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Abstract

Understanding how antibiotics inhibit bacteria can help to reduce antibiotic use and hence avoid 

antimicrobial resistance—yet few theoretical models exist for bacterial growth inhibition by a 

clinically relevant antibiotic treatment regimen. In particular, in the clinic, antibiotic treatment is 

time-dependent. Here, we use a theoretical model, previously applied to steady-state bacterial 

growth, to predict the dynamical response of a bacterial cell to a time-dependent dose of ribosome-

targeting antibiotic. Our results depend strongly on whether the antibiotic shows reversible 

transport and/or low-affinity ribosome binding (‘low-affinity antibiotic’) or, in contrast, 

irreversible transport and/or high affinity ribosome binding (‘high-affinity antibiotic’). For low-

affinity antibiotics, our model predicts that growth inhibition depends on the duration of the 

antibiotic pulse, and can show a transient period of very fast growth following removal of the 

antibiotic. For high-affinity antibiotics, growth inhibition depends on peak dosage rather than dose 

duration, and the model predicts a pronounced post-antibiotic effect, due to hysteresis, in which 

growth can be suppressed for long times after the antibiotic dose has ended. These predictions are 

experimentally testable and may be of clinical significance.
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Introduction

Modern clinical practice relies on the use of antibiotics to combat bacterial infections, yet 

our knowledge of how antibiotics inhibit bacteria is surprisingly incomplete. In particular, 

mathematical models are needed to translate known information about the molecular 

processes that are targeted by antibiotics into predictions for bacterial growth rate as a 

function of antibiotic concentration. Such models would allow optimisation of dosing 

regimes [1–3], and provide a basis for understanding the evolution of resistance to 

antibiotics [4–7]. Recent work has focused on predicting how bacterial growth responds to a 

fixed antibiotic concentration [2, 7–10]. Although in the clinic the antibiotic concentration to 

which an infection is exposed is time-varying, there has been little mechanistic modelling of 

the response of bacterial growth to a time-varying dose of antibiotic (for recent work in this 

direction see [11–13]). In this paper, we present theoretical predictions for the dynamical 

changes in bacterial growth rate in response to a time-varying concentration of a ribosome-

targeting antibiotic. Our analysis predicts qualitative, and potentially clinically relevant, 

differences in the dynamical response of bacterial growth to antibiotic treatment, depending 

on the molecular parameters for antibiotic-ribosome binding and transport of antibiotic 

across the bacterial cell boundary.

We focus here on antibiotics that target bacterial ribosomes. Ribosomes are multi-

component, molecular machines which carry out protein synthesis—a function that is crucial 

for growth. Different ribosome-targeting antibiotics can bind to different components of the 

bacterial ribosome and inhibit different steps in protein synthesis [14]. In recent 

experimental and theoretical work [8], we showed that some ribosome-targeting antibiotics 

work better for bacteria that are growing rapidly (on a rich medium) while others work better 

for bacteria that are growing slowly (on a poor medium). These observations can be 

reproduced by a simple mathematical model that takes account of the molecular processes of 

antibiotic-ribosome binding and antibiotic transport across the cell boundary, as well as the 

physiological processes of cell growth and ribosome synthesis [8]. Reference [8], however, 

considered only the response to a fixed (time-invariant) antibiotic concentration. In the 

present paper, we extend the predictions of the model to the more clinically-relevant case of 

a time-dependent antibiotic dose.

Pharmacokinetic curves describe the time-varying local antibiotic concentration at an 

infection site during a clinical treatment regime [15]. These curves show a peak, since the 

antibiotic concentration initially increases following ingestion, then later decreases due to 

metabolism and excretion [15, 16]. Pharmacodynamics attempts to link these curves to the 

efficacy of antibiotic action [15, 16]. In particular, some dosing protocols are designed to 

maximise the peak concentration, whereas others aim to maximise the time at which the 

concentration is maintained above a certain threshold, or, alternatively, the area of the curve 

which is above a threshold [15]. Importantly, for some antibiotics, activity can persist for 

some time after the antibiotic is removed: this is known as the post-antibiotic effect [17, 18] 

and occurs for a variety of antibiotics including ribosome-targeting aminoglycosides [18, 

19]. The mechanisms behind this effect are unknown but may include slow recovery after 

reversible damage to cell structures, slow removal of the antibiotic from its binding site, and 

the need to synthesize new enzymes before a bacterium can resume growth [17].
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In this paper, we use the mathematical model of ribosome-targeting antibiotics introduced in 

[8] to make dynamical predictions for the response of bacterial growth rate to a time-varying 

antibiotic concentration. The model predicts qualitatively different dynamical responses for 

ribosome-targeting antibiotics that bind to ribosomes with high affinity and/or are 

transported into the cell irreversibly (‘high-affinity antibiotics’), as opposed to antibiotics 

that bind with low affinity and/or are transported reversibly (‘low-affinity antibiotics’). Our 

results reproduce known pharmacodynamic phenomena, such as a post-antibiotic effect for 

high-affinity ribosome-targeting antibiotics. Our model also predicts new phenomena, 

including a transient increase in growth rate upon removal of a low-affinity ribosome-

targeting antibiotic. We suggest ways in which these predictions could be tested 

experimentally and comment on their potential clinical relevance.

Background: mathematical model for the action of ribosome-targeting 

antibiotics

We first provide a brief description of the model which was introduced in [8]. The model 

aims to predict the growth inhibition curve: the growth rate λ of a bacterial population, as a 

function of the antibiotic concentration aex to which it is exposed. Here, the growth rate is 

defined by N(t) ~ exp(λt), where N(t) is the number of bacteria at time t. The growth 

inhibition curve λ(aex) is expected to be a decreasing function, which can be conveniently 

characterised by the concentration of antibiotic required to halve the growth rate, known as 

the IC50.

