
RESEARCH ARTICLE

A k-mer-based method for the identification

of phenotype-associated genomic biomarkers

and predicting phenotypes of sequenced

bacteria

Erki AunID
1*, Age Brauer1, Veljo Kisand2, Tanel Tenson2, Maido RemmID

1

1 Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,

2 Institute of Technology, University of Tartu, Tartu, Estonia

* erki.aun@ut.ee

Abstract

We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker

that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model

for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of

a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates

(virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clos-

tridium difficile isolates (azithromycin resistance). The phenotype prediction models trained

from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88

on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the

same for assembled sequences and raw sequencing data; however, building the model

from assembled genomes is significantly faster. On these datasets, the model building on a

mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled

genomes are used and 10 hours per phenotype if raw sequencing data are used. The phe-

notype prediction from assembled genomes takes less than one second per isolate. Thus,

PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing

datasets. PhenotypeSeeker is implemented in Python programming language, is open-

source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/).

Author summary

Predicting phenotypic properties of bacterial isolates from their genomic sequences has

numerous potential applications. A good example would be prediction of antimicrobial

resistance and virulence phenotypes for use in medical diagnostics. We have developed a

method that is able to predict phenotypes of interest from the genomic sequence of the

isolate within seconds. The method uses a statistical model that can be trained automati-

cally on isolates with known phenotype. The method is implemented in Python program-

ming language and can be run on low-end Linux server and/or on laptop computers.
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Introduction

The falling cost of sequencing has made genome sequencing affordable to a large number of labs,

and therefore, there has been a dramatic increase in the number of genome sequences available

for comparison in the public domain [1]. These developments have facilitated the genomic analy-

sis of bacterial isolates. An increasing amount of bacterial whole genome sequencing (WGS) data

has led to more and more genome-wide studies of DNA variation related to different phenotypes.

Among these studies, antibiotic resistance phenotypes are the most concerning and have garnered

high public interest, especially since several multidrug-resistant strains have emerged worldwide.

The detection of known resistance-causing mutations as well as the search for new candidate bio-

markers leading to resistance phenotypes requires reasonably rapid and easily applicable tools for

processing and comparing the sequencing data of hundreds of isolated strains. However, there is

still a lack of user-friendly software tools for the identification of genomic biomarkers from large

sequencing datasets of bacterial isolates [2,3].

While microbial genome-wide association studies (GWAS) can be successfully used in case

of previously known genotype-phenotype associations caused by a single gene or only a set of

few and specific mutations, more complex and novel associations would remain undetected.

In addition, many bacterial species have extensive intra-species variation from small sequence-

based differences to the absence or presence of whole genes or gene clusters. Choosing only

one genome as a reference for searching for the variable components would be highly limiting.

Alternative approaches use previously detected genomic features, either single nucleotide

variations or longer sequences, behind the phenotype to create and train models using those

features as the predictors. Not only antibiotic resistance but wide range of other phenotypes

can be predicted, e.g host adaptation in invasive serovars [4], needed minimum inhibitory

concentrations of antibiotics [5] or virulence of the strains [6]. Using longer sequence regions,

such as full genes in those models, requires assembled genomes as an input which adds data

preprocessing step. The solution to avoid this is using k-mers, which are short DNA oligomers

with length k, that enable us to simultaneously discover a large set of single nucleotide varia-

tions, insertions and deletions associated with the phenotypes under study. The advantage of

using k-mer-based methods in genomic biomarker discovery is that they do not require

sequence alignments and can even be applied to raw sequencing data.

In recent years several publications using different machine learning algorithms and k-

mers for detecting the biomarkers behind different bacterial phenotypes have been published.

Among the latest, short k-mers and machine learning (ML) has been used to create minimum

inhibitory concentration prediction models in assembled Klebsiella pneumoniae genomes for

several antibiotics [7]. PATRIC and RAST annotation services include prediction of antimi-

crobial resistance with the species- and antibiotic-specific classifier k-mers which are selected

using publicly available and collected metadata and the adaptive boosting ML algorithms [8].

