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An automatic atlas-free method for segmenting the cervical spinal cord on midsagittal T2-weighted magnetic resonance
images (MRI) is presented. Pertinent anatomical knowledge is transformed into constraints employed at different stages of
the algorithm. After picking up the midsagittal image, the spinal cord is detected using expectation maximization and
dynamic programming (DP). Using DP, the anterior and posterior edges of the spinal canal and the vertebral column are
detected. The vertebral bodies and the intervertebral disks are then segmented using region growing. Then, the anterior
and posterior edges of the spinal cord are detected using median filtering followed by DP. We applied this method to 79
noncontrast MRI studies over a 3-month period. The spinal cords were detected in all cases, and the vertebral bodies were
successfully labeled in 67 (85%) of them. Our algorithm had very good performance. Compared to manual segmentation
results, the Jaccard indices ranged from 0.937 to 1, with a mean of 0.980± 0.014. The Hausdorff distances between the
automatically detected and manually delineated anterior and posterior spinal cord edges were both 1.0± 0.5mm. Used
alone or in combination, our method lays a foundation for computer-aided diagnosis of spinal diseases, particularly
cervical spondylotic myelopathy.

1. Introduction

The human spinal cord is a long cylindrical structure of the
central nervous system extending from the medulla oblon-
gata. Its function is relaying neural signals between the brain
and the rest of the body. Residing within the spinal canal
formed by the spinal vertebrae, the spinal cord is prone to
external compression caused by degeneration, trauma, and
so forth. Pathological conditions affecting the spinal cord,
also known as myelopathy, lead to motor, sensory, and auto-
nomic dysfunctions, as well as a reduction in quality of life
[1]. Among them, cervical spondylotic myelopathy (CSM)
is the commonest cause of spinal cord dysfunction in adults
globally [2].

Current radiological modality of choice to assess the
severity of cervical myelopathy is magnetic resonance imag-
ing (MRI). It provides information about the etiology of
canal stenosis, the degree of cord compression, and patholog-
ical changes within the cord [3]. Fehlings et al. measured
canal compromise on computed tomographic (CT) and T1-
and T2-weighted MR images, as well as cord compression
on T1- and T2-weighted MR images from patients with
spinal cord injury [4]. Based on these methods, experts
have developed standardized measurements on midsagittal
MR images to quantitatively assess the severity of cord
compression in cervical myelopathy in recent years [1–3].
Automation of these measurements requires segmentation
of the spinal cord, whether compressed or not, in the
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original MR images. To our knowledge, no such attempt
has been reported.

Current automatic or semiautomatic spinal cord segmen-
tation algorithms focus on multiple sclerosis, which causes
atrophy manifested as a decreasing spinal cord area in MR
images [5–8]. The earliest semiautomatic method based on
an active surface overestimated the cord area in T1-
weighted images by approximately 14%, compared to man-
ual outlining [5]. To initialize the algorithm, a human user
must mark the approximate cord centerline on a few repre-
sentative slices. Deformable atlas and Hough transform were
employed in newer methods to decrease human intervention
used to detect the cord in axial images as well as to improve
segmentation accuracy [6, 7]. The Dice coefficients were
around 0.9 for the T1-, T2-, and T2∗-weighted images.
For spinal cord segmentation in MR images from patients
with CSM, these methods may encounter a problem when
the cerebrospinal fluid (CSF) spaces outside the cord are
compressed secondary to canal stenosis, reducing local
tissue contrast.

In the literature, there were only a few atlas-free seg-
mentation methods for the human spinal canal or spinal
cord [9, 10]. Archip et al. presented a knowledge-based
approach to identify the spinal cord in CT images of the
thorax [9]. They constructed a task-oriented anatomical
structure map to define the lumbar vertebrae. Although
they employed knowledge at incorrect body regions, the
results were useable because bony structures are the bright-
est ones and have fairly stable intensity levels. Kawahara
et al. proposed a method to find the globally optimal segmen-
tation of the spinal cord using a high dimensional minimal
path search [10]. They represent spinal cord shape principal
component analysis. Then, a modified A∗ minimal path
search algorithm in six dimensions was used. Despite dra-
matically reduced memory requirement, their run-time was
between 1 and 5 hours per case.

In this paper, we report an automatic atlas-free algorithm
that can perform cervical spinal cord segmentation in
standard T2-weighted sagittal MR images without any pre-
processing. Human intervention is minimized. Without an
atlas, the anatomical knowledge is transformed into con-
straints employed at different stages of the algorithm. Our
method is able to find the spinal cord in images from patients
without disruption of the spinal canal. We applied this
method to a large number of consecutive patients undergoing
a noncontrast MRI study over a 3-month period. The results
are presented and evaluated.

2. Materials and Methods

2.1. Materials. All adult subjects undergoing noncontrast
cervical spine MRI examination from October to December
2015, mainly for CSM, at a regional hospital in Northern
Taiwan were retrospectively identified in the database.
Patients with a history of cervical spine surgery were
excluded. Sagittal T2-weighted images from the subjects
were downloaded from the picture archiving and commu-
nication system to a personal computer in lossless JPEG
format. Our data collection process conformed to the

requirements of Institutional Review Board, Taipei Hospi-
tal, Department of Health, Taiwan, and was approved as
such (TH-IRB-0016-0001).

