
test for trend) (Supplementary Fig. 1a). The Sia immune class of
tumor was not associated with overall survival (p = 0.75 by log-rank
test) (Supplementary Fig. 1b). As CYT had the strongest correlation
with prognosis, we used CYT as the main readout of inflammation in
this study.

In contrast to tumor CYT, CYT in non-tumorous hepatitis livers
was associated with adverse outcomes (Fig. 1). Patients with high
CYT in adjacent non-tumorous liver had a poor disease-free survival
compared to low CYT (p = 0.026 by log-rank test for trend). This unfa-
vorable prognosis by non-tumorous liver inflammation could repre-
sent liver failure or multi-centric occurrence due to chronic hepatitis
and cirrhosis [26].

A favorable prognosis based on tumor inflammation could be
attributed to the activity of anti-tumor immunity. Since tumor
inflammation provides a prognostic benefit, we investigated how the
level of tumor inflammation is affected by clinical, pathological, and
molecular factors.

3.2. Tumor microenvironment of liver cancer is immunosuppressive

To identify factors that influence tumor inflammation, we com-
pared inflammation in hepatitis livers, where the majority of liver
cancers originate from. Viral hepatitis is a major etiology of liver can-
cer in Asia [27]. We found that, although non-tumorous liver CYT had
a significant association with the type of virus (p = 0.00015 by Krus-
kal-Wallis test), tumor CYT did not (p = 0.47) (Supplementary Fig.
2a). Similarly, tumor CYT was not correlated with the histological
stage of liver fibrosis (Inuyama classification; p = 0.83) (Supplemen-
tary Fig. 2b). We also compared CYT in tumors with CYT in non-
tumorous livers from matched patients. Although tumor and liver
CYT was positively correlated, the degree of correlation was weak

(Spearman correlation coefficient 0.15, p = 0.035) (Supplementary
Fig. 2c). Taken together, tumor inflammation was poorly correlated
with virus, liver fibrosis, and liver inflammation, indicating that TME
is less influenced by background liver inflammation.

The comparison of CYT showed that tumors are less inflamed than
non-tumorous liver (median CYT, 1.84 and 3.71, respectively;
p = 4.4 x 107'° by Wilcoxon signed-rank test) (Fig. 2b). To confirm
this, we examined the expression levels of the representative inflam-
matory genes (Fig. 2a). Markers of T cells (CD3E, CD8A, and CD4), B
cells (CD19 and CD20), and leukocytes (CD45) had significantly
decreased expression levels in tumors compared to in non-tumor liv-
ers (p-values < 0.0001 by Wilcoxon signed-rank test). Likewise,
interferon-y (IFNG) and cytotoxic molecules (GZMA, GZMB, and PRF1)
were less expressed in the tumors (p-values < 1.0 x 10~° by Wil-
coxon signed-rank test). The multigene signatures of the immune
response were also reduced in the tumor. The ESTIMATE immune
score was lower in the tumor than that in non-tumorous livers
(median, 753 and 1370, respectively; p = 1.9 x 10~'3 by Wilcoxon
signed-rank test) (Supplementary Fig. 2d). The gene expression sig-
natures of the CD8 T cells, NK cells, B cells, and interferon responses
were diminished in the tumors (Fig. 2c; Supplementary Fig. 2e) (p-
values < 1.0 x 10~° by Wilcoxon signed-rank test). The increased
expression of the B cell signature in non-tumorous livers may repre-
sent the formation of intrahepatic lymphoid follicles in chronic hepa-
titis C [28]. Consistently with these quantitative measures, the Sia
immune class was less frequent in tumors (74 of 234, 32%) than in
non-tumorous livers (101 of 196, 52%; p = 3.4 x 10> by Fisher’s exact
test) (Fig. 2d).

These results demonstrated that tumors were immunologically
quiescent compared to non-tumorous livers. Liver cancers that origi-
nated from an inflamed liver may have acquired the immunosup-
pressive phenotype during the course of liver carcinogenesis.

3.3. Immunosuppression subclasses of liver cancer

Several mechanisms have been proposed to explain the immuno-
suppression in liver cancer. Although the activation of WNT/B-cate-
nin signaling is associated with the exclusion of T cells from tumor,
little is known about its mechanism. This association was initially
reported in melanoma [29], but similar trends have been observed in
multiple cohorts of HCC [9,11,30]. Other proposed mechanisms
include the infiltration of immunosuppressive leukocytes in liver can-
cer. Tregs and TAMs are abundant in liver cancer [14,31,32], and their
infiltration is associated with a poor prognosis [15,16,33]. Consistent
with the immunosuppressive role of TAM, the fraction of macro-
phages M2 had a strong negative correlation with CYT in our data set
(Supplementary Fig. 3).