Though providing a framework or predictive models for a specific species with a certain

phenotype, those studies have not been concentrating on the creation of a software easily

applicable by a wider public without an access to extensive computing resources but still hav-

ing the need for analyzing large scale bacterial genome sequencing data with a reasonable

amount of computing time. Only few papers describe software which we were able to compare

with PhenotypeSeeker.
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(1):754. Available from: http://bmcgenomics.

biomedcentral.com/articles/10.1186/s12864-016-

2889-6). K. pneumoniae genomes used for

software validation are available from European

Nucleotide Archive [EMBL:PRJEB2111 ((https://

www.ebi.ac.uk/ena/data/view/PRJEB2111)]. The

binary phenotypes of infection status (infection/

carriage) for these K.pneumoniae genomes are

from Holt et al. 2015 (Genomic analysis of

diversity, population structure, virulence, and

antimicrobial resistance in Klebsiella pneumoniae,

an urgent threat to public health. Proc Natl Acad

Sci [Internet]. 112(27):E3574–81. Available from:

http://www.pnas.org/lookup/doi/10.1073/pnas.

1501049112). The P. aeruginosa dataset used for

software validation is available from the NCBI’s

BioProject database [Accession: PRJNA244279

(https://www.ncbi.nlm.nih.gov/bioproject/?term=

PRJNA244279)].
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The SEER program takes either a discrete or continuous phenotype as an input, counts vari-

able-length k-mers and corrects for the clonal population structure [6]. SEER is a complex

pipeline requiring several separate steps for the user to execute and currently has many sys-

tem-level dependencies for successful compilation and installation. Another similar tool,

Kover, handles only discrete phenotypes, counts user-defined size k-mers and does not use

any correction for population structure [9]. The Neptune software targets so-called ’signatures’

differentiating two groups of sequences but cannot locate smaller mutations, such as single iso-

lated nucleotide variations, being the reason, it was not used in the comparison in current

paper. The ’signatures’ that Neptune detects are relatively large genomic loci, which may

include genomic islands, phage regions or operons [10].

We created PhenotypeSeeker as we observed the need for a tool that could combine all the

benefits of the programs available but at the same time would be easily executable and would

take a reasonable amount of computing resources without the need for dedicated high-perfor-

mance computer hardware.

Results

Implementation

PhenotypeSeeker consist of two subprograms: ’PhenotypeSeeker modeling’ and ’PhenotypeSee-

ker prediction’. ’PhenotypeSeeker modeling’ takes either assembled contigs or raw-read data as

an input and builds a statistical model for phenotype prediction. The method starts with count-

ing all possible k-mers from the input genomes, using the GenomeTester4 software package

[11], followed by k-mer filtering by their frequency in strains. Subsequently, the k-mer selection

for regression analysis is performed. In this step, to test the k-mers’ association with the pheno-

type, the method applies Welch’s two-sample t-test if the phenotype is continuous and a chi-

squared test if it is binary. Finally, the logistic regression or linear regression model is built. The

PhenotypeSeeker output gives the regression model in a binary format and three text files, which

include the following: (1) the results of association tests for identifying the k-mers most strongly

associated with the given phenotype, (2) the coefficients of k-mers in the regression model for

identifying the k-mers that have the greatest effects on the outcomes of the machine learning

model, (3) a FASTA file with phenotype-specific k-mers, assembled to longer contigs when pos-

sible, to facilitate an user to perform annotation process, and (4) a summary of the regression

analysis performed (Fig 1). Optionally, it is possible to use weighting for the strains to take into

account the clonal population structure. The weights are based on a distance matrix of strains

made with an alignment-free k-mer-based method called Mash [12]. The weights of each

genome are calculated using the Gerstein, Sonnhammer and Cothia method [13]. ’Phenotype-

Seeker prediction’ uses the regression model generated by ’PhenotypeSeeker modeling’ to con-

duct fast phenotype predictions on input samples (Fig 1). Using gmer_counter from the FastGT

package [14], the tool searches the samples only for the k-mers used as parameters in the regres-

sion model. Predictions are then made based on the presence or absence of these k-mers.

PhenotypeSeeker uses fixed-length k-mers in all analyses. Thus, the k-mer length is an

important factor influencing the overall software performance. The effects of k-mer length on

speed, memory usage and accuracy were tested on a P. aeruginosa ciprofloxacin dataset. A gen-

eral observation from that analysis is that the CPU time and the PhenotypeSeeker memory

usage increase when the k-mer length increases (Fig 2). Previously described mutations in the

P. aeruginosa parC and gyrA genes were always detected if the k-mer length was at least 13

nucleotides. We assume that in most cases, a k-mer length of 13 is sufficient to detect biologi-

cally relevant mutations, although in certain cases, longer k-mers might provide additional

sensitivity. The k-mer length in PhenotypeSeeker is a user-selectable parameter. Although
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most of the phenotype detection can be performed with the default k-mer value, we suggest

experimenting with longer k-mers in the model building phase. All subsequent analyses in this

article are performed with a k-mer length of 13, unless specified otherwise.