Image acquisitions were performed on a Siemens Mag-
netom Avanto 1.5 Tesla MRI scanner (Siemens Healthcare,
Erlangen, Germany) using standard coils. Each subject had
a T1- and a T2-weighted scan covering the full cervical
spinal cord. Parameters for the T2-weighted scan were
turbo spin echo sequence, TR=3300ms and TE=95ms;
flip angle = 150°; bandwidth =223Hz/voxel; number of
averages = 2; and reconstruction diameter = 22× 22 cm. For
sagittal T2 sequence, 3mm sagittal slices with 0.33mm
gaps between them were planned over the coronal image
to cover the whole spinal canal [11]. A saturation band
is placed over the anterior, inferior aspect. A total of
13 gray scale images were generated in each sagittal T2
scan. These images are 320× 320 pixels in size, with a
resolution of 0.6875mm per pixel. The signal intensities
(SIs) of the pixels assume a relative scale, stored in 256
gray levels.

Symmetry-based
selection of midsagittal
slice(s) from original

sagittal T2 MRI images

Spinal cord region
detection

Spinal canal detection

Vertebral body
detection and labeling

Spinal cord
segmentation

Manual labeling of
upper and lower limits

Vertebral
body size and location

veri�ed? 

Yes

No

Figure 1: The flowchart of our algorithm.
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2.2. Symmetry-Based Selection of the Midsagittal Image.
The flowchart of our algorithm is shown in Figure 1.
For each MRI data set, we start from selection of one or
two midsagittal images based on symmetry between pairs
of images. The spinal cord is detected using expectation
maximization (EM) and dynamic programming (DP).
Only one image is designated as the midsagittal image
and undergoes further processing according to the model
depicted in Figure 2.

Using DP, the anterior and posterior edges of the spinal
canal are detected, as well as the approximate anterior edge
of the vertebral bodies (VBs). After thresholding and DP,
the VBs and the intervertebral disks were segmented using
region growing and then labeled according to their relative
sizes. The superior and inferior edges of the cervical VBs were
verified by the user and corrected as needed. Finally, the spi-
nal cord is segmented by using DP to detect its anterior and
posterior edges.

Wedefinex-,y-, and z-axes as left-right, anterior-posterior
(ventral-dorsal), and superior-inferior (cranial-caudal) axes,
respectively. Measurements performed on x-, y-, and z-axes
are termed width, depth, and height unless otherwise
specified. xy, yz, and xz planes correspond to axial, sagittal,
and coronal anatomical planes. A sagittal T2-weighted scan
contains 13 gray scale images, denoted as Ik, where
k = 1, 2,…, 13. Let Iky,z denote the gray level of the pixel at

position y, z of the kth sagittal image Ik, 0 ≤ Iky,z ≤ 255 for
1 ≤ y, z ≤ 320.

Similar to the brain, the human vertebral column and
the spinal cord are bilaterally symmetric about the intact
midsagittal plane (iMSP) [12]. We apply this knowledge
to identify the midsagittal MR image, which usually con-
tains the largest anterior-posterior (A-P) diameter of the
cervical spinal cord. Let kMSP denote the sagittal position
closest to the iMSP. We have to define a difference metric
between two images Ip and Iq, denoted as D Ip, Iq , and
then test different trial values of kMSP to find the best

one minimizing the global asymmetry quantified using
several pairs of corresponding images.

kMSP = argmin
k

〠
13

j=1

D Ij, I2k−j

m
, 1

where m denotes the number of image pairs.
Theoretically, kMSP can assume any real value between 1

and 13 in our images, with an ideal value of 7 for a perfectly
positioned patient. However, interpolating images take
additional time and generate noisy in-between images, so
we only use original images to evaluate global symmetry.
Since D Ip, Iq is defined only when p and q are integers,
kMSP must be an integer or a half-integer. When kMSP is
an integer, IkMSP is the only image near the iMSP. When it
is a half-integer, IkMSP−0 5 and IkMSP+0 5 are the two nearest
images located on both sides of the iMSP, but they are usu-
ally not equally distant from it. To make meaningful com-
parison using enough number of images, we only evaluate
candidate values when there are at least 4 image pairs avail-
able; thus, 4 ≤ kMSP ≤ 10.

Several functions can be chosen as the definition of
D Ip, Iq , including the mean or standard deviation of the
SI difference, cross-correlation between corresponding
pixels, and the negative of mutual information (MI) using
joint histogram. After a pilot study, we found that the stan-
dard deviation of the corresponding pixels’ gray level differ-
ences between Ip and Iq performs best empirically, so
D Ip, Iq is defined as such. As a result, D Ip, Iq =D Iq, Ip
and D Ip, Ip = 0 for the same image. After computing
D Ip, Iq for all 78 image pairs, the kMSP of the given data
set can be found.

2.3. Spinal Cord Detection Using Expectation Maximization
and Dynamic Programming. Table 1 lists SIs of different
tissues on T2-weighted MR images. The spinal cord gen-
erally has a smooth contour throughout its course, as

ALL PLL LF ALL PLL LF

Figure 2: A midsagittal T2-weighted MR image (left) and our schematic drawing showing the spinal cord and its surrounding structures
(right). The ligaments, including the anterior longitudinal ligament (ALL), the posterior longitudinal ligament (PLL), and the ligamentum
flavum (LF), are deliberately thinned, and the internal architectures of intervertebral disks are neglected.
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shown in Figure 2. It is isointense to the brainstem on all
imaging sequences, while the surrounding CSF demon-
strates characteristic hyperintensity on T2-weighted images
[13]. On images, the spinal cord serves as the reference to
classify pixels into hyper-, iso-, and hypointense ones,
which have SIs higher than, similar to, and lower than
it, respectively.

