
Primary central nervous system lymphoma: advances in MRI 
and PET imaging

Prakash Ambady1,2,#, Leland S. Hu3,#, Letterio S. Politi4,5, Nicoletta Anzalone6, Ramon F. 
Barajas Jr2,7,8

1Department of Neurology, Oregon Health & Science University, Portland, OR, USA;

2Knight Cancer Institute Translational Oncology Program, Oregon Health & Science University, 
Portland, OR, USA;

3Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA;

4Department of Biomedical Sciences, Humanitas University, Milan, Italy;

5Neuroradiology Department, IRCCS Humanitas Research Hospital, Milan, Italy;

6Neuroradiology Unit, IRCCS San Raffaele Hospital and Vita e Salute University, Milan, Italy;

7Department of Radiology, Neuroradiology Section, Oregon Health & Science University, 
Portland, OR, USA;

8Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA

Abstract

Contrast enhanced magnetic resonance imaging (CE-MRI) remains the imaging modality of 

choice for initial workup, staging, and response assessment after therapy in patients with primary 

central nervous system lymphoma (PCNSL). While CE-MRI is a sensitive test to detect blood 

brain barrier (BBB) dysfunction, it does not biologically represent the true tumor burden. Current 

response assessment criteria relies heavily on two dimensional anatomical measurements on 

post contrast T1-weighted (T1W) images, as well as pre-contrast T2-weighted (T2W) imaging. 

Additional MRI features, such as diffusion-weighted imaging (DWI) and perfusion weighted 

imaging, can be routinely obtained at most centers with MRI capabilities. Emerging evidence 

supports the incorporation of these data to better define tumor physiology and provide additional 

valuable clinical tools capable of identifying high risk subgroups as well as early predictors of 
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response to therapies. Further, novel advanced molecular and pathophysiologic characterization 

of PCNSL provides insights into promising targeted therapeutic approaches. However, significant 

institutional imaging variation and inconsistent clinical trial reporting diminishes the reliability, 

reproducibility and eventual translation in day to day management of patients with PCNSL. Here 

we review established neuroimaging concepts and provide an overview of published literature 

about novel imaging techniques that may improve diagnosis and response assessments. Finally, we 

highlight the need for standardization of image acquisition, post-processing, and incorporation of 

novel imaging biomarkers in early phase PCNSL clinical trials.
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Introduction

Primary central nervous system lymphoma (PCNSL) is a rare form of extra-nodal non-

Hodgkin lymphoma (NHL) that accounts for 1–2% of all cases of NHL and 1–4% of 

all central nervous system (CNS) tumors (1,2). The incidence of PCNSL is higher in 

immunocompromised patients such as those with uncontrolled acquired immunodeficiency 

syndrome (3). The International PCNSL Collaborative Group (IPCG) defines disease 

involvement to be limited to the CNS, leptomeninges and the vitreoretinal space (4). 

Histopathology shows over 90% of PCNSL consists of perivascular aggregates of 

malignant diffuse large B-cells, with the remainder consisting of T-cell lymphomas, poorly 

characterized low-grade lymphomas, or Burkitt’s lymphomas (5). Although, histopathology 

is essential for confirmation of disease, noninvasive imaging assessment is important as 

it assists with tissue sampling, response assessment after therapy, staging, and plays a 

significant role in narrowing the differential diagnosis. Here we review established clinical 

imaging techniques and highlight emerging neuroimaging approaches that may further 

improve the management of PCNSL in immunocompetent patients.

Anatomical magnetic resonance imaging (MRI)

Gadolinium enhanced MRI remains the imaging modality of choice for the noninvasive 

assessment of CNS lesions. A majority (60–70%) of PCNSL presents as solitary 

supratentorial lesions involving the periventricular white matter. However, multifocal 

disease (30–40%) and involvement of the infra-tentorial compartment and spinal cord is 

not uncommon (6–8). Current IPCG response assessment recommendations rely heavily 

on contrast enhancement for baseline evaluation of therapeutic response. The size of 

enhancement, classically thought to represent the extent of tumor burden, is measured as 

the sum product diameter of T1 shortening on T1W-post gadolinium images (4,9). This 

is problematic in PCNSL as it is known to be a diffusely infiltrative disease, which can 

comprise components with both intact and disrupted blood brain barrier (BBB). As contrast 

enhancement serves as a sensitive test for detecting BBB disruption, this can under-represent 

true disease burden due to poor detection of the components with an intact BBB. Further, 
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agents such as corticosteroids often alter the pattern of contrast enhancement, due to 

modulation of BBB permeability, when used as part of treatment regimen or used as a 

premedication (10). Similarly, histopathological correlation of imaging in autopsy studies 

have established that contrast enhancement underestimates the true tumor burden of PCNSL 

and supports the notion of PCNSL being a whole brain disease (11).

The clinical utility of MRI lies in its noninvasive versatility, accessibility, and 

reproducibility. Typically, most centers include anatomical based T1-weighted (T1W) (with 

and without contrast) and T2-weighted (T2W) images as well as physiological imaging 

sequences such as diffusion-weighted imaging (DWI), dynamic contrast enhanced (DCE), 

or dynamic susceptibility-weighted contrast (DSC) perfusion MR as part of the imaging 

repertoire.