Ciprofloxacin resistance phenotype in Pseudomonas aeruginosa
PhenotypeSeeker was applied to the dataset composed of P. aeruginosa genomes and corre-

sponding ciprofloxacin resistance values measured in terms of minimum inhibitory

Fig 1. Schematic presentation of PhenotypeSeeker workflow. Panel A shows the ’PhenotypeSeeker modeling’ steps, which generate the phenotype

prediction model based on the input genomes and their phenotype values. Panel B shows the ’PhenotypeSeeker prediction’ steps, which use the

previously generated model to predict the phenotypes for input genomes.

https://doi.org/10.1371/journal.pcbi.1006434.g001

Fig 2. The influence of k-mer length on the CPU time and total RAM usage of PhenotypeSeeker (bars, left axis) and on the number of different k-mers

present in the genomes (line, right axis).

https://doi.org/10.1371/journal.pcbi.1006434.g002
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concentration (MIC) (μg/ml), which is defined as the lowest concentration of antibiotic that

will inhibit the visible growth of the isolate under investigation after an appropriate period of

incubation [15]. We built two separate models using a continuous phenotype for one and

binary phenotype for another. Binary phenotype values were created based on EUCAST cipro-

floxacin breakpoints [16]. Both models detected k-mers associated with mutations in quino-

lone resistance determining regions (QRDR) of the parC (c.260C>T, p.Ser87Leu) and gyrA
(c.248C>T, p.Thr83Ile) genes (Fig 3, S2 Table). These genes encode DNA topoisomerase IV

subunit A and DNA gyrase subunit A, the target proteins of ciprofloxacin [17]. Mutations in

the QRDR regions of these genes are well-known causes of decreased sensitivity to quinolone

antibiotics, such as ciprofloxacin [18]. The classification model built using a binary phenotype

had a F1-measure of 0.88, prediction accuracy of 0.88, sensitivity of 0.90 and specificity of 0.87

on the test subset (Table A in S3 Table). The MIC prediction model built using the continuous

phenotype had the coefficient of determination (R2) of 0.42, the Pearson correlation coefficient

of 0.68 and the Spearman correlation coefficient of 0.84 (Table M in S3 Table).

Azithromycin resistance phenotype in Clostridium difficile

In addition to the P. aeruginosa dataset, we tested a C. difficile azithromycin resistance dataset

(S2 Table) studied using Kover in Drouin et al., 2016 [9]. ermB and Tn6110 transposon were

the sequences known and predicted to be important in an azithromycin resistance model by

Kover [9]. ermB was not located on the transposon Tn6110. PhenotypeSeeker found k-mers

for both sequences while using k-mers of length 13 or 16. Tn6110 is a transposon that is over

58 kbp long and contains several protein coding sequences, including 23S rRNA methyltrans-

ferase, which is associated with macrolide resistance [19]. The predictive models with all tested

k-mer lengths (13, 16 and 18) contained k-mers covering the entire Tn6110 transposon

sequence, both in protein coding and non-coding regions. In addition to the 23S rRNA

methyltransferase gene, k-mers in all three models were mapped to the recombinase family

protein, sensor histidine kinase, ABC transporter permease, TlpA family protein disulfide

reductase, endonuclease, helicase and conjugal transfer protein coding regions. The model

built for the C. difficile azithromycin resistance phenotype had a F1-measure of 0.97, predic-

tion accuracy of 0.97, sensitivity of 0.96 and specificity of 0.97 on the test subset (Table A in S3

Table).

Virulence phenotype in Klebsiella pneumoniae
In addition to antibiotic resistance phenotypes in P. aeruginosa and C. difficile, we used K.

pneumoniae human infection-causing strains as a different kind of phenotype example. K.

pneumoniae strains contain several genetic loci that are related to virulence. These loci include

aerobactin, yersiniabactin, colibactin, salmochelin and microcin siderophore system gene clus-

ters [20–24], the allantoinase gene cluster [25], rmpA and rmpA2 regulators [26,27], the ferric

uptake operon kfuABC [28] and the two-component regulator kvgAS [29]. The model pre-

dicted by PhenotypeSeeker for invasive/infectious phenotypes included 13-mers representing

several of these genes. Genes in colibactin (clbQ and clbO), aerobactin (iucB and iucC) and yer-

siniabactin (irp1, irp2, fyuA, ybtQ, ybtX, and ybtP) clusters showed the most differentiating

pattern between carrier and invasive/infectious strains (Fig 4; S2 Table). A 13-mer mapping to

a gene-coding capsule assembly protein Wzi was also represented in the model. The model

built for K. pneumoniae invasive/infectious phenotypes had a F1-measure of 0.88, prediction

accuracy of 0.88, sensitivity of 0.91 and specificity of 0.78 on the test subset (Table A in S3

Table).
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Classification accuracy and running time

To measure the average classification accuracies of logistic regression models, all three datasets

were divided into a training and test set of approximately 75% and 25% of strains respectively.