The normal appearance of the VBs is determined by the
ratio of fatty yellow marrow to the hematopoietic red mar-
row, while their bony cortex demonstrates low SI. The three
major components of an intervertebral disk include the
nucleus pulposus, annulus fibrosus, and cartilaginous end
plate. Only the nucleus pulposus in its core demonstrates
high SI due to high water content, which decreases with
age. The other two structures demonstrate low SI and are dif-
ficult to differentiate from the surrounding vertebral cortex
and ligaments.

The ligaments of the spine include the anterior longitudi-
nal ligament (ALL), the posterior longitudinal ligament

(PLL), and the posterior ligamentous complex among which
the ligamentum flavum (LF) immediately posterior to the
CSF-containing dural sac is of our interest. On T2-
weighted images, the ALL and the PLL are seen as hypoin-
tense bands along the anterior and posterior edges of the
vertebral column, while the LF is seen as a hypointense band
extending along the posterior edge of the spinal canal
(Figure 2).

We employ EM algorithm to cluster the pixels on the
given midsagittal MR image according to their gray levels,
or SIs. This method is widely used in processing brain MR
images [14]. A Gaussian mixture model (GMM) is employed
to fit the normalized histogram, as shown in Figure 3. This
model assumes that the MR image consists of a number of
distinct tissue types from which every pixel has been drawn.
The intensities of pixels belonging to each of tissue type
conform to a normal distribution, which can be described
by a mean, a variance, and the number of pixels belonging
to the distribution.

Table 1: Signal intensities of different tissues on T2-weighted MR images. ALL: anterior longitudinal ligament; PLL: posterior longitudinal
ligament; LF: ligamentum flavum.

Structure Component Signal intensity Remark

Spinal cord Isointense Reference

Cerebrospinal fluid Hyperintense

Vertebral body

Cortical bone Hypointense

Bone marrow Isointense May vary

End plate Hypointense

Intervertebral disk
Annulus fibrosus Hypointense

Nucleus pulposus Hyperintense Decreases with age

Ligaments (ALL, PLL, and LF) Hypointense

Air Very hypointense

esnetniosIopyh riAesnetniosIopyh riA esnetnirepyHesnetnirepyH

0.14

0.12

0.1

0.08

0.06

0.04

0.02

Figure 3: An example of classifying pixels on the histogram (left) after fitting with four Gaussian distributions (right). Horizontal dotted lines
denote relative frequency.
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For human experts, visually classifying the pixels into
hyper-, iso-, and hypointense ones is enough for making
diagnoses. However, we frequently encountered problems
in modeling the histogram using only three Gaussians
because the hypointense pixels do not assume a perfect
Gaussian distribution. Since there is no reason to assume that
the hypointense ligament pixels share the same Gaussian
distribution as the hypointense air pixels, we used two signif-
icantly overlapping Gaussians to fit the hypointense peak,
increasing the total number to 4. Because the larger, narrower
Gaussian mostly represents air pixels outside the body, we
call it “air intense” to represent these very hypointense pixels.
The other three Gaussians are called hyper-, iso-, and
hypointense, respectively. Using EM, the number of Gaussian
distributions is increased sequentially from one to four to fit
the normalized histogram. Other details of the algorithm
are implemented according to a textbook [15].

In spine images, isointense pixels are the most important
as they usually represent the cord. The given gray level is clas-
sified isointense if the isointense Gaussian distribution con-
tributes to the largest portion of that part of the histogram,
as shown in Figure 3. Other pixels are classified similarly.
Those with gray levels lower than the peak of the air intense
pixels are automatically classified as such.

Although the EM algorithm always converges, sometimes
the “isointense” Gaussian does not accurately represent true
isointense pixels, that is, the cord. The SIs of the pixels can
be affected, or “modulated,” by inhomogeneity of the radio-
frequency field, placement of saturation bands, and adjust-
ment by the MR operator [11]. On sagittal T2-weighted
images, artifactual longitudinal thin linear hyperintensities
are routinely seen, known as Gibbs artifact or truncation arti-
fact [13]. Moreover, quantization of the SI into 256 gray levels
also affects the EM process as the hyperintense Gaussian is
often truncated if its mean is close to 256. As a result, relying
on a fixed threshold to find the isointense pixels inevitably
causes problems in some images.

From our pilot studies, we have found that the gray levels
of the spinal cord pixels are mostly between 60 and 100. To
cope with the errors associated with the EM algorithm, we
checked the upper threshold of isointense pixels derived from
EM. If it is larger than 127 or smaller than 64, adjustments
are made for correct classification. If the threshold is larger
than 127, it is recalculated according to the mean and
standard deviation of the isointense Gaussian distribution.
The resulting value is limited to the range between 127
and 159. On the other hand, if the upper threshold is
smaller than 64, indicating three Gaussians assigned to
the hypointense and air intense peaks, it is set to 128 without
further recomputation.

Dynamic programming (DP) is a method of solving
problems by combining the solutions to simpler subproblems
[16]. It is typically applied to optimization problems to find a
solution with the optimal value. “Programming” in this con-
text refers to the method of tabulating the solutions of the
subproblems. When the subproblems overlap, a DP algo-
rithm solves each subproblem just once and then saves its
answer in a table, thereby avoiding the work of recomputing
it for many times.