As illustrated in figure 1, the model describes a bacterial cell as homogeneous mixture of 

ribosomes and antibiotic molecules, which can bind reversibly to the ribosomes. The 

variables of the model are the concentrations of bound and unbound ribosomes, rb and ru 

respectively, and the concentration of intracellular antibiotic a. The model consists of the 

following set of equations for the dynamics of the concentrations:

(1)

(2)

(3)

Here, F(a, ru, rb) ≡ kona(ru − rmin) − koff rb describes the antibiotic-ribosome binding / 

unbinding kinetics. Pin and Pout are rate constants (or permeabilities) for antibiotic transport 

into and out of the cell (both assumed to be linear processes), and aex(t) is the external 

antibiotic concentration, which can be controlled in a lab experiment, or is set by the dosing 

regime in a clinical scenario. The terms −λa, −λru and −λrb describe dilution of the cell 

contents by growth at rate λ. Finally, s is the rate of synthesis of new ribosomes.
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To complete the model, we need to describe how the growth rate λ and the ribosome 

synthesis rate s depend on the state of the system (grey arrows in figure 1). To do this, we 

use the empirical ‘growth laws’ of Scott et al [20, 21]. These are experimentally-established 

mathematical relations that describe how a bacterial cell balances the production of new 

ribosomes and of other proteins, depending on its growth rate. The first of these relations 

states that the growth rate λ is linearly related to the concentration of unbound ribosomes ru:

(4)

Relation (4) is based on measurements in the absence of antibiotic [20, 22]; we assume here, 

as in [8], that it also holds in the presence of antibiotic6. The constant κt = 6.1 × 10−2 µM 

h−1 is the translation rate of the ribosomes and the constant rmin = 19.3 µM is believed to 

arise from an inactive pool of ribosomes which may be waiting to initiate translation or 

stalled during translation [20, 23]. We have implicitly assumed that these inactive ribosomes 

do not bind antibiotic, through our definition of the binding function F(a, ru, rb)7.

The ribosome synthesis rate s can be deduced from the second ‘growth law’ of Scott et al, 
which states that the total ribosome content rtot is linearly related to the growth rate [20]:

(5)

where rmax = 65.8 µM is a universal maximal ribosome concentration [20], Δr = rmax − rmin 

= 46.5 µM is the dynamic range of the active ribosome concentration and λ0 is the bacterial 

growth rate in the absence of antibiotic. Equation (5) states that the total ribosome content 

increases as growth rate decreases due to ribosome inhibition: this is because of up-

regulation of ribosome synthesis [24–26]. However, the slope of this increase depends on 

how fast the cells were growing before they were inhibited (i.e. on λ0). Fast-growing cells, 

in a rich growth medium, increase their ribosome content proportionally less than slow-

growing cells, in a poor growth medium, do. Intuitively, fast-growing cells, which have a 

high ribosome content, already need to devote close-to-maximal protein production capacity 

to ribosome production so cannot increase ribosome synthesis further upon antibiotic 

challenge. In contrast, slow-growing cells, which have lower ribosome content, have excess 

protein production capacity that can be diverted to ribosome synthesis. In our model the total 

ribosome concentration is given by rtot = ru + rb. For cells growing exponentially, the 

contents of the cell are in a steady state, and thus the rate of ribosome synthesis must match 

the rate of ribosome removal by dilution: s = λrtot. This leads to a quadratic expression for 

the synthesis rate s as a function of λ:

6The conversion between the units of fraction of cell mass used in [20] and ribosome concentration is discussed in the supplementary 
material of [8].
7The assumption that inactive ribosomes do not bind antibiotic simplifies the mathematical analysis; numerical investigations confirm 
that the qualitative behaviour of the model is the same if the inactive ribosomes are allowed to bind to antibiotic.
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(6)

Equations (1)–(3) together with (4) and (6) constitute a complete description of the model8.

Reference [8] focused on the stationary points of the system of equations (1)–(3), (4) and 

(6). Briefly, setting the time derivatives in equations (1)–(3) to zero: ȧ = ṙu = ṙb = 0, using 

equation (4) to eliminate ru in favour of λ, then using equation (3) to eliminate rb in 

equations (1) and (2) leads to two independent relations between a and λ, which can be 

solved to eliminate a. This leads finally to a cubic equation for the stationary points of the 

growth rate λ9:

(7)

where KD = koff /kon and we have defined the parameter combinations 

and 

If the effective parameter  is large, corresponding to reversible antibiotic transport and/or 

low-affinity binding (large values of Pout and/or KD = koff /kon), then equation (7) has a 

single fixed point for any given value of aex, as illustrated in figure 2(a). This corresponds to 

a smoothly decreasing growth inhibition curve, as observed experimentally in [8] for the 

antibiotics chloramphenicol and tetracycline. In contrast, if the parameter  is small, 

corresponding to irreversible transport and/or high-affinity binding (small values of Pout 

and/or KD = koff /kon), then the model solution has 3 fixed points for values of aex below a 

critical threshold, which is a bifurcation point (figure 2(b)). The upper and lower fixed points 

are stable sinks and the intermediate fixed point is an unstable saddle point of the dynamics. 

For example, for the parameter set of figure 2(b), for aex = 0.9 ×IC50 (below the bifurcation 

point), the real parts of the eigenvalues of the Jacobean matrix at the three fixed points are 

(−1.1 × 104, −0.66, −0.90), (−5.7 × 103, 0.89, −0.34), (−1.0 × 106, −1.0 × 10−3, −2.7 × 

8It is useful to comment on two points regarding the biological interpretation of this model. First, over times shorter than the bacterial 
generation time, the model describes an exponentially growing bacterial cell. To see this, we note that if the cell is growing 

exponentially, then its volume increases as  Assuming that molecules of a particular type are produced at a rate proportional 
to the volume, we obtain Ṅ = gV for the molecule number N, where g is a production rate constant. The dynamics of the molecular 

concentration n = N/V is then given by  as in equations (1)–(3). Second, over times longer 
than the bacterial generation time, the model describes the behaviour of a lineage of cells. Bacterial cells undergo periodic division 
events; however, these events do not (on average) change the molecular concentrations, because both the molecule number and the cell 
volume are (on average) halved. Thus our model effectively describes an experiment in which we follow the dynamics of the 
molecular concentrations within an individual bacterial cell as it grows and divides, and in which, at each division event, we follow 
only one of the daughter cells.
9For details of this calculation see the supplementary material of [8].
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10−5). Thus, the first and third fixed points are stable (their eigenvalues have all negative real 

parts) while the second fixed point is unstable (it has an eigenvalue with a postive real part). 