However, it remains unclear whether these immunosuppression
mechanisms work jointly or separately in clinical samples of liver
cancer, which are diverse in terms of pathology. To investigate this
issue, we performed an unsupervised hierarchical clustering of liver
cancer using four gene expression signatures (Fig. 3a). Among the
four signatures, three signatures represented immunosuppressive
components (Tregs, TAM, and WNT/8-catenin signaling), and one sig-
nature represented anti-tumor immunity (CYT). For the Tregs and
TAM signatures, we estimated the tumor-infiltrating fractions of the
cells using CIBERSORT [34]. The CIBERSORT estimates of Tregs and
TAM were positively correlated with the immunohistochemistry of
FOXP3 and CD163, respectively (Fig. 3b—h). For the WNT/B-catenin
signaling signature, we used a previously defined gene set [21].

As a result, 234 liver cancers were classified into four immune
subclasses (Fig. 3a), namely the TAM, CTNNB1, CYT, and Treg sub-
classes, based on their characteristic immune signatures. The number
of samples in these subclasses was 72, 45, 36, and 81 (31%, 19%, 15%,
and 35%), respectively. The TAM and CTNNB1 subclasses represented
non-inflamed tumors. Indeed, the TAM and CTNNB1 subclasses had a
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lower CYT (median CYT, 1.33 and 0.84, respectively) compared to the
CYT and Treg subclasses (4.75 and 2.73; p = 4.1 x 10~2!). Likewise,
only 13% and 2% of the TAM and CTNNB1 subclasses were in Sia’s
immune class, whereas 64% and 51% of the CYT and Treg subclasses
were in Sia’s immune class, respectively (p = 9.7 x 107'®). The
expression of immune checkpoint genes (e.g. PD1 and PD-L1) was
highest in the CYT subclass, and second highest in the Treg subclass
(Supplementary Fig. 4).

Our immunosuppression subclasses showed some parallels with
the gene expression-based classification (Fig. 3a). A comparison with
Chiang’s classification [21] showed that our TAM subclass was over-
represented by Chiang’s polysomy 7 class (odds ratio (OR) 3.55;
p = 0.002). In addition, our CTNNB1, CYT, and Treg subclasses were
overrepresented by Chiang’s CTNNB1 (OR 31.2; p = 2.3 x 10719),
interferon (OR 9.45; p = 2.6 x 107%), and proliferation classes (OR
10.0; p = 6.5 x 107'), respectively. In terms of Hoshida’s classifica-
tion [22], our Treg subclass was overrepresented by Hoshida’s S1 (OR

4.92; p = 2.3 x 107%) and S2 subclasses (OR 1.96; p = 0.045). Our
CTNNB1 subclass was overrepresented by Hoshida’s S3 subclass (OR
6.26; p=7.7 x 1075).

Regarding etiology, HCV was overrepresented in the CTNNB1 sub-
class (OR 3.6; p = 0.0007) and underrepresented in the Treg subclass
(OR 0.46; p = 0.006). HBV was underrepresented in the CTNNB1 sub-
class (OR 0.32; p = 0.02). In terms of patient prognosis, the TAM and
Treg subclasses had a significantly poor overall survival compared to
the CYT and CTNNB1 subclasses (p = 0.01 by log-rank test) (Fig. 3i).
This difference was still significant even after correction for age, gen-
der, and tumor stage (hazard ratio (HR) 1.89; 95% confidence interval
(C1) 1.11-3.20).

Since non-inflamed tumors are often resistant to immune check-
point therapy, the molecular characterization of these tumors may
have clinical implications. Of the two non-inflamed subclasses, the
CTNNB1 subclass was well-recognized, while the TAM subclass has
not yet been characterized. To better understand the TAM subclass,



6 M. Fujita et al. / EBioMedicine 53 (2020) 102659

Tumors (N = 234)

Q

Sia Hoshida
I e S ..l:IE.=_ _J___L I E Immune = g;
CTNNB1 Rest o3

Ml [ Sia immune classes
RENMARIN] (ARC] 1 L0 MRRQ (R ] [l | Hoshida 3 classes  Chiang

R U 1 OO i 5 cizsses R OTNNGY
L (T II|IIIH-IIII MO 1 ] v = Polysomy7

| |l Histology I Proliferation
| NI LT T REIFR W stage B Unannotated
”Ill | |. I I III |I|| . | Macrophages M2 Stage