In our application, we want to detect some anatomical
structures on a midsagittal MR image using DP. We regard
this image I as a large 320× 320 checkerboard. The fitness
or optimality of a given pixel at position y, z , f y,z , can be
defined locally using features derived from its gray level,
Iy,z , and from its neighboring pixels. Then, the optimal solu-
tion representing the structure to be detected is characterized
as the best path B, which is composed of values
bzsup , bzsup+1,…, bzinf , representing a series of points

bzsup , zsup , bzsup+1, zsup + 1 ,…, bzinf , zinf running from

the uppermost row z = zsup to the lowermost row z = zinf
within the region of interest. The path must be continuous,
so one can only move from y, z to y − 1, z + 1 , y, z + 1 ,
or y + 1, z + 1 .

We define the cumulative fitness values of a given pixel at
y, z , qy,z , using f y,z and values from its allowable predeces-
sors, qy−1,z−1, qy,z−1, and qy+1,z−1. For the first row, qy,zsup is

equal to f y,zsup . When the pixel is out of the region of interest

bounded by yant and ypost, it is excluded from the best path. In
our application, zsup and zinf are constants, while yant and
ypost can be functions of z or constants.

qy,z =
0 if y < yant or y > ypost
f y,z if z = zsup
max qy−1,z−1,qy,z−1, qy+1,z−1 + f y,z otherwise

2

Starting from the uppermost row, the table storing of the
cumulative fitness values is constructed. An auxiliary table
py,z is also constructed to store the locations of the predeces-
sors of a given point,

py,z =
−1 if qy−1,z−1 > qy,z−1, qy−1,z−1 > qy+1,z−1
0 if qy,z−1 > qy−1,z−1, qy,z−1 > qy+1,z+1
+1 if qy+1,z−1 > qy−1,z−1, qy+1,z−1 > qy,z−1

3

If the maximum occurs in two or more predecessors, py,z
is defined as 0 if qy,z−1 is the maximum and as −1 if
qy+1,z−1 = qy−1,z−1 > qy,z−1.

To find B, we select the point with the largest cumulative
fitness value in the lowermost row and then backtrack its pre-
decessors using the auxiliary table until the first row is
reached.

bzinf = argmax
y

qy,zinf ,

bz−1 = bz + pbz,z for z = zinf − 1,…, zsup

4

5

Let f w denote the fitness function used to compute the
wth best path Bw. In the following sections, we use DP several
times to find various anatomical structures represented by
B1, B2,…, B8 using f 1, f 2,…, f 8.

Connected to the brainstem, the spinal cord is the only
isointense structure traversing the whole image vertically,
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as shown in Figure 2. The shape and size of the cord are
limited by those of the bony spinal canal, which vary con-
siderably. For patients with cervical spinal canal stenosis,
those with a 7.1mm canal depth, about 10 pixels deep in
our images, were more likely to have CSM, whereas
patients with a 10.8mm canal were more likely to be non-
myelopathic [17]. Halving this value, we use 5 pixels as a
reasonable estimate for the A-P diameter (depth) of the
compressed cord.

In a given midsagittal image, the spinal cord can be
detected by finding the longest isointense structure of
sufficient depth. We define f 1 using classification results of
5 consecutive pixels in y direction,

f 1y,z = 〠
2

j=−2
uy+j,z ,

where uy,z =
1 if Iy,z is isointense
0 otherwise

6

The boundaries zsup, zinf , yant, and ypost are set to 1, 320, 1,

and, 320, respectively. Then, B1 can be found using DP.
Since B1 employs the results of the EM algorithm instead

of the original SI, it can be fine-tuned using local SI homoge-
neity, as defined in f 2. Constants are added to ensure that f 2

has positive values everywhere. Similar adjustments are also
used in (8) and (9).

f 2y,z = 〠
2

j=−3
65536− Iy+j+1,z−Iy+j,z

2
7

Working around B1, we compare 6 pairs of consecutive
pixels to detect the best homogeneous isointense structure
B2, which is likely to be the cord, using DP. zsup,zinf , yant,
and ypost are set to 1, 320, B1 − 40, and B1 + 40, respectively.
Although local zigzagging is common, B2 is usually closer
to the spinal cord along its course than B1, as shown in
Figure 4. Since B1 and B2 are not final segmentations, there
is no need for them to be “centerlines” of the spinal cord.

Using f 1 and f 2, the exact location of the spinal cord
can be detected on the sagittal image. If there is only one
midsagittal image selected from the previous stage, the
histogram along with pixel classification, B1 and B2 are
saved and further processing is performed. If there are 2
candidate midsagittal images, we select one whose SI among
pixels traversed by B2 is more stable by comparing their SIs
against the moving average derived from 31 neighboring
pixels along the path, summed over the lower two-thirds
of the image. Setting the range to 31 pixels, we hope to
cover one VB and one intervertebral disk to decrease error
associated with adjacent structures.

2.4. Ligament Detection Using Dynamic Programming. We
define the range where the ligaments, namely ALL, PLL, and
LF, may be detected, relative to the location of B2, using mea-
surements described in the literature [17]. The normal

cervical spinal canal has an approximate depth of 15–
20mm, corresponding to 22–30 pixels in our images. The nor-
mal lower cervical VBs, including C3, C4, C5, C6, and C7,
have approximate depths of 15–20mm, corresponding to
22–30 pixels. They have approximate heights of 10–15mm,
corresponding to 14–22 pixels. Their normal areas on sagittal
images range approximately from 300 to 600 pixels.