For aex = 1.1 × IC50 (above the bifurcation point), the single fixed point has eigenvalues with 

all negative real parts (−1.3 × 106, −1.0 × 10−2, −2.2 × 10−5) - i.e. it is stable. The 

bifurcation points of the model are discussed in more detail in appendix A, where it is also 

argued that the value  is a good approximation for the (upper) bifurcation 

point. From a practical point of view, if  is small, then for small values of the external 

antibiotic concentration, we expect to observe little inhibition of bacterial growth, 

corresponding to the upper fixed point of the dynamics. However, for antibiotic 

concentrations above the bifurcation point, we expect to see drastic growth inhibition, 

corresponding to the single (lower) fixed point. This implies a steep, threshold-like growth 

inhibition curve, as observed experimentally in [8] for the aminoglycosides streptomycin 

and kanamycin10.

Equation (7) can also be used to derive a simple expression for the dependence of the IC50 

on λ0 [8]:

(8)

Equation (8) predicts that antibiotic efficacy will increase with nutrient richness (IC50 

decreases with λ0) when  is large, but that efficacy will decrease with nutrient richness 

(IC50 increases with λ0) when  is small. These predictions, which are in agreement with 

experimental data, were discussed in detail in [8].

Results: model predictions for dynamical response to antibiotic

In a clinical context, antibiotic concentrations vary in time. In this paper, we explore the 

predictions of the model defined by equations (1)–(3), (4) and (6), for the response of 

bacterial growth rate to a time-dependent exposure to antibiotic—i.e. we explore the 

dynamics a(t), ru(t) and rb(t) for a time-varying external antibiotic concentration aex(t). In 

most cases (with some exceptions that we discuss below), these equations are not amenable 

to an analytical solution in the time-varying case.We therefore integrate the model equations 

numerically, starting from the steady-state solution in the absence of antibiotic11. We 

compare results for two sets of parameters, representing antibiotics which are bound and 

transported with ‘low affinity’ (high values of Pout/Pin and koff /kon) and with ‘high affinity’ 

(low values of Pout/Pin and koff /kon). These parameters, which are chosen to be within the 

range of literature values for tetracycline and streptomycin respectively12, are listed in table 

1.

10It is important to recognise that streptomycin and kanamycin have other physiological effects, not included in our model, such as 
production of misfolded protein which may affect membrane permeability [35].
11All numerical solutions of the system of ordinary differential equations described in this paper were carried out in python using 
www.scipy.integrate.odeint.
12Literature values for kinetic parameters for tetracycline, chloramphenicol, streptomycin and kanamycin are reviewed in the 
supplementary material of [8].

Greulich et al. Page 6

Phys Biol. Author manuscript; available in PMC 2017 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.scipy.integrate.odeint/


It is important to note that the growth laws that we use in our model, equations (4) and (6), 

are derived from experimental measurements on exponentially growing bacteria, for which 

all intracellular concentrations are in steady state. In using these constraints to make 

predictions for dynamical trajectories we assume that the cell adjusts its rates of growth and 

ribosome synthesis rapidly in response to changing external conditions, in comparison to the 

rate at which the external conditions vary. It is known that the ribosome synthesis rate can 

adjust within minutes to changes in nutrient conditions [27]. A typical timescale for 

synthesis of a protein molecule is ~1 minute (~1000 amino acids polymerised at a translation 

rate of ~20 amino acids per second [22]), while a conservative estimate for the timescale for 

synthesis of a ribosome is ~6 min (~7500 amino acids in the entire ribosomal complex, 

produced at ~20 amino acids per second [22]). The timescale over which antibiotic 

concentration builds up in the body after an oral dose is ~30 minutes, with a slower decay 

time due to excretion [15]. The use of the steady-state constraints (4) and (6) therefore seems 

reasonable.

Response to a step increase in antibiotic

To analyse the dynamical behaviour of the model, we first consider the response to a sudden, 

step-like increase in antibiotic concentration, from zero to a fixed value: aex(t) = 0 for t < t0 

and  for t > t0. In the clinical context, this would correspond to an intravenous 

infusion of antibiotic; in the laboratory it could be achieved using a continuous culture 

device [28, 29] or microfluidic flow device [30]).

Low-affinity antibiotic—Figure 3 explores the dynamical response of the model to a step 

increase in concentration of a low-affinity antibiotic. The model predicts a strikingly non-

monotonic response of the bacterial growth rate λ(t)/λ0, as shown in figure 3(a): we observe 

an initial rapid decrease in growth rate, followed by a slower recovery to a steady-state value 

that depends on the antibiotic concentration . This steady-state value corresponds to the 

fixed point of the model dynamics (figure 2(a)). The origin of this non-monotonic response 

can be understood by plotting the trajectory of the model in the 3d space of its variables a, ru 

and rb, as in figure 3(b). Following the increase in aex, the intracellular antibiotic 

concentration a rapidly increases, accompanied by a decrease in the concentration of 

unbound ribosomes and an increase in the concentration of bound ribosomes rb. These 

changes are driven by the rapid dynamics of antibiotic transport and binding/unbinding. The 

later, much slower, recovery of the growth rate observed in figure 3(a) corresponds to an 

increase in both ru and rb in the trajectory of figure 3(b) and is associated with the slower 

dynamics of ribosome synthesis in response to the antibiotic challenge. Thus, the non-

monotonic response of the growth rate predicted by the model is due to the initial, rapid 

processes of transport and binding, followed by a slower partial recovery due to increased 

ribosome synthesis.

The dynamics of the model can also be illustrated in the form of a flow diagram, as in figure 

3(c). Here, the arrows show the direction of the flow field ṙu, ṙb for a fixed value of a, while 

the solid line shows the nullcline ṙu = 0. The trajectory of figure 3(b) is shown projected 

onto this plane. This diagram illustrates clearly the separation of timescales between 

transport and binding, which produces a strong flow field towards the centre of the diagram, 
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and ribosome synthesis, which is responsible for the slower dynamics along the nullcline as 

the system approaches the stable fixed point.

High-affinity antibiotic—The model predictions are strikingly different for the high-

affinity antibiotic (figure 4). The bacterial growth rate (figure 4 (a)) is predicted to decrease 

smoothly and monotonically for low antibiotic concentrations  as it approaches the 

upper fixed point in figure 2(b). However, for antibiotic concentrations  final that are 

above the bifurcation point in figure 2(b) the model predicts instead a decline in growth rate 

to a state in which there is essentially no growth. The timescale of this approach to the non-

growing steady state can be very long (of the order of days) for antibiotic concentrations 

close to the bifurcation point.