Whnt/B-catenin signaling = g

Tregs >
Cytolytic activity 1
I Virus
NBNC
B HBV
| M HCV
| [l HBVY, HCV
I Histology
AXIN2  Low HCC
CD163 [ cHCcrice
MRC1 Micc

.08 Spearman r = 0.29 - Spearman r=0.14 '.;:
p=0.02 0 p=023 Ca
- 3
2,0.06 = -
2 - 2 -
= go02
o« - S
G 0.04 g
@
iy £
@ Qo1
5002{ . 2
- Y
e}
i [&]
0.00 0.0
- + ++ + ++
FOXP3 IHC CD163 IHC
i 1 O H Enrichment plot: Enrichment plot: NABA_CORE_MATRISOME
l GO_EXTRACELLULAR_STRUCTURE_ORGANIZATION o
— .
80.81 g
= ::
> 06 B £
w ks

o0
W I W
o1 505 eskvey comelaica)

>
0 0.2F — 7am p=0.01

BO04F — cvT
e —— CTNNBI1 :]Iog-rank test
—— Tregs

...............

metric (PreRenked)

0.0' 1 1 1 1 1 E s
0 12 24 36 48 60 3 }
Time (months) e —

Ranked list

Ranked list me:

Fig. 3. Classification of liver cancer based on immunosuppression mechanisms. (a) Unsupervised clustering of 243 liver cancers by four gene expression signatures related to immu-
nity (macrophages M2, Wnt/S-catenin signaling, Tregs, cytolytic activity). Expression levels of marker genes for T cells (CD8A and CD4), Tregs (FOXP3, IL2RA, and CTLA4), Wnt/j-cat-
enin signaling (AXIN2), and macrophages M2 (CD163 and MRCT) are also shown. (b, ¢) Comparison of infiltration levels between immunohistochemistry and the absolute mode of
CIBERSORT. (b) Treg marker FOXP3 and CIBERSORT estimates. (c) Macrophage M2-marker CD163 and CIBERSORT estimates. (d—f) IHC of FOXP3. (d) FOXP3 -, (e), FOXP3 +, and (f)
FOXP3 ++. (g, h) IHC of CD163. (g) CD163 +. (h) CD163 ++. (i) Patient overall survival and the immunosuppression subclasses. (j) Gene set enrichment plots. Upregulated genes in the
TAM subclass compared to the CTNNB1 subclass are shown (FDR < 0.001).



M. Fujita et al. / EBioMedicine 53 (2020) 102659 7

a , b ,
Mutation burden Focal gain | Focal loss Arm-level
& 1000 *k *k
= TR A | 60 -
o 100 L L [} P4 Tk K i
o — O *k
3 10 " [ ] k)
L =40 .
bl
: . J- é $
@D 04 ) 04 4
2 8 5 8 5 % : B % i E 5 8
] £ ) = r— < ) = = 2 5 = G = o =
3 o o o
c Virus
CTNNB1 NBNC
~ Virus llllq -log(q) M HBV
Histology || || 0 4 8 lHCV
TP53 I-II lII ‘ [l HBVY, HCV
CTNNB1 1[Il 1 II I III .
ARID1A (I [N [ T 1| [ 1 W > Histology
CDKN2A 11 Il [ 1 LT mrm @ HCC
ALB | [ T N I1 8 [ cHCe/ce
TERT 2 Hlicc
RB1 | 1 |1 [1 I | S ] .
APOB | | I I Y T = Somatic alterations
AXINT 1 | I [ [ 11 5 |l Coding mutation
IRF2 = | [l | LT EHE |l § Noncoding mutation
ARID2 01Tl ol I < M Structural variation
PTEN | | | L 2 M Amplification
CCND1 (| LI | [ [ 11 [ @ Il Deletion

Fig. 4. Somatic alterations in the immunosuppression subclasses. (a, b) The number of somatic alterations in the immunosuppression subclasses. (a) Mutation burdens and (b)
somatic copy number alterations. Mutation burdens were computed for coding regions and included silent mutations. Non-significant (p > 0.05) pairwise comparisons are omitted
for clarity. ***p < 0.001; **p < 0.01; *p < 0.05. (c) Driver mutations and the immunosuppression subclasses of liver cancer. -log(q) is a measure of association between the mutations
and the subclasses, where q denotes the adjusted p-value computed using Fisher’s exact test and the Benjamini—Hochberg method. Dotted line shows q = 0.1.

we performed gene set enrichment analysis (GSEA) of the TAM sub-
class and found that significantly more genes were expressed related
to the extracellular matrix (ECM) than in the CTNNB1 subclass (FDR
< 0.001), suggesting the enhanced deposition and remodeling of the
ECM (Fig. 3j). TAM secretes TGFB1, which induces ECM remodeling
and immunosuppression [35]. Consistent with this, the late TGFB1
signature [36] was expressed more highly in the TAM subclass than
the CTNNB1 subclass (FDR < 0.01) (Supplementary Fig. 5).