A K-mer length of 13 was used, and a weighted approach was tested on binary phenotypes

(Table 1). To reduce the influence of sequencing errors when using sequencing reads instead

of assembled contigs as the input, we only counted 13-mers as being present in one of the

Fig 3. The positions of ciprofloxacin-resistant P. aeruginosa strains on cladogram. The MIC values (mg/l) are marked to the external nodes with

corresponding strain names. Strains with MIC> 0.5 mg/l are highlighted with yellow to denote ciprofloxacin resistance according to EUCAST breakpoints [16].

Strains with detected mutations in QRDR of gyrA and parC are marked with the color code on the perimeter of the cladogram.

https://doi.org/10.1371/journal.pcbi.1006434.g003
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input lists if they occurred at least 5 times in that input list. The PhenotypeSeeker prediction

accuracy is not lower when using raw sequencing reads instead of assembled genomes, and

therefore, assembly building is not required before model building. Our results with K. pneu-
moniae show that PhenotypeSeeker can be successfully applied to other kinds of phenotypes in

addition to antibiotic resistance.

In our trials, the model building on a given dataset took 3 to 5 hours per phenotype, and

prediction of the phenotype took less than a second on assembled genomes (Table 1). The

CPU time of model building by PhenotypeSeeker depends mainly on the number of different

k-mers in genomes of the training set. The analysis performed on our 200 P. aeruginosa
genomes showed that the CPU time of the model building grows linearly with the number of

genomes given as input (S1 Fig).

The memory requirement of PhenotypeSeeker did not exceed 2 GB if default parameter set-

tings are used, allowing us to run analyses on laptop computers (S2 Fig) if necessary. The p-

value cut-offs during the k-mer filtering step influence the number of k-mers included in the

model and have a potentially strong impact on model performance. Tables A-E in the S1 Table

show the effects of different p-value cut-offs on model performances.

Comparison with other software

We ran SEER and Kover on the same P. aeruginosa ciprofloxacin dataset and C. difficile azithro-

mycin resistance dataset to compare the efficiency and CPU time usage with PhenotypeSeeker.

In the P. aeruginosa dataset, SEER was able to detect gyrA and parCmutations only when

resistance was defined as a binary phenotype. In cases with a continuous phenotype, those k-

mers did not pass the p-value filtering step. Since Kover’s aim is to create a resistance predict-

ing model, not an exhaustive list of significant k-mers, it was expected that not all the muta-

tions would be described in the output. gyrA variation already sufficiently characterized the

resistant strains set, and therefore, parCmutations were not included in the model. The same

applies to the PhenotypeSeeker results with 16- and 18-mers. parC-specific 16- or 18-mers

were included among the 1000 k-mers in the prediction model (based on statistically

Fig 4. Virulence genes in corresponding clusters and wzi included in the PhenotypeSeeker prediction model in K.

pneumoniae strains (13-mers, weighted, max. 10 000 k-mers for the regression model). Each row is one strain, and

each column represents one protein coding gene. Blue cells represent 13-mers in the model for the corresponding gene

and a strain. Genes in colibactin, aerobactin and yersiniabactin clusters show the most differentiating pattern between

carrier and invasive/infectious strains.

https://doi.org/10.1371/journal.pcbi.1006434.g004

Table 1. Model’s F1-measure and running time. The results with 13-mers and weighting are shown. The maximum number of 13-mers selected for the regression

model was 1000. In cases where sequencing reads were used as the input, a minimum frequency of 5 for a 13-mer was required to reduce the influence of sequencing

errors.

Dataset F1-measure Number of isolates Time for the model building (per

model)

Time for the phenotype prediction (per

phenotype)Training Testing

Pseudomonas aeruginosa
(contigs)

0.88 150 50 3h 36m 0.81s

Pseudomonas aeruginosa (reads) 0.88 150 50 19h 56m 58.0s

Klebsiella pneumoniae (contigs) 0.88 125 42 3h 38m 0.7s

Klebsiella pneumoniae (reads) 0.88 125 42 10h 3m 28.0s

Clostridium difficile (contigs) 0.97 345 115 4h 50m 0.61s

Pseudomonas aeruginosa
(contigs)

0.88 150 50 3h 36m 0.81s

https://doi.org/10.1371/journal.pcbi.1006434.t001
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significant p-values) but with the regression coefficient equal to zero because they were present

in the same strains as gyrA specific predictive k-mers.