All ligaments appear hypointense on T2-weighted images
(Table 1). Therefore, B3 and B4are defined in a straightfor-
ward fashion.

f 3y,z = f 4y,z = 256− Iy,z
2

8

Using DP, B3 and B4are found anterior and posterior to
B2. They represent PLL and LF, respectively. By setting yant
and ypost relative to the location of the detected spinal cord,

that is, B2, we can ensure that no other hypointense struc-
tures will become the optimal solution erroneously. Based
on normal spinal canal depth, the boundaries for B3, zsup,
zinf , yant, and ypost are set to 1, 320, B2 − 30, and B2 − 1,
respectively. Those for B4 are set to 1, 320, B2 + 1, and
B2 + 30.

It is more difficult to find ALL because the air-filled tra-
chea is just anterior to it, separated by the thin isointense
esophagus. We define f 5 in a slightly different way. In addi-
tion to the hypointense ligament and the cortical bone imme-
diately behind it, we detect 16 isointense bone marrow pixels
further posteriorly.

f 5y,z = 256− Iy,z
2
+ 〠

16

j=1
Iy+j,z2 9

Then, the approximate location of ALL, represented by
B5, is found using DP. Based on normal VB depth, the

Figure 4: Spinal cord detection using dynamic programming. Near
the black line indicating the best path containing the largest
number of isointense pixels, the white line denoting the best path
traversing the region having the most homogeneous signal
intensity is detected.
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boundaries are set to 1, 320, B3 − 60, and B3 − 21 for B5. After
detecting B3, B4, and B5, we can segment the key regions on
the midsagittal image, namely the vertebral column and the
spinal canal, as shown in Figure 5.

Although the vertebral column can be reliably detected
using DP in most images, additional prevertebral soft tissue
regions can be included, which may interfere with separation
and detection of individual VBs. For atlas-dependent
methods, the VBs and the spinal cord can be detected and
labeled after image registration or other template-matching
algorithm, usually after manual initialization [18]. Since our
method is atlas-free and the only available information at this
stage is spinal cord location, we must apply additional tech-
niques to achieve the goal automatically.

2.5. Knowledge-Based Vertebral Body and Intervertebral Disk
Detection and Labeling. The vertebral column, with its ante-
rior and posterior edges defined by B5 and B3, contains the
VBs and the intervertebral disks. The bony cortex of the
VB, along with the annulus fibrosus and the end plates of
the disks, is hypointense. Other structures of the vertebral
column are isointense (Table 1). Therefore, we can construct
a histogram of the vertebral column pixels to separate these
two groups by finding the corresponding peaks and set the
threshold, tVB, at the midpoint. This threshold is usually
different from that defined to separate hypointense pixels
from isointense ones in the EM process.

To facilitate separation of individual isointense bone
marrow regions of the VBs, we need another fitness function
f 6 to connect as many hypointense cortical bone and annulus
pixels as possible. On the other hand, the posterior half of
the VB regionsmust be retained for region growing algorithm
to work.

f 6y,z = 256− Iy,z
2
+ 65536〠

20

j=1
vy+j,z ,

where vy,z =
1 if Iy,z < tVB
0 otherwise

10

The solution of the 6thDPprocess,B6, usually lies between
B5 and B3. It does not correspond to any specific structure but
overlaps with B5 at the anterior edges of the disks. Therefore,
we call B6 “truncated ALL.”

After thresholding all pixels between B6 and B3 using tVB,
we employ exhaustive region growing to segment all isoin-
tense regions to find the VBs of the lower cervical spine.
For each region, the location, height, depth, and area are cal-
culated. Because some parts of the VB regions are outside the
jagged B6, we consider all regions larger than 150 pixels, that
is, larger than half of normal VB size, being valid regions.
Then, all regions are sorted according to their z coordinate
in preparation for labeling.

The sizes and shapes for the lower cervical and upper
thoracic VBs are relatively stable. In contrast, the C1 and
C2 vertebrae assume complex shapes. Moreover, they are
connected by other ligaments in addition to extensions of
the ALL and the PLL, making their detection highly challeng-
ing. Despite such complexity, the odontoid process and the

body of C2 vertebra usually appear as a connected region col-
lectively, having a total height that averaged 30mm in adults,
about 1.5 times that of the lower cervical VB [19]. We use this
knowledge to detect C2.

After detecting a large region followed by more than 5
valid VB regions inferiorly, the distance between the centers
of the first and the second regions on the z-axis is checked.
If it is smaller than 50mm, or 70 pixels, these two regions
are considered C2 and C3. Beginning from C3, all “regular”
VB regions are labeled. The labeling process continues inferi-
orly for all VBs detected in the region growing process. The
superior and inferior edges of the cervical spinal canal are
approximated using the superior edge of the C2 region and
the interior edge of the T1 region, respectively. An example
is show in Figure 5. To avoid errors associated with vertebral
regions at levels above C3 or below C7, we employ extrapola-
tion on the z-axis from centers of the C3 and C7 VBs. The
height of C2 is estimated as 1.5 times that of C3, while the
height of T1 is estimated as that of C7. We intentionally
include the T1 region so that the C7-T1 disk can be detected.

The SIs, sizes, and shapes of intervertebral disks change
significantly with aging and various disease processes. Com-
pared to detecting the VBs, detecting the disks is a much
more difficult task. Therefore, we only attempt disk detection
on images with successfully detected and labeled VBs. In late
adulthood, the disks are dehydrated and the hyperintense
region is minimal. However, the disk is still a region with
heterogeneous SI, prohibiting improvement of segmentation
accuracy using simple thresholding.