To determine whether the same classification applies for other
cohorts, we analyzed the RNA-Seq of 193 HCC in The Cancer Genome
Atlas (TCGA) project [6] (Supplementary Fig. 6). The TCGA cohort was
etiologically distinct from our Japanese cohort. Patients negative for
both HBV and HCV made up 61% of TCGA but 19% of the Japanese
cohort. However, the TCGA liver cancers could be classified into the
four subclasses (CTNNB1, 25%; CYT, 23%; TAM, 19%; Tregs, 33%), indi-
cating the stability of our immunological classification.

Our analysis demonstrated that inflamed and non-inflamed liver
cancers could be further subdivided based on their immunosuppres-
sion mechanisms. Each subclass had unique associations with key
clinicopathological features of liver cancer.

3.4. Somatic alterations in the immunosuppression subclasses

Somatic genome alterations in tumor cells have opposing effects
on tumor immunity and TME. Somatic mutations generate neoanti-
gens and elicit attack by cytotoxic T cells, while somatic alterations of
immune-modulating genes promote immune evasion by tumor cells
[37—39]. To determine the associations between somatic alterations
and the immunosuppression subclasses, we compared the somatic
alterations detected by WGS with the immune signatures and sub-
classes of liver cancer.

We first examined the mutation burden, which is the number of
somatic single nucleotide variants (SNVs) and insertions/deletions
(INDELs) per megabase (Mb) of coding regions. Previous studies
found that highly mutated tumors are immunologically active in lung
and colorectal cancers, among others [24,40]. However, in our liver
cancer data, the non-inflamed CTNNB1 subclass had a higher muta-
tion burden than the other subclasses (median 3.09 and 2.41 muta-
tions per Mb, respectively; p = 0.0004) (Fig. 4a).

We also looked at the total number of somatic copy number alter-
ations (CNAs). A previous pan-cancer study reported a negative cor-
relation between tumor aneuploidy and immune cell infiltration [41].
Consistent with this report, the lowest levels of arm-level CNAs were
found in the CYT subclass in our liver cancer data (p = 0.0054)
(Fig. 4b). However, the highest levels of arm-level CNAs were
obtained in the Treg subclass (p = 0.014), which is another inflamed
subclass in our classification. The results of the mutation burden and
CNA analysis indicated the uniqueness of inflammation in liver can-
cer compared to other types of cancer.

Next, we investigated the somatic alterations of individual genes
(Fig. 4c). Among 13 driver genes of liver cancers, the mutations of
CTNNBI, ALB, and ARID2 were found to have a statistically significant
association with the immunosuppressive subclasses (q < 0.05). The
mutations of CTNNB1 and ALB were overrepresented in the CTNNB1
subclass (OR 11.2 and 2.98; p = 3.4 x 10719 and p = 0.017, respec-
tively). The mutation of ARID2 was overrepresented in the TAM sub-
class (OR 4.34; p = 0.0054). The ALB gene encodes the albumin
protein, which appears to promote an inflammatory response by
sequestering immunosuppressive prostaglandin E2 [42].

The ARID2 gene encodes a subunit of the chromatin remodeling
complex PBAF, which is mutated in various cancers. In our liver can-
cer data, somatic alterations of ARID2 were found in 17 cases and
associated with reduced levels of CYT (Supplementary Fig. 7a). GSEA
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showed that ARID2-mutated tumors had weaker inflammatory and
interferon-y responses than ARID2 wild-type tumors (FDR < 0.001)
(Supplementary Fig. 7b). In contrast, the estimated fraction of macro-
phages M2 was significantly increased in ARID2-mutated tumors
(Supplementary Fig. 7c and d). These results confirmed the tripartite
association between low inflammation, TAM, and mutation of ARID2
in liver cancer.