In the C. difficile dataset, our model included the known resistance gene ermB and transpo-

son Tn6110. We were able to find ermB with both SEER and Kover. We also detected

Tn6110-specific k-mers with SEER while running Kover with 16-mers instead of 31-mers as in

the default settings.

Regarding the CPU time, PhenotypeSeeker with 13-mers was faster than other tested soft-

ware programs (3.5 hrs vs 14–15 hrs) without losing the relevant markers in the output

(Table 2). Using 16- or 18-mers, the PhenotypeSeeker’s running time increases but is still

lower than with SEER and Kover.

Discussion

PhenotypeSeeker works as an easy-to-use application to list the candidate biomarkers

behind a studied bacterial phenotype and to create a predictive model. Based on k-mers, Phe-

notypeSeeker does not require a reference genome and is therefore also usable for species with

very high intraspecific variation where the selection of one genome as a reference can be

complicated.

PhenotypeSeeker supports both discrete and continuous phenotypes as inputs. In addition,

this model takes into account the population structure to highlight only the possible causal var-

iations and not the mutations arising from the clonal nature of bacterial populations.

Unlike Kover, the PhenotypeSeeker output is not merely a trained model for predicting

resistance in a separate set of isolates, but the complete list of statistically significant candidate

variations separating antibiotic resistant and susceptible isolates for further biological interpre-

tation is also provided. Unlike SEER, PhenotypeSeeker is easier to install and can be run with

only a single command for building a model and another single command to use it for

prediction.

Our tests using PhenotypeSeeker to detect antibiotic resistance markers in P. aeruginosa
and C. difficile showed that it is capable of detecting all previously known mutations in a rea-

sonable amount of time and with a relatively short k-mer length. Users can choose the k-mer

length as well as decide whether to use the population structure correction step. Due to the

Table 2. PhenotypeSeeker comparison to Kover and SEER using P. aeruginosa and C. difficile data. PhenotypeSeeker with the weighting option and maximum 1000

k-mers for the regression model was used.

Pseudomonas aeruginosa (200 genomes) Clostridium difficile (459 genomes)

Previously known CIP resistance

mutations detected

Previously known AZM

resistance genes� detected

Software k-mer length gyrA
c.248C>T

parC c.260C >T Time for model building ermB Tn6110 transposon Time for model building

Phenotype

Seeker

13 + + 3h 36m + + 4h 47m

Phenotype

Seeker

16 + - 6h 51m + + 9h 7m

Phenotype

Seeker

18 + - 7h 31m - + 9h 58m

Kover 16 + - 14h 14m + + 14h 10 m

Kover 31 + - 14h 46m + - 13h 40m

SEER 9–100 + + 15h 7m + + 15h 32m

� As reported in Drouin et al. 2016 [9]

https://doi.org/10.1371/journal.pcbi.1006434.t002
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clonal nature of bacterial populations, this step is highly advised for detecting genuine causal

variations instead of strain-level differences. In addition to a trained predictive model, the list

of k-mers covering possible variations related to the phenotype are produced for further inter-

pretation by the user. The effectiveness of the model can vary because of the nature of different

phenotypes in different bacterial species. Simple forms of antibiotic resistance that are unam-

biguously determined by one or two specific mutations or the insertion of a gene are likely to

be successfully detected by our method, and effective predictive models for subsequent pheno-

type predictions can be created. This is supported by our prediction accuracy over 96% in the

C. difficile dataset. On the other hand, P. aeruginosa antibiotic resistance is one of the most

complicated phenotypes among clinically relevant pathogens since it is not often easily

described by certain single nucleotide mutations in one gene but rather through a complex sys-

tem involving several genes and their regulators leading to multi-resistant strains. In cases

such as this, the prediction is less accurate (88% in our dataset), but nevertheless, a complete

list of k-mers covering differentiating markers between resistant and sensitive strains can pro-

vide more insight into the actual resistance mechanisms and provide candidates for further

experimental testing.

Tests with K. pneumoniae virulence phenotypes showed that PhenotypeSeeker is not lim-

ited to antibiotic resistance phenotypes but is potentially applicable to other measurable phe-

notypes as well and is therefore usable in a wider range of studies.