Figure 5: Detecting the edges of different structures using dynamic
programming. From left to right: B5, B6, B3, B7, B8, and B4. The
horizontal lines denote the superior and inferior edges of the spinal
canal. The original MR image is shown in the left part of Figure 7.
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After removing the VB regions, the “void” regions within
the vertebral column should be the disks. We use exhaustive
region growing to detect the disk regions regardless of SI.
Then, all regions larger than 100 pixels are considered disks
and are labeled according to labels of the adjacent VBs. Since
our method does not take SIs of the disk pixels into account,
it is robust to disk pathologies, which commonly accompany
CSM, as illustrated in Figure 6.

Although we have tested and tuned our algorithm in a
pilot study, it still failed to identify pertinent structures on
some images. Compared to the DP algorithm, the region
growing algorithm used to detect VBs and disks is more sen-
sitive to noisy SI. Therefore, we display the VB segmentation
and labeling results to the user to allow corrections to be
made. For images in which our algorithm fails to find or label
the VBs, the superior and inferior edges of the cervical spinal
canal can be designated by the user. At this stage, the user can
also exclude images in which the complete cervical spinal
canal does not exist or is not found by the algorithm from
further processing.

2.6. Spinal Cord Border Detection Using a Compound Fitness
Function.We perform cord segmentation after specifying the
anterior, posterior, superior, and inferior edges of the spinal
canal. Since there is no atlas for comparison, we have no
information about how the SI of a given pixel is affected by
various factors. To alleviate this problem, we apply median
filtering to decrease noise [20]. For a given z within the spinal
canal, we calculate the median gray level of the spinal
cord, cz , using hypointense and isointense pixels within
the range of B2

z − 5 to B2
z + 5 in y direction and z − 15 to

z + 15 in z direction.
A compound fitness function is then constructed to max-

imize the contrast at the edge of the spinal cord, while keep-
ing SIs within the spinal cord region as homogeneous as
possible. Four terms representing similarity to the median
cord gray level, heterogeneity between adjacent pixels, con-
trast between cord and noncord pixels, and penalty for pass-
ing through noncord pixels are incorporated into f 7,

f 7y,z = f 7sy,z + f 7hy,z + f 7cy,z + f 7py,z 11

The components are defined as follows. The weighting
of each term is defined empirically using another training
set of images.

f 7sy,z = 0 5 Iy−1,z−cz
2
− 3 Iy,z−cz

2

− Iy+1,z−cz
2
− Iy+2,z−cz

2
− Iy+3,z−cz

2
,

f 7hy,z = − Iy,z− Iy+1,z
2
− Iy,z−Iy+2,z

2
− Iy,z− Iy+3,z

2
,

f 7cy,z = 0 5 Iy,z− Iy−1,z
2
,

f 7py,z =
−131072, if point y, z is air intense or hyperintense
0, otherwise

12

13

14

15

Similarly, f 8 is defined using the same components as f 7,
with their constituent pixels in reverse order,

f 8y,z = f 8sy,z + f 8hy,z + f 8cy,z + f 8py,z 16

Using DP, the anterior and posterior edges of the spinal
cord, B7 and B8, are detected. The region between them rep-
resents the spinal cord on the given T2-weighted midsagittal
MR image.

The proposed segmentationmethodwas validated against
manual segmentation results. Similar to previous works, we
used two measurements to validate the areas and edges
resulted from the segmentation process [7]. The Jaccard
index was used for quantifying the overlapping between cord
regions defined by different observers.

J =
TP

TP + FP + FN
, 17

where TP, FP, and FN denote the numbers of true-positive,
false-positive, and false-negative pixels, respectively. It can
be easily converted to Dice coefficient using the relationship
D = 2J/ 1 + J .

Figure 6: Vertebral body and intervertebral disk detection and
labeling in a midsagittal MR image.
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The Hausdorff distance, which is defined as the maxi-
mum distance between two curves, was used to quantify the
distance between the anterior and posterior edges of the spi-
nal cord. Three board-certified neurosurgeons performed
spinal cord segmentation on the same images used for auto-
matic segmentation. Interobserver agreements between them
were calculated. Agreements between each human observer
and the automatic method were also calculated. Then, the
gold standard was determined using a voting process from
three manual segmentations to assess the accuracy of the
proposed method.

3. Results

A total of 84 eligible data sets from 84 patients were identified
in the hospital database. All 1092 T2-weighted sagittal MR
images were downloaded and processed. Our symmetry-
based selection algorithm found 156 midsagittal images.
These images were reviewed manually and were found to
contain the odontoid process, which has an average width
of 9mm and is located near the iMSP [21]. Therefore, all of
them were verified as midsagittal images.

Despite successful detection of midsagittal structures,
10 images from 5 data sets were excluded from further
processing. In 4 data sets, no single MR image contains the
complete cervical spinal canal due to excessive scoliosis, dis-
qualifying the constraints of our algorithm. In one data set,
the orientation of the spinal canal was significantly changed
due to severe kyphosis related to thoracic wall deformity,
prohibiting the DP algorithm to find appropriate solutions.
Without the review process, these images would still fail
VB detection and labeling and would be rejected for further
processing instead of reporting erroneous automatic seg-
mentation results.