Plotting the dynamics of the model in the 3d space of its variables (figure 4(b)) illustrates the 

very different nature of its trajectories for values of  below and above the bifurcation 

point. If  is below the bifurcation point, as for the black trajectory in figure 4(b) 

 the dynamics approaches a fixed point which is close to the initial 

state, and in which the intracellular antibiotic concentration is small. This corresponds to the 

upper stable fixed point in figure 2(b). However, if  is above the bifurcation point, as for 

the blue trajectory  the dynamics instead approaches a very different 

state, with a far higher intracellular antibiotic concentration and with ru close to rmin = 19.3 

µM: this corresponds to the lower fixed point in figure 2(b), with essentially no growth.

The flow diagrams of figures 4(c) and (d) illustrate the two stable fixed points of the model 

dynamics for values of aex below the bifurcation point. These diagrams show the flow field 

ṙu, ṙb for aex = 0.9 × IC50, for two different values of the intracellular antibiotic 

concentration a. In figure 4(c), the flow field is shown for a = 0.016 µM, which corresponds 

to the final point of the black trajectory in figure 4(b) (this trajectory is also shown, projected 

onto the a = 0.016 µM plane). The model has a stable fixed point for values of ru and rb 

which are close to the starting point of the trajectory (i.e. the system state in the absence of 

antibiotic). The second stable fixed point is evident in figure 4(d), which shows the flow 

field for a = 200 µM. This fixed point occurs at a much smaller value of ru (ru ≈ rmin) and a 

higher value of rb. Interestingly, as for the low-affinity case (figure 3(c)), the flow diagrams 

of figure 4 show a separation of timescales between the rapid dynamics of transport and 

binding and the slower dynamics of ribosome synthesis. However the separation is less 

extreme than for the low-affinity case (since Pin, Pout and koff are all smaller)—this may 

explain why the approach to the stable state is monotonic rather than non-monotonic for our 

high-affinity parameter set.

Figure 5 compares directly the predictions of the model for a step increase in antibiotic 

concentration, for the low-affinity antibiotic (shown in red) and the high-affinity antibiotic 

(shown in blue), for antibiotic concentrations  and . The 

low-affinity antibiotic produces faster growth inhibition than the high-affinity antibiotic. For 

concentrations of antibiotic below the IC50 (figure 5(a)), the low-affinity antibiotic also 
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achieves stronger inhibition at long times, for the ‘equivalent’ concentration. However, for 

antibiotic concentrations above the IC50 (figure 5(b)), the final degree of inhibition is greater 

for the high-affinity antibiotic. This difference in final inhibition level arises from the 

behaviour of the fixed points of the model as a function of antibiotic concentration (figure 

2). For concentrations below the IC50, the stable fixed point for the low-affinity parameter 

set has a lower growth rate than that for the high-affinity parameter set, but for 

concentrations above the IC50, the situation is reversed (figure 2, compare (a) and (b)).

Time to full inhibition

From a practical point of view, it is important to know the time required to achieve maximal 

growth inhibition following an antibiotic dose. Because the variables in our model are 

continuous, the growth rate never completely reaches zero, but as a proxy for full inhibition 

we measure the time taken to achieve 99% inhibition, i.e. to reduce the growth rate to 1% of 

its antibiotic-free value: λ/λ0 = 0.01. Although this is an arbitrary threshold, in a clinical 

situation a drastic reduction in bacterial population density is expected to lead to elimination 

of an infection, due to the action of the immune system [31]. In our model, 99% inhibition 

only occurs for higher concentrations of antibiotic; for lower concentrations the system 

instead reaches a steady state with a growth rate greater than 0.01 × λ0 (as shown in figures 

3(a) and 4(a)).

Figure 6 shows the time to reach λ = 0.01 × λ0, as a function of the antibiotic concentration, 

for the low-affinity and high-affinity antibiotics. As expected, higher antibiotic 

concentrations lead to more rapid growth inhibition. For the low-affinity antibiotic (figure 

6(a)), a high concentration is needed to achieve 99% inhibition (~35 ×IC50), but for these 

concentrations, 99% inhibition is achieved very rapidly, on a timescale of minutes, and the 

inhibition time decreases smoothly as the antibiotic concentration increases. This is 

consistent with the inhibition trajectories shown in figure 3(a), which show a rapid initial 

inhibition of growth. For the high-affinity antibiotic (figure 6(b)), 99% inhibition is achieved 

for much lower concentrations of antibiotic, just above the IC50, but the timescale for 

inhibition is longer, of the order of hours for concentrations close to the IC50. This is 

consistent with the inhibition trajectories of figure 4(a), which show very long timescales for 

inhibition for antibiotic concentrations close to the bifurcation point of the model dynamics. 

As we discuss in appendix B (and illustrate in figure B1), this very slow inhibition occurs 

because of a ‘bottleneck’ effect, in which dynamical trajectories slow down as they pass 

close to the location where the two fixed points have merged.

For the high-affinity antibiotic, it is possible to obtain an analytical prediction for the time to 

achieve 99% inhibition, by making an adiabatic approximation for the dynamics of the 

intracellular antibiotic concentration a(t). This calculation is presented in detail in appendix 

B; briefly, we assume that the dynamics of a(t) are fast compared to those of the other 

variables, and set ȧ = 0 in equations (1)–(3). This reduces the model to a set of dynamical 

equations for ru and rb, and setting koff = 0 (for an irreversible antibiotic) decouples these 

equations, allowing one to solve for ru, and hence for the growth rate λ(t) via the constraint 

(4). Figure 6(b) shows that the resulting analytical prediction for the inhibition time (red 

symbols) is in good agreement with the numerical results (black solid line).
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Response to a step pulse of antibiotic

In a clinical situation, antibiotic treatment has a finite duration. The antibiotic concentration 

at the infection site increases after a dose is given and later decreases due to removal of the 

antibiotic from the body (the pharmocokinetic curve [15]). To mimic this, we investigate the 

response of the model to pulses of antibiotic of finite duration. We obtain predictions for the 

dynamics of the bacterial growth rate during and after the dose, for low- and high-affinity 

antibiotics, and for different dose durations and intensities. For simplicity, we first consider a 

step pulse of antibiotic of intensity S that is maintained for a fixed time T, as illustrated in 

figure 7(a); later we also consider a more clinically realistic scenario where the antibiotic is 

removed more gradually. We compare results for a fixed total antibiotic dose (duration × 

intensity)—i.e. we compare the effect of a short, high-intensity dose with that of a long, low-

intensity dose. Specifically, we fix S × T = 4 × IC50. Although this choice is arbitrary, we 

find qualitatively similar results for other values of the total dose.