3.5. Knockout of ARID2 impaired chemokine production in HCC cell
lines

To investigate the immunological role of ARID2 in liver cancer, we
analyzed the gene expression profiles of ARID2-knockout HCC cell
lines. JHH4 and JHH5 are two human HCC-derived cell lines that
express wild-type ARID2 genes, according to the Cancer Cell Line
Encyclopedia database. In a previous study, we constructed a ARID2
knockout of JHH4 and JHH5, and confirmed the loss of ARID2 protein
expression [23]. The gene expression profiles of ARID2-knockout and
ARID2 wild-type cells were compared using microarray. The gene
expression levels of 16 genes was found to decrease by over eight-
fold in the knockout cells compared to the wild-type cells (Fig. 5a),
while no gene expression increased by eight-fold. The 16 genes
whose expression was found to decrease included 8 chemokines
(CCL2, CCL20, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8). Consis-
tently, the gene sets related to the chemotaxis of lymphocytes and
neutrophils was significantly downregulated in the ARID2-knockout
cells (FDR < 0.001) (Fig. 5b and c). To validate this microarray result,
we performed RNA-Seq on the JHH4 cells (Supplementary Fig. 8).
Reduced expression levels were observed for 9 of 16 genes in the
ARID2-knockout cells, where 5 out of these 9 genes showed chemo-
tactic activity for neutrophils. These results suggested that ARID2 reg-
ulates chemokine production in liver cancer cells. Impaired
chemokine signaling may account for the reduced inflammation in
ARID2-mutated tumors.

4. Discussion

Although most liver cancers develop from chronic hepatitis, their
TME is immunosuppressive [43]. Various mechanisms have been

proposed to try to explain the immunosuppressive environment of
liver cancers. The infiltration of immunosuppressive leukocytes, such
as Tregs, TAMs, and myeloid-derived suppressor cells, has been pro-
posed as a possible mechanism for this TME. Cancer-associated fibro-
blasts are known to results in the dysfunction of T cells and NK cells
in HCC [44,45], while the activation of WNT/B-catenin signaling
mediates T cell exclusion [9,11]. Liver cancer cells also produce
immunosuppressive molecules, such as indoleamine 2,3-dioxygenase
(IDO), TGF-B, and IL-10. However, the distribution of and correlation
between these mechanisms in clinical samples is unclear.

In this study, we analyzed the immunological features of 234 liver
cancers using their gene expression profiles. We found that three
well-established mechanisms for immunosuppression were mutually
exclusive, rather than function in a cooperative manner. This finding
enabled us to classify liver cancer into four immunosuppression sub-
classes. The TAM, CTNNB1, and Treg subclasses were named after
their predominant immunosuppression mechanisms, whereas the
CYT subclass may be deficient in immunosuppression. Among the
four subclasses, the TAM and CTNNB1 subclasses had non-inflamed
TME. Because they are infiltrated by low levels of T cells, these
patients may not be promising subjects for immune checkpoint inhi-
bition. A recent study reported that HCC with activating mutations of
Wnt/B-catenin signaling responded poorly to immune checkpoint
inhibitors [46]. The CTNNB1 subclass has already been described by
previous studies, whereas the TAM subclass have not. Since the TAM
subclass is associated with a poor prognosis, this subclass poses a
therapeutic challenge and may benefit from immune therapies that
target TAMs [47].

On the other hand, the CYT and Treg subclasses had inflamed TME.
Previously, a reduction in intratumoral Tregs has been found to
enhance the efficacy of immune checkpoint inhibitors in mouse mod-
els of skin, breast, and colon cancer [48—50]. Therefore, the CYT sub-
class may respond better to immune checkpoint inhibition than the
Treg subclass.

Inflammation has complicated effects on the prognosis of liver
cancer. Previous studies have reported that while inflammation in
tumor confers a better survival [7—11], inflammation in non-tumor-
ous livers is associated with late recurrence and reduced overall sur-
vival [9,51]. Consistent with these reports, we observed that
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inflammation in tumor and non-tumorous livers was associated with
a better overall survival and a poor disease-free survival, respectively
(Fig. 1). Since immune checkpoint inhibitors also activate immunity
in hepatitis liver, their use in the adjuvant setting may require the
monitoring of the long-term effects.

Our experiments suggested that ARID2 regulates chemokine pro-
duction in HCC cells. ARID2 is a subunit of the chromatin remodeling
complex PBAF. PBAF is a member of the SWI/SNF family of chromatin
remodeling complexes, tasked with moving nucleosomes and regu-
lating gene expression [52]. Previous studies have found that PBAF
also regulates the transcription of immune-related genes. For exam-
ple, ARID2 is required for interferon-responsive gene expression [53].
PBAF also downregulates immunosuppressive interleukin IL10 [54].
SWI/SNF complexes often regulate transcription through lineage spe-
cific enhancers [55]. ARID2 mutations in liver cancer may alter the
chromatin structure of liver-specific enhancers and reduce the levels
of chemokine expression.

In conclusion, this study demonstrated the diversity of immuno-
suppressive mechanisms in clinical specimens of liver cancers. The
correlation between the tumor subclasses and immune suppression
may facilitate the development of precision immune therapy for
patients with liver cancer.
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