From the remaining 79 data sets, a total of 146 images
were selected as midsagittal images eligible for spinal cord
detection. Among these 79 patients, there were 40 males
and 39 females. Their ages ranged from 25 to 85 years, with

a mean of 53.5± 12.0. After EM and two rounds of DP, the
spinal cords were detected in all images. For each data set
containing two midsagittal images, the one containing the
more homogeneous spinal cord region was retained. After
symmetry-based image selection and cord detection, the
7th image was selected in 45 (57%) of 79 data sets. The 6th
and the 8th images were selected in 22 (28%) and 10 (13%)
patients, respectively. The 5th image was selected in one
and the 9th in another.

In 36 (46%) of the 79 images, the original threshold
derived from the GMMwas suitable for separating isointense
pixels from hyperintense ones. For the remaining images, the
thresholds were out of range. Automatic threshold adjust-
ment using the isointense Gaussian was done in 43 (54%).
In one image, the hyperintense pixels did not form an
obvious peak on the histogram, resulting in absence of the
pertinent Gaussian, and the upper threshold for isointense
pixels was automatically set to 127.

Using DP, the PLLs were detected on all images without
problem. The LFs were also detected on all images. After a
manual review, small false-positive regions were noted in 6
cases and small false-negative regions in 2. These errors did
not affect accuracy of cord segmentation. On the other hand,
the results of ALL detection were less stable.

Prevertebral tissues were frequently considered part of
the vertebral column.

After truncating the vertebral column region using B6

and subsequent region growing operations, 67 (85%)
images had successful detection and labeling of the VBs.
The labels were correct in 66 images. In one image, the
congenitally fused C3-4 vertebral bodies were mistaken
as C2 and the labels needed to be corrected. Manual
designation for superior and inferior edges of the spinal
canal was required in this image and in other 12 whose
labeling was unsuccessful. Detection of the anterior and
posterior edges of the spinal cord within cervical spinal
canal was successful in all 79 images. Two examples are
shown in Figure 7.

Figure 7: Segmentation results in nearly normal and severely degenerated cervical spines. The left half of each image is the original image
containing the cord (gray) and its surrounding cerebrospinal fluid region (white). The right half of each image is the segmentation result.
Erroneously classified pixels are shown in white. Components of the epidural space are also shown in some nonstenotic areas, but they are
clinically irrelevant.
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The heights of the spinal canal regions ranged from 150
to 231 pixels, with a mean of 187.8± 18.8. On average, males
have longer canals than females (201.7 versus 173.5 pixels or
139 versus 119mm) because they are taller. The number of
spinal canal pixels ranged from 3000 to 5760, with a mean
of 3943± 527. They account for only 4% of all pixels in the
image. The number of manually segmented spinal cord pixels
ranged from 1148 to 2473, with a mean of 1798± 250, and the
number of automatically segmented spinal cord pixels
ranged from 1155 to 2438, with a mean of 1803± 251. On
average, the area of the spinal cord occupies about 46% of
the spinal canal.

The mean gray levels of manually segmented cord pixels
on the images ranged from 57.9 to 123.9, with a mean of
76.0± 9.3, while the standard deviations of these cord pixels
ranged from 9.2 to 21.1, with a mean of 14.1± 2. Generally,
the SIs of cord pixels decrease significantly as z increases.
The mean correlation coefficient between the gray level and
z was −0.57± 0.21 with a median of −0.63. In 65 of the 79
images, the correlation coefficients were lower than −0.4.

Compared to the gold standard, our algorithm had
very good performance. The Jaccard indices ranged from
0.937 to 1, with a mean of 0.980± 0.014. Converted to the
Dice coefficient, the range was 0.968 to 1, with a mean of
0.990± 0.007, better than that described in the previous study
[7]. The Hausdorff distances between the automatically
detected anterior spinal cord edge and the manually delin-
eated one ranged from 0 to 3 pixels, about 0 to 2mm, with
a mean of 1.44± 0.67 pixels. The Hausdorff distances
between the automatically detected posterior spinal cord
edge and the manually delineated one ranged from 0 to 5.1
pixels, about 0 to 3.5mm, with a mean of 1.47± 0.76 pixels.

Agreements between the results of spinal cord segmenta-
tion by our algorithm and by three human experts were
shown in Tables 2 and 3. Both interobserver agreement
measurements among three human experts were better than
those between human and our algorithm.

4. Discussion

We have proposed an algorithm for automatic cervical spinal
cord segmentation from original T2-weighted sagittal
images. Our method is accurate and robust. All 156 midsag-
ittal images selected from a total of 1092 were confirmed
manually. We used EM on the histogram to find the upper
and lower thresholds of isointense pixels. Although some
adjustments were needed, our algorithm was able to find all
spinal cords automatically, whose areas account for only
4% of all pixels in images having complete cervical spinal
canals. Similar double threshold-basedmethodwas employed
in other studies, but cropping regions of interest from the
original images was needed before determining the threshold
automatically [22].

Our method is completely atlas-free. The anatomical
knowledge was built into the algorithm. Despite minimal
human intervention, the results of our method were very
accurate. The Dice indices and Hausdorff distances were bet-
ter than those described in the previous studies [7]. In addi-
tion, our method is based on sagittal MR slice. These
characteristics make our method complementary to current
atlas-dependent methods based on axial images. Clinically
useful metrics including cord compression and canal com-
promise described in [3] can be derived automatically on
midsagittal MR images. Although similar knowledge of the

Table 2: Interobserver agreements between the results of spinal cord segmentation by our algorithm and by three human experts, compared
using Jaccard indices. Results in mean± standard deviation and ranges in parentheses.