Low-affinity antibiotic: growth-rate overshoot following antibiotic removal—
Figure 7(b) shows model predictions for the bacterial growth rate, during and after a step-

like pulse of a low-affinity antibiotic. The colours indicate doses of varying duration (as 

shown by the bars). During the dose, bacterial growth is suppressed, to a degree that depends 

on the intensity of the dose (the short, high intensity dose shown by the blue line causes a 

greater degree of growth inhibition than the long, low intensity dose shown by the red line). 

Interestingly, the model also predicts a ‘growth rate overshoot’ phenomenon: a peak in λ(t) 
after the antibiotic dose ends, implying a transient increase in growth rate above the 

antibiotic-free steady-state value λ0. The overshoot occurs because, in our model, ribosome 

synthesis is upregulated during exposure to the antibiotic (s is larger, according to equation 

(6)), such that the total ribosome concentration becomes higher than it would be in the 

absence of antibiotic. Once the external antibiotic is removed, intracellular antibiotic 

dissociates rapidly from bound ribosomes, since koff ≫ λ0, so that the free ribosome pool 

becomes transiently larger than it would have been in the absence of antibiotic. In our 

model, this produces a transient increase in growth rate. This is illustrated in figure 7(c), 

which shows a trajectory in the 3d space {a, ru, rb} after removal of the antibiotic, for a pulse 

with intensity S = 2 ×IC 50. The transient increase in unbound ribosome ru (and hence in 

growth rate) is coupled to loss of intracellular antibiotic a and bound ribosomes rb. The later 

decrease in ru back to the drug-free steady state value (red dot in figure 7(c)) happens along 

the ru axis, once a and rb have both reached zero.

The magnitude of the transient growth-rate increase shown in 7(b) is greatest at intermediate 

antibiotic dose duration; this is because for very short antibiotic pulses, the bacterium does 

not have time to increase its ribosome pool significantly before the pulse ends, while for 

very long, low intensity pulses the antibiotic concentration is not high enough to produce a 

significant upregulation of ribosome concentration. Consistent with this explanation, when 

we repeat our simulations keeping the dose intensity fixed (i.e. increasing total dose as the 

duration increases), we find that the maximal overshoot occurs for the longest dose duration 

(data not shown).
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Upregulation of ribosome synthesis upon exposure to antibiotic is a growth medium-

dependent phenomenon: for bacteria growing in a poor medium (with a small drug-free 

growth rate λ0), the relative increase of the ribosome synthesis rate is larger than for bacteria 

growing on rich medium (with a large λ0) [20]. This is captured by the λ0-dependence of 

the synthesis rate s in our model (equation (6)). We therefore expect that the magnitude of 

the growth-rate overshoot predicted by the model will be medium-dependent, with a larger 

overshoot for bacteria growing on poor medium, which upregulate ribosome synthesis more 

strongly and therefore have a greater excess of ribosomes after the pulse. Indeed, upon 

repeating our calculations for a range of values of λ0, we observe a strong λ0-dependence of 

the magnitude of the overshoot. For example, for a dose of duration σ = 7 h, the growth rate 

at the peak of the overshoot is predicted to be λ/λ0 = 2.3, 1.7, 1.3, for drug-free growth rates 

of λ0 = 0.5, 1.0, 1.5 h−1 respectively.

High-affinity antibiotic: post-antibiotic growth suppression and hysteresis—
Figure 7(d) shows equivalent predictions for the growth-rate response to a step pulse of 

high-affinity antibiotic. Here we observe a different phenomenon: the qualitative nature of 

the response is intensity-dependent. For long-duration, low-intensity doses the growth rate is 

suppressed during the dose but recovers quickly when the antibiotic is removed (red-green 

curves in figure 7(d)). However, for shorter, high intensity doses, the model shows a 

significant post-antibiotic effect: the growth rate decreases almost to zero during the dose 

and does not recover until many hours after the dose has ended (blue curves in figure 7(d)). 

This phenomenon arises from hysteresis in the model. When antibiotic is added, the fixed 

points of the model move along the aex axis in figure 2(b). As illustrated in figure 7(e), for a 

low-intensity antibiotic dose, the system tracks the upper stable fixed point and reverses its 

trajectory when the antibiotic is removed (red line in figure 7(e)). This corresponds to the 

red-green trajectories in figure 7(d). However, for a high-intensity antibiotic dose, the system 

is pushed past the bifurcation point in figure 2(b), forcing it to transition to the lower stable 

fixed point in which the growth rate is close to zero. When the antibiotic is removed, the 

system moves back along the lower line of fixed points, before eventually transitioning back 

to the upper fixed point (blue lines in figure 7(e)). The timescale over which this eventual 

recovery happens is controlled by the antibiotic-ribosome dissociation rate constant koff, 

which is small for the high-affinity antibiotic. Although we always see eventual recovery of 

the bacterial growth rate in our simulations, in a clinical setting we expect that other factors, 

such as immune response, would lead to elimination of the infection [31].

Optimal dosing strategy differs for low and high-affinity antibiotics—In a 

clinical setting, antibiotic dosing protocols target different features of the pharmacokinetic 

curve: some are designed to maximise the peak antibiotic concentration, while others aim to 

maximise the time the concentration is above a threshold, or the area of the curve above the 

threshold [15, 32]. Although our simulated step-like dosing protocol (figure 7(a)) is 

simplistic, we do see clear differences in optimal dosing strategy for low-affinity and high-

affinity antibiotics. These differences are illustrated in figure 7(f), where we plot the time 

required for the bacterial growth rate to recover from a step-like antibiotic dose, as a 

function of the duration of the dose (and hence its inverse intensity, as shown on the upper 

horizontal axis). Here, we define time to recovery as the time taken for the growth rate λ to 
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recover to 90% of its antibiotic-free steady state value λ0, having previously fallen to below 

this value. For the low-affinity antibiotic (figure 7(f), solid line), the recovery time is 

proportional to dose duration: this is consistent with the growth inhibition trajectory (figure 

7(b)), in which growth is suppressed during the dose and recovers rapidly afterwards. 