Since PhenotypeSeeker input is not restricted to assembled genomes, one can skip the

assembly step and calculate models based on raw read data. In this case, it should be taken into

account that sequencing errors may randomly generate phenotype-specific k-mers; thus, we

suggest using the built-in option to remove low frequency k-mers. The k-mer frequency cut-

off threshold depends on the sequencing coverage of the genomes and is therefore imple-

mented as user-selectable. One can also build the model based on high-quality assembled

genomes and then use the model for corresponding phenotype prediction on raw sequencing

data.

Methods

Data

PhenotypeSeeker was tested on the following three bacterial species: Pseudomonas aeruginosa,

Clostridium difficile and Klebsiella pneumoniae. The P. aeruginosa dataset was composed of

200 assembled genomes and the minimal inhibitory concentration measurements (MICs) for

ciprofloxacin. The P. aeruginosa strains were isolated during the project Transfer routes of

antibiotic resistance (ABRESIST) performed as part of the Estonian Health Promotion

Research Programme (TerVE) implemented by the Estonian Research Council, the Ministry

of Agriculture (now the Ministry of Rural Affairs), and the National Institute for Health Devel-

opment. Isolated strains originated from humans, animals and the environment within the

same geographical location in Estonia and belonged to 103 different MLST sequence types

(Laht et al., Pseudomonas aeruginosa distribution among humans, animals and the environ-

ment (submitted); Telling et al., Multidrug resistant Pseudomonas aeruginosa in Estonian hos-

pitals (submitted)). Full genomes were sequenced by Illumina HiSeq2500 (Illumina, San

Diego, USA) with paired-end, 150 bp reads (Nextera XT libraries) and de novo assembled

with the program SPAdes (ver 3.5.0) [30]. MICs were determined by using the epsilometer test

(E-test, bioMérieux, Marcy l’Etoile, France) according to the manufacturer instructions.

Binary phenotypes were achieved by converting the MIC values into 0 (sensitive) and 1 (resis-

tant) phenotypes according to the European Committee on Antimicrobial Susceptibility Test-

ing (EUCAST) breakpoints [16]. The resulted dataset consisted of 124 ciprofloxacin sensitive
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P. aeruginosa isolates (62%) and 76 ciprofloxacin resistant P. aeruginosa isolates (38%) and is

deposited in the NCBI’s BioProject database under the accession number PRJNA244279

(https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA244279).

The C. difficile dataset was composed of assembled genomes of 459 isolates and the binary

phenotypes of azithromycin resistance (sensitive = 0 vs resistant = 1), adapted from Drouin

et al., 2016 [9]. The isolates originated from patients from different hospitals in the province of

Quebec, Canada and the genomes were received from the European Nucleotide Archive

[EMBL:PRJEB11776 ((http://www.ebi.ac.uk/ena/data/view/PRJEB11776)]. The dataset con-

sisted of 246 azithromycin sensitive isolates (54%) and 213 azithromycin resistant isolates

(46%).

The K. pneumoniae dataset was composed of reads of 167 isolates, originating from six

countries and sampled to maximize diversity, and the binary clinical phenotype of human car-

riage status vs human infection (including invasive infections) status (carriage = 0 vs infec-

tious = 1), adapted from Holt et al., 2015 [31]. The reads were received from the European

Nucleotide Archive [EMBL:PRJEB2111 (https://www.ebi.ac.uk/ena/data/view/PRJEB2111)]

and de novo assembled with SPAdes (ver 3.10.1) [30]. The dataset consisted of 36 isolates with

human carriage status as phenotype (22%) and 131 K. pneumonia isolates with human infec-

tion status as phenotype (78%).

Abstractly, each test dataset was composed of pairs (x, y), where x is the bacterial genome

x2{A,T,G,C}�, and y denotes phenotype values specific to a given dataset y 2 {0.008, . . ., 1024}

(continuous phenotype) or y 2 {0, 1} (binary phenotype).

Compilation of k-mer lists

All operations with k-mers are performed using the GenomeTester4 software package contain-

ing the glistmaker, glistquery and glistcompare programs [11]. At first, all k-mers from all sam-

ples are counted with glistmaker, which takes either FASTA or FASTQ files as an input and

enables us to set the k-mer length up to 32 nucleotides. Subsequently, the k-mers are filtered

based on their frequency in strains of the training set. By default, the k-mers that are present in

or missing from less than two samples are filtered out and not used in building the model. The

remaining k-mers are used in statistical testing for detection of association with the phenotype.