Observer 1 Observer 2 Observer 3

Automatic segmentation
0.980± 0.015 0.979± 0.015 0.977± 0.015
(0.922~1.000) (0.937~1.000) (0.939~1.000)

Observer 1
0.987± 0.010 0.987± 0.010
(0.955~1.000) (0.957~1.000)

Observer 2
0.989± 0.010
(0.951~1.000)

Table 3: Interobserver agreements between the results of spinal cord edge detection by our algorithm and by three human experts, compared
using Hausdorff distances. Results in mean± standard deviation and ranges in parentheses.

Anterior Posterior
Observer 1 Observer 2 Observer 3 Observer 1 Observer 2 Observer 3

Automatic segmentation
1.51± 0.74 1.51± 0.66 1.54± 0.68 1.50± 0.76 1.44± 0.78 1.58± 0.79
(0~3.61) (0~3) (0~3.16) (0~4) (0~5.83) (0~5.10)

Observer 1
1.02± 0.43 1.01± 0.38 1.05± 0.55 1.05± 0.44
(0~2.24) (0~2) (0~3.61) (0~3)

Observer 2
0.97± 0.39 1.01± 0.57

(0~2) (0~3)
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spinal cord was incorporated in the methodology described
previously [10], our emphasis other than anatomical struc-
tures, as detailed in Figure 2, has not been proposed.

When finding the MSP slices, we empirically define the
difference metric of image pairs using the standard deviation
of the corresponding pixels’ gray level differences. However,
the most commonly used tool for measuring image similarity
is MI [14, 23]. We consider the slightly inferior performance
of MI related to uncorrected radiofrequency field inhomoge-
neity and other artifacts as described in Section 2.3.

The stability of the EM algorithm is lower than we had
expected. In addition to aforementioned sources of errors
that also destabilize MI, adjustment of the histogram, or
“windowing,” which helps radiologist reading the images,
may also affect EM. After windowing, many hyperintense
pixels stuck at the highest gray levels and their gray level dis-
tribution is no longer Gaussian. The adjusted threshold was at
the allowed maximum in 6 of 43 images whose upper thresh-
olds for isointense pixels were adjusted. In other images, the
hyperintense pixels were also too heterogeneous to allow
EM to fit a stable Gaussian for them. As a result, the adjusted
threshold was at the allowed minimum in 32 images.

We use dynamic programming as the main tool used for
detecting anatomical structures and their edges. When the
cumulative fitness values qy,zinf are the same, there may be

more than one optimal solution. Compared to the detection
of PLL and the LF, detecting the ALL appeared much more
difficult using DP. Variations of the prevertebral anatomy
may play a role. Incorporating such knowledge may improve
the segmentation accuracy for VBs and disks. It takes less
than one minute to find the midsagittal slice and only sec-
onds to segment the spinal cord because only two dimensions
were used in the searching process. Although not directly
comparable, the speed of our clinically oriented one-slice
algorithm is considerably faster than the previous one using
six dimensions [10].

We constructed two compound functions, f 7 and f 8, to
detect the edges of the spinal cord. After considering vari-
ous aspects affecting tissue contrast between the cord and
its surrounding tissues, they seemed rather robust. Within
the normal spinal canal, these functions accurately detect
the interface between the isointense spinal cord and the
hyperintense CSF region. When the CSF space disappears
as compressed by the severely stenotic canal, the same func-
tions can detect the interface between the isointense cord
and the hypointense ligaments, as illustrated in Figure 7.
However, when the width of the CSF region is minimized
to one pixel, the partial volume effect may render it isoin-
tense, resulting in false-positive results.

Based on our algorithm, used alone or combined with
others, one can develop a computer-aided diagnosis system
capable of massive screening on cervical spine diseases, par-
ticularly CSM. During the review of the automatic spinal
cord segmentation results, the human observers also evalu-
ated the severity of canal stenosis. In most patients with mod-
erate and severe stenosis, the changes in the anteroposterior
diameter of the spinal cord are limited. On the other hand,
changes in sizes of the CSF spaces are much more striking.

If the cord diameter is used as the sole parameter measured
in patients with CSM, disease severity may be underesti-
mated. Therefore, some experts advocate correlating routine
MR images to flexion-extensionMR images if the diagnosis is
in doubt [24].

There are several limitations to our algorithm that
deserve mention. On the given midsagittal MR image, we
used the spinal cord as the very first feature to be recognized
and processed. Therefore, the algorithm cannot be applied to
lower lumbar spinal levels, where the cauda equina com-
posed of multiple nerves is only a neural structure within
the canal. Although small regions of SI change within the spi-
nal cord region caused by CSM did not affect its accuracy,
our algorithm can fail when there are large cord lesions span-
ning long spinal levels. For the DP algorithm to detect the
anatomical structures, a continuous spinal canal with the
structures being aligned roughly and vertically is required.
If the canal is disrupted by trauma, tumor, or other patholo-
gies, modifications of our algorithm are required for it to
work properly. Parameters of our algorithm must be tuned
before application to other anatomical regions, such as tho-
racic and upper lumbar spines, as well as before application
to other MRI scanners.

5. Conclusion

Automatic segmentation of the spinal cord and CSF in
MR images remains a difficult task. We have presented an
automatic method of spinal cord segmentation on sagittal
T2-weighted images employing EM, DP, and region growing
algorithms. Relevant anatomical knowledge is transformed
into constraints in the algorithm enabling it to being atlas-
free. Our method is accurate and robust and requires mini-
mal human intervention. Used alone or combined with other
methods, it lays foundation for computer-aided diagnosis of
spinal diseases, particularly degenerative ones.
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