Therefore, for ribosome-targeting antibiotics which bind with low affinity and/or are 

transported reversibly, the model suggests that an optimal protocol would maximise the time 

over which the dose is maintained above a threshold. This is consistent with the fact that 

tetracycline antibiotics, which fall into the low affinity class in [8], are categorized in the 

clinical pharmacodynamic literature as time-dependent, i.e. the duration of the dosage 

controls efficacy of treatment [33]. In contrast, for the high-affinity antibiotic (figure 7(f), 

symbols), the model predicts that the recovery time increases dramatically, to many times 

longer than the dose, when the dose intensity exceeds a well-defined threshold (i.e. for 

shorter dose durations in our simulations). This is also consistent with the growth inhibition 

trajectories of 7(d). Thus our model suggests that for ribosome-targeting antibiotics which 

bind with high affinity and/or are transported irreversibly, it may be more important to 

maximise the peak concentration of the pharmacokinetic curve than the duration of the dose. 

This prediction is consistent with the fact that aminoglycoside antibiotics, which fall into the 

high-affinity class in [8], are categorized clinically as concentration-dependent, i.e. the peak 

concentration controls the treatment efficacy [33]. Our predictions are also consistent with 

the fact that aminoglycosides can show significant post-antibiotic effects [17–19, 32, 34].

Response to a more realistic pulse of antibiotic

In a clinical scenario, the antibiotic concentration in the body decreases gradually after a 

dose, rather than suddenly. The pulse profile shown in figure 8(a), in which the 

concentration increases very rapidly, but decreases exponentially with a decay time Tx, 

could mimic a dose that is given intravenously and removed by metabolism/excretion. We 

therefore simulated the response of our model to such a pulse, represented by the function 

aex(t) = Sx exp [−(t − t0)/Tx] for t > t0 = 3 h, and aex = 0 otherwise. We varied the duration 

Tx, keeping the integrated dose constant: SxTx = 4 × IC50.

Figure 8(b) shows results for the low-affinity antibiotic. As for the step pulse, the bacterial 

growth rate is suppressed during the pulse, to an extent that depends on pulse intensity (the 

longer, less intense pulse shown by the red curve produces longer duration but weaker 

growth suppression than the shorter, more intense pulse shown by the blue curve). The 

model also predicts the same growth-rate overshoot phenomenon for the exponentially 

decaying pulse which we observed for the step pulse. However, the growth-rate overshoot 

only happens if the pulse decays quickly enough; for slowly-decaying pulses (large Tx), the 

overshoot is masked by the growth-rate suppression due to the antibiotic.

The response to an exponentially-decaying pulse of a high-affinity antibiotic (figure 8(c)) is 

also qualitatively similar to that for the step pulse (figure 7(d)). As for the step pulse, for 

pulses of intensity below a threshold value, the growth rate recovers quickly following the 

antibiotic dose. However for pulses with intensity above the threshold, there is a post-

antibiotic effect, in which growth suppression persists for long times after the antibiotic has 

been removed (longer than those shown in figure 8(c)).
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Figure 8(d) shows the predicted recovery time after an exponentially-decaying pulse of 

antibiotic, defined as the time to recover to λ = 0.9λ0. For the low-affinity antibiotic (solid 

line in figure 8(d)), the time to recovery increases with the dose duration. This supports our 

prediction that for the low-affinity antibiotic, dose duration is the key determinant of 

treatment efficacy. For the high-affinity antibiotic (symbols in figure 8(d)), the time to 

recovery shows qualitatively similar behaviour to that for the step-like pulse (compare to 

figure 7(f)), in that the time to recovery is very long for short, intense pulses, but decreases 

dramatically for pulses with intensity below a threshold.

We have also performed equivalent simulations for a Gaussian pulse profile, with 

qualitatively similar results (see appendix C).

Taken together, these results show that the phenomena predicted by our model: (i) duration-

dependent efficacy for ribosome-targeting antibiotics which bind with low affinity and/or are 

transported reversibly, (ii) possible growth-rate overshoot for these ‘low-affinity’ antibiotics, 

(iii) peak intensity-dependent efficacy for ribosome-targeting antibiotics that bind with high 

affinity and/or are transported irreversibly and (iv) post-antibiotic effect for these ‘high-

affinity’ antibiotics, are all independent of the details of the antibiotic dosage protocol.

Discussion

In this paper, we have studied the dynamical response of bacterial growth rate to sustained 

and transient antibiotic treatment, for ribosome-targeting antibiotics. The model that we have 

used is simple: it includes only antibiotic-ribosome binding, antibiotic transport, growth, and 

ribosome synthesis, with the latter two processes being dependent on the state of the system. 

In previous work [8], this model has been shown to predict qualitatively different steady-

state behaviour for two classes of ribosome-targeting antibiotics: ‘low-affinity’ antibiotics 

which bind to ribosomes with low affinity and/or are transported reversibly across the cell 

boundary, and ‘high-affinity’ antibiotics which bind with high affinity and/or are transported 

irreversibly.

Here, we go beyond the steady-state analysis of [8], to investigate the response of the model 

to dynamical changes in antibiotic concentration. Our results show that low-affinity and 

high-affinity ribosome-targeting antibiotics show qualitatively different dynamical responses 

to antibiotic treatment. Low-affinity antibiotics show a non-monotonic response, with a 

rapid decrease in growth rate upon exposure to antibiotic, followed by a slower partial 

recovery mediated by up-regulation of ribosome synthesis. Up-regulation of ribosome 

synthesis during exposure also means that these antibiotics may show a growth rate 

overshoot upon removal of the antibiotic. In contrast, high-affinity antibiotics show a 

concentration-dependent response: upon antibiotic exposure, the growth rate decreases very 

little if the antibiotic concentration is below a threshold given by the bifurcation point of the 

model dynamics, but it decreases almost to zero upon exposure to antibiotic concentrations 

above the threshold. Close to the threshold concentration the time taken to reach this 

maximal inhibition can, however, be very long: this behaviour can be understood by the fact 

that the dynamical trajectories of the model slow down as they pass close to the location 

where the two fixed points have merged. Furthermore, the model predicts a pronounced 
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post-antibiotic suppression of growth upon removal of a high-affinity antibiotic, for 

concentrations above the threshold—a phenomenon that results from hysteresis in the model 

dynamics.