Weighting

By default, PhenotypeSeeker conducts the clonal population structure correction step by using

a sequence weighting approach that reduces the weight of isolates with closely related

genomes. For weighting, pairwise distances between genomes of the training set are calculated

using the free alignment software Mash with default parameters (k-mer size of 21 nucleotides

and sketch size of 1000 min-hasehes) [12]. Distances estimated by Mash are subsequently used

to calculate weights for each genome according to the algorithm proposed by Gerstein, Sonn-

hammer and Chothia [13]. The calculation of GSC weights is conducted using the PyCogent

python package [32]. The GSC weights are taken into account while calculating Welch two-

sample t-tests or chi-squared tests to test the k-mers’ associations with the phenotype. Addi-

tionally, the GSC weights can be used in the final logistic regression or linear regression (if

Ridge regularization is used) model generation.

Chi-squared test

In the case of binary phenotype input, the chi-squared test is applied to every k-mer that passes

the frequency filtration to determine the k-mer association with phenotype. The null hypothe-

sis assumes that there is no association between k-mer presence and phenotype. The
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alternative hypothesis assumes that the k-mer is associated with phenotype. The chi-squared

test is conducted on these observed and expected values with degrees of freedom = 1, using the

scipy.stats Python package [33]. If the user selects to use the population structure correction

step, then the weighted chi-squared tests are conducted according to the previously published

method [34].

Welch two-sample t-test

In the case of continuous phenotype input, the Welch two-sample t-test is applied to every k-

mer that passes the frequency filtration to determine if the mean phenotype values of strains

having the k-mer are different from the mean phenotype values of strains that do not have the

k-mer. The null hypothesis assumes that the strains with a k-mer have different mean pheno-

type values from the strains without the k-mer. The alternative hypothesis assumes that the

means of the strains with and without the k-mer are the same. The t-test is conducted with

these values using the scipy.stats Python package [33], assuming that the samples are indepen-

dent and have different variance. If the user selects the population structure correction step,

then the weighted t-tests are conducted [34]. In that case, the p-value is calculated with the

function scipy.stats.t.sf, which takes the absolute value of the t-statistic and the value of degrees

of freedom as the input.

Regression analysis

To perform the regression analysis, first, the matrix of samples times features is created. The

samples in this matrix are strains given as the input and the features represent the k-mers that

are selected for the regression analysis. The values (0 or 1) in this matrix represent the presence

or absence of a specific k-mer in the specific strain. The target variables of this regression anal-

ysis are the resistance values of the strains. Thereupon, input data are divided into training and

test sets whose sizes are by default 75% and 25% of the strains, respectively. The proportion of

class labels in the training and test sets are kept the same as in the original undivided dataset.

In the case of a continuous phenotype, a linear regression model is built, and in the case of a

binary phenotype, a logistic regression model is built. The logistic regression was selected for

binary classification task as it showed better performance on our datasets than other tested

machine learning classifiers like support vector machine (with no kernel and with Gaussian

kernel) and random forest. The performance of logistic regression models on our tested data-

sets in comparison to performance of other machine learning classifiers are shown in S3 Fig

and in Tables A-L in S3 Table. The performance of linear regression model on P. aeruginosa
dataset is shown in Table M in S3 Table. For both the linear and logistic regression, the Lasso,

Ridge or Elastic Net regularization can be selected. The Lasso and Elastic Net regularizations

shrink the coefficients of non-relevant features to zero, which simplifies the identification of k-

mers that have the strongest association with the phenotype. To enable the evaluation of the

output regression model, PhenotypeSeeker provides model-evaluation metrics. For the logistic

regression model quality, PhenotypeSeeker provides the mean accuracy as the percentage of

correctly classified instances across both classes (0 and 1). Additionally, PhenotypeSeeker pro-

vides F1-score, precision, recall, sensitivity, specificity, AUC-ROC, average precision (area

under the precision-recall curve), Matthews correlation coefficient (MCC), Cohen’s kappa,

very major error rate and major error rate as metrics to assess model performance. For the lin-

ear regression model, PhenotypeSeeker provides the mean squared error, the coefficient of

determination (R2), the Pearson and the Spearman correlation coefficients and the within ±1

two-fold dilution factor accuracy (useful for evaluating the MIC predictions) as metrics to

assess model performance. To select for the best regularization parameter alpha, a k-fold
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cross-validation on the training data is performed. By default, 25 alpha values spaced evenly

on a log scale from 1E-6 to 1E6 are tested with 10-fold cross-validation and the model with the

best mean accuracy (logistic regression) or with the best coefficient of determination (linear

regression) is saved to the output file. Regression analysis is conducted using the sklearn.line-

ar_model Python package [35].

Parameters used for training and testing

Our models were created using mainly k-mer length 13 (“-l 13”; default). We counted the k-

mers that occurred at least once per sample (“-c 1”; default) when the analysis was performed

on contigs or at least five times per sample (“-c 5”) when the analysis was performed on raw

reads. In the first filtering step, we filtered out the k-mers that were present in or missing from

less than two samples (“—min 2—max 2”; default) when the analysis was performed on a

binary phenotype or fewer than ten samples (“—min 10—max N-10”; N–total number of sam-

ples) when the analysis was performed on a continuous phenotype. In the next filtering step,

we filtered out the k-mers with a statistical test p-value larger than 0.05 (“—p_value 0.05”;

default).

The regression analysis was performed with a maximum of 1000 lowest p-valued k-mers

(“—n_kmers; 1000”; default) when the analysis was done with binary phenotype and with a

maximum of 10,000 lowest p-valued k-mers (“—n_kmers 10000”; default) when the analysis

was performed with a continuous phenotype. For regression analyses, we split our datasets

into training (75%) and test (25%) sets (“-s 0.25”; default). The regression analyses were con-

ducted using Lasso regularization (“-r L1”; default), and the best regularization parameter was

picked from the 25 regularization parameters spaced evenly on a log scale from 1E-6 to 1E6

(“—n_alphas 25—alpha_min 1E-6—alpha_max 1E6”; default). The model performances with

each regularization parameter were evaluated by cross-validation with 10-folds (“—n_splits

10”; default).

The correction for clonal population structure (“—weights +”; default) and assembly of k-

mers used in the regression model (“—assembly +”; default) were conducted in all our

analyses.

Comparison to existing software

SEER was installed and run on a local server with 32 CPU cores and 512 GB RAM, except the

final step, which we were not able to finish without segmentation fault. This last SEER step was

launched via VirtualBox in ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/pathogens-

vm.latest.ova. Both binary and continuous phenotypes were tested for P. aeruginosa and the

binary phenotype in C. difficile cases. Default settings were used. Kover was installed on a local

server and used with the settings suggested by the authors in the program tutorial.

Supporting information

S1 Fig. Relationship between the number of input genomes and the CPU time. The Pheno-

typeSeeker CPU time depends mainly on the number of different k-mers in input genomes

and on computations made with every genome. The analysis performed on our 200 P. aerugi-

nosa genomes showed that the PhenotypeSeeker CPU time has a good linear relationship

(R2 = 0.997) with the number of genomes given as input. Although the number of k-mers

grows logarithmically with the number of genomes given as input, the linear relationship is

because some of the computations made with every genome are more time-consuming when

there are larger numbers of different k-mers present in the input genomes.

(TIFF)
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S2 Fig. Relationship between the number of input genomes and RAM memory usage. The

maximum resident set size of PhenotypeSeeker increases in steps with the number of genomes

that are given as the input for model training. This is due to the fact that the maximum resi-

dent set size of PhenotypeSeeker is defined by the size of the Python dictionary object into

which all different k-mers and their frequencies in genomes are stored. The Python dictionary

uses a hash table implementation, and the size of the hash table doubles when it is two thirds

full. Therefore, when more genomes are analyzed, more different k-mers are stored into the

hash table, and if a certain threshold is exceeded, the next step in the maximum resident set

size is taken. However, if the regression is performed with a large number of k-mers, the

regression could easily become the most memory using part of the analysis as the data matrix

(k-mers x samples), read into memory, grows larger (analysis with 150, 170, 180, 190 and 200

genomes).

(TIFF)

S3 Fig. The confusion matrices of different classification models on the datasets. (A) The

confusion matrices of classification models on contigs (N k-mers = 1,000). (B) The confusion

matrices of classification models on reads (N k-mers = 1,000). (C) The confusion matrices of

classification models on contigs (N k-mers = 10,000). (D) The confusion matrices of classifica-

tion models on reads (N k-mers = 10,000). (E) The confusion matrices of classification models

on contigs (N k-mers = 100,000). (F) The confusion matrices of classification models on reads

(N k-mers = 100,000).

(PDF)

S1 Table. The effects of different p-value cut-offs on model performances.

(PDF)

S2 Table. Phylogenetic trees and isolate specific information of the studied P. aeruginosa,
C. difficile and K. pneumoniae isolates.

(XLSX)

S3 Table. The performance of different machine learning models on the datasets.

(PDF)
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