Mathematical models that integrate the molecular mechanism of antibiotic action with 

bacterial physiology are rare, and those that do exist mostly consider only the response to a 

time-invariant antibiotic concentration [2, 7–10]. Of those that do consider time-dependent 

doses of antibiotic, probably the recent work of Abel zur Wiesch et al [11, 12] is closest to 

ours. In that study, a genetic model for antibiotic transport and target binding is considered, 

and shown to reproduce a range of pharmacodynamic phenomena. However, target-specific 

physiology (here, the interplay between ribosome concentration and growth rate) is not 

considered. Here we show that this interplay can play a key role, leading to qualitatively new 

features such as growth-medium dependent responses and growth-rate overshoots.

Are the predictions of our model realistic? Of course many factors have not been included in 

the model. For example, we have assumed throughout that growth rate is determined solely 

by the active ribosome abundance, via equation (4). Although this relation is well-

established for steady-state growth, other factors may come into play during transient 

growth-rate change. In particular, the growth rate may become limited by the supply of 

amino acids rather than by the abundance of free ribosomes. This might tend to suppress the 

growth-rate overshoot predicted by our model for the low-affinity antibiotics. More 

specifically, during an antibiotic pulse, when translation is inhibited, the total ribosome 

abundance is close to maximal (rtot ≈ rmax in equation (5)). According to the proteome 

partitioning model, this increased production of ribosomes comes at the expense of 

producing metabolic enzymes necessary for amino acid supply [20, 26]. Thus, when the 

antibiotic is removed and ribosomes are released, there may be a transient period when the 

rate of growth is limited by amino acid supply, before metabolic enzymes are resynthesized 

to restore the balance between amino acid influx and the demands of translating ribosomes 

[26]. In this scenario, we would still expect an overshoot in the total ribosome concentration 

upon removal of the antibiotic, but this might not be coupled to an increase in growth rate. 

Our model also neglects any other effects of the antibiotics on bacterial physiology: for 

example, aminoglycosides are believed to increase membrane permeability through the 

production of misfolded protein [35]. In addition, we do not model bacterial killing, either 

directly by antibiotic action, or indirectly via the body’s immune system [31]. Inclusion of 

these killing effects in the model would be likely to prevent the long-time recovery dynamics 

predicted here for the high-affinity antibiotics.

To conclusively assess the realism of the predictions reported here, one would need 

experimental tests. Several recently-developed bacterial growth techniques make such tests 

feasible. At the level of bulk cultures, continuous culture devices have been developed that 

allow measurement of growth rate during time-dependent antibiotic exposure [28, 36]. 

Interestingly, turbidostat data for Enterococcus faecalis populations exposed to a sudden 

influx of the ribosome-targeting antibiotic tigecycline, which is expected to be in the low-

affinity class, does show rapid growth rate suppression followed by slower partial recovery, 

as predicted by our model (see figure 1C of [29])13. At the level of individual cells, 

microfluidic devices in which the antibiotic concentration can be changed rapidly as growth 

Greulich et al. Page 14

Phys Biol. Author manuscript; available in PMC 2017 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



is monitored in a microscope are also now possible [30]. The latter would be an especially 

interesting approach since the bistability which is manifested in our model for high-affinity 

antibiotics might lead to heterogeneous responses to antibiotic exposure among cells in a 

population.

If confirmed experimentally, the phenomena reported here would be of considerable clinical 

significance.In particular, our results make a clear prediction for the optimal 

pharmacodynamic strategy: for low-affinity drugs one should aim to maximise the time of 

exposure, while for high-affinity drugs, one should aim to maximise the peak dosage. 

Moreover, the latter are predicted to show a pronounced post-antibiotic effect, meaning that 

they can be effective for much longer than the actual duration of exposure. Post-antibiotic 

effects are a widely recognised, but poorly understood, pharmacodynamic phenomenon, and 

occur for various antibiotics including aminoglycosides [17–19]. Our work suggests that 

models that integrate molecular mechanism with bacterial cell physiology can be a useful 

tool for understanding such clinically relevant growth inhibition phenomena and thus, 

potentially, for helping to improve clinical practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic illustration of the model. The bacterial cell is modelled as a well-mixed vessel, 

containing ribosomes (dark blue) which may be free or bound by antibiotic. Antibiotic 

molecules (black circles) can be transported into or out of the cell (pink arrow) and can bind 

to or dissociate from ribosomes (orange arrow). The model also includes cell growth (green) 

and ribosome synthesis (light blue), both of which are coupled to the state of the cell (these 

couplings are illustrated by the grey arrows).
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Figure 2. 
Fixed points of the model, from equation (7), plotted as a function of the external antibiotic 

concentration aex, for the two parameter sets given in table 1, corresponding to antibiotics 

with large and small values of . Panel (a) shows results for a low-affinity antibiotic, with a 

large value of  (table 1). Panel (b) shows results for a high-affinity antibiotic, with a small 

value of  (table 1). The fixed points were obtained numerically in Python using 

sympy.solvers.solve. The external antibiotic concentration is scaled by the IC50 value 

calculated from equation (8) and given in table 1.
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Figure 3. 
Dynamical trajectories showing growth inhibition after a step increase in antibiotic 

concentration, for the low-affinity parameter set (with parameter values as in table 1). (a) 

Relative growth rate λ(t)/λ0 as a function of time after the step increase in antibiotic 

concentration. The final antibiotic concentration  is indicated by the line colour, ranging 

from 0.4 ×IC50 (purple) to1.3 ×IC50 (red), in steps of 0.1 ×IC50. (b) Trajectory in the 3-

dimensional space of variables a, ru and rb, for the case of final a step increase to 

. The initial and final system states are shown by the green and red points 

respectively. (c) Flow diagram showing the direction and magnitude of the flow field ṙu, ṙb 

for a fixed value of a corresponding to the final point of the trajectory in panel (b), and for 

aex = 2 ×IC50. The thin solid line shows the nullcline corresponding to ṙu = 0; this is given 

by  The other nullcline, defined 

by ṙb = 0, is not shown here. The trajectory from (b), projected onto the ru, rb plane, is 

shown as the thicker solid line.
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Figure 4. 
Dynamical trajectories showing growth inhibition after a step increase in antibiotic 

concentration, for the high-affinity parameter set (with parameter values as in table 1). (a): 

Relative growth rate λ(t)/λ0 as a function of time after the step increase in antibiotic 

concentration. The final antibiotic concentration  is indicated by the line colour, ranging 

from 0.4 × IC50 (purple) to 1.3 × IC50 (red), in steps of 0.1 × IC50. (b): Trajectory in the 3-

dimensional space of variables a, ru and rb, for the case of a step increase to 

 (black line) and  (blue line). The initial and final system 

states are shown by the green and red points respectively. (c): Flow diagram showing the 

direction and magnitude of the flow field ṙu, ṙb for a fixed value of a corresponding to the 

final point of the black trajectory in panel (b), and for aex = 0.9 ×IC50. The thin solid line 

shows the nullcline ṙu = 0, given by 

 The trajectory from (b), 

projected onto the ru, rb plane, is shown as the thick solid line. (d): Flow diagram showing 
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the flow field ṙu, ṙb for a fixed value of a = 200 µM and for aex = 0.9 ×IC50. The nullcline 

ṙu = 0 is shown by the thin solid line.
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Figure 5. 
Dynamical trajectories showing growth inhibition after a step increase in antibiotic 

concentration, for the high-affinity and low-affinity parameter sets (blue and red lines, 

respectively, with parameter values as in table 1). (a) Predictions for a step increase to a final 

antibiotic concentration equal to half the IC50. (b) Equivalent predictions for a final 

antibiotic concentration equal to1.5 ×IC50. Note that the IC50 values are calculated as in 

table 1, and are different for the low and high-affinity antibiotics.
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Figure 6. 
Model predictions for the time required to reach 99% growth inhibition λ/λ0 = 0.01, 

following a step increase in antibiotic concentration. The inhibition time is plotted as a 

function of the external antibiotic concentration (note that the time is measured in minutes in 

(a) but in hours in (b)). Panel (a) shows results for the low-affinity antibiotic; panel (b) 

shows results for the high-affinity antibiotic (using parameters as in table 1); here the 

numerical solution of the model is shown by the solid line while the red symbols show the 

analytical prediction based on the adiabatic approximation, described in appendix B. For 

antibiotic concentrations lower than those plotted here, the dynamical trajectory of λ/λ0 

always stays above 0.01.
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Figure 7. 
Growth inhibition in response to a transient step-like dose of antibiotic. (a) Illustration of the 

dosing protocol: antibiotic concentration is switched suddenly to a value S at the start of the 

dose, and is switched back to zero after a time T. The total dose S × T is fixed at 4 × IC50. 

(b) Growth-rate trajectories for the low-affinity antibiotic (with parameters as in table 1). 

The coloured lines represent doses of different duration and intensity (keeping the total dose 

fixed at 4 × IC50). The colour bars show the duration of the dose. The green and red dots 

correspond to the start and end points of the trajectory in panel (c). (c): Trajectory in the 3-
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dimensional space of variables a, ru and rb, after removal of the low-affinity antibiotic, for S 
= 2 × IC50. The green point corresponds to the time immediately before the antibiotic is 

removed and the red point corresponds to a much later time (t → ∞) - as shown in panel 

(b). (d) Growth-rate trajectories as in panel (b), but for the high-affinity antibiotic (with 

parameters as in table 1). (e) Schematic illustration of hysteresis in the model for the high-

affinity antibiotic. The response to a low-intensity pulse of antibiotic is shown by the red 

line: upon addition of antibiotic the system tracks the upper stable fixed point and reverses 

its trajectory when the antibiotic is removed. The response to a high-intensity pulse is shown 

by the blue lines: upon addition of antibiotic the system transitions to the lower stable fixed 

point, and it tracks the lower fixed point when antibiotic is removed. (f) Time taken to 

recover from a step dose of antibiotic, as a function of the duration of the dose. The solid 

line shows results for the low-affinity antibiotic, the symbols show results for the high-

affinity antibiotic. Here, ‘recovery’ is defined to mean that the growth rate λ returns to a 

value 0.9 × λ0, having previously fallen below this threshold. The recovery time is defined 

as the total time during which the growth rate is suppressed below 0.9 × λ0.
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Figure 8. 
Growth inhibition in response to an exponentially-decaying dose of antibiotic. (a): 

Illustration of the dosing protocol. The total dose SxTx is fixed at 4 × IC50. (b) Results for 

the low-affinity antibiotic, with parameters as in table 1. The coloured lines represent doses 

of different duration and intensity, from Tx = 0.1h (blue) to Tx = 2.2 h (red), keeping the 

total dose fixed. The colour bars show the dose duration Tx. (c) Results for the high-affinity 

antibiotic, with parameters as in table 1. Colours are as in (b). (d) Time taken to recover 

from a step dose of antibiotic, as a function of the duration / intensity of the dose. 

‘Recovery’ is defined as an increase in λ(t) to a value 0.9λ0, having previously been below 

this threshold. The recovery time is defined as the total time during which the growth rate is 

suppressed below 0.9 × λ0. The solid line shows results for the low-affinity antibiotic, the 

symbols show results for the high-affinity antibiotic.
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Table 1

Parameter values used in this study to model low and high-affinity ribosome-targeting antibiotics. These 

values are chosen to be within the range of the literature values collated in [8]. The universal parameters are κt 

= 6.1 × 10−2 µM h−1, rmin = 19.3 µM and rmax = 65.8 µM [8, 20]. Except where stated otherwise, we have 

assumed an antibiotic-free growth rate λ0 of 1 h−1.

Parameter Value for low-affinity antibiotic Value for high-affinity antibiotic

Pin 2000 h−1 1 h−1

Pout 100 h−1 0.01 h−1

kon 1000 μM−1 h−1 1000 μM−1 h−1

koff 105 h−1 10 h−1

λ0* = 2 Poutκtkoff /kon 49.4 h−1 0.00493 h−1

IC50* = λ0* (rmax − rmin)/(2Pin) 0.574 μM 0.115 μM

Predicted IC50 (from equation (8)) 1.43 μM 11.64 μM
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