T1W imaging

T1W contrast enhanced MRI (CE-MRI) is typically used to clinically define the presence 

and extent of disease for initial staging, and for response assessment after therapy is 

initiated. Immunocompetent patients with PCNSL typically present with avidly enhancing 

lesions that frequently cross the corpus callosum. The complete disappearance of all 

enhancing abnormalities following induction therapy has been termed a “complete” 

radiographic response, while “progressive” disease is defined radiographically by a 25% 

increase in enhancement when compared with baseline or best response, which corresponds 

with inferior outcomes (4). These over simplified two dimensional CE-MRI based criteria 

remain the test of choice for staging and response assessment for all PCNSL patients in 

clinical practice and in most clinical trials. In this context, a notable clinical “pitfall” is to 

not account for intrinsic T1 signal that may be mistaken for residual enhancement (12). 

IPCG criteria address this unique issue by defining a special type of response, namely 

complete response unconfirmed (CRu) (4). CRu includes patients who fulfill the criteria for 

CR but (i) are on steroid therapy or (ii) have a small but persistent enhancing abnormality 

on MRI related to biopsy or focal hemorrhage. If theses lesions do not evolve with time or 

when off therapy, they can be categorized as CR in retrospect. Similarly, steroid use may 

alter the pattern of enhancement and is thought to decrease diagnostic accuracy of biopsy 

specimens (12). However, the probability of non-diagnostic biopsies after a short course of 

pre-operative steroids may indeed be very low and this risk needs to be balanced against 

clinical findings. If pre-operative steroids are necessary, a stereotactic scan can confirm 

continued presence of an enhancing lesional target prior to tissue sampling (13).

Challenges with the use of T1W CE-MRI as a marker of clinical response assessment 

includes variations in sequence parameters, timing, and dosage of MRI contrast 

administration, which are well known to impact the degree of enhancement (14–16). As 

previously mentioned, it is now widely recognized that contrast enhancement is a metric 

of BBB dysfunction and not a direct representation of tumor burden. In addition, cases of 

entirely non-enhancing CNS lymphoma have been reported which may delay diagnosis and 

impeded response assessment (17).

Further, two dimensional measurements of response assessment can be challenging in cases 

with complex, multifocal lesions. In addition, factors such as differences in slice thickness 
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and magnetic field strength need to be taken into account. This is particularly important 

when comparing to an historical data set as well in the setting of multicenter studies. In 

comparison to other CNS tumors, the inherent differences at initial presentation, natural 

history, and response to therapy, underscores the need for standardized MRI parameters for 

advancing the field of PCNSL (15,18).

T2W imaging

T2W images and fluid attenuated inversion recovery (FLAIR) sequences are routinely 

acquired during MRI examinations. Despite this, T2 signal abnormalities are not 

incorporated into the current IPCG response assessment criteria, and there is limited 

published data on the utility of this parameter in PCNSL. PCNSL frequently presents as 

iso or hypointense (compared to the cortex) lesions on T2W MRI images due to high 

cellularity that appears distinct from peritumoral edema (Figure 1) (19,20). Clinicians 

familiar with PCNSL are also aware of progressive white matter changes best seen on 

T2W MRIs, even when tumors continue to show response based on enhancement (17,21). 

The risk factors of developing these white matter changes include the elderly (age >60), 

those receiving neurotoxic chemotherapies, and those who have received prior radiation. 

Preclinical and clinical evidence suggest that impaired biopterin metabolism as well as 

accumulation of homocysteine and adenosine may be contributing to this phenomenon (22–

24). Other authors have proposed that the impact of methotrexate on the glial cells may have 

an influence and have also suggested a correlation with neurocognitive outcomes (25).

A recent retrospective report suggests over 60% of patients with high-dose methotrexate 

(HDMTX) based regimens may exhibit progressive T2 signal abnormalities (26). 

Interestingly, patients who received rituximab with methotrexate were more likely to have 

early and more extensive white matter changes compared to those that received HDMTX 

without rituximab. The clinical and prognostic implications of their findings are unclear but 

highlight the potential impact of therapeutic interventions on imaging.

Nonspecific T2 signal abnormalities are not uncommon, especially in the elderly and 

patients with comorbidities such as migraines. One retrospective study identified non-

enhancing T2-FLAIR weighted hyperintense lesions at a distance from the enhancing 

lesion(s) in 23% of patients (27). Similarly, the significance of new non-enhancing T2 

signal abnormalities for early diagnosis of disease relapse likely warrants further evaluation 

(28,29). The more recent consensus statement published on behalf of the IPCG recommends 

the acquisition of a contrast enhanced-T2W-FLAIR (CE-T2-FLAIR) sequence, in lieu of 

a contrast-enhanced T2W sequence, to be performed immediately following intravenous 

gadolinium contrast administration (30). The use of CE-T2W-FLAIR improves sensitivity 

for the detection of T1 and T2 hyperintense foci and may be most helpful in the evaluation 

of subtle lepto- and pachy-meningeal disease (30,31). Incorporation of advanced physiologic 

imaging may provide additional information in making the distinction between malignant 

and non-malignant T2 signal abnormalities.
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Physiologic MRI

Diffusion-weighed imaging

Most centers with MRI capabilities include DWI in their standard protocol and allow the 

measurement of apparent diffusion coefficient (ADC) value. ADC is a sensitive measure 

of microscopic diffusion of unbound extracellular water molecules and is an extremely 

sensitive test when used to detect cerebral ischemia (32,33). ADC is also sensitive to 

detect the reduction of extracellular water diffusion due to densely packed proliferating 

tumors such as PCNSL (Figure 1D,E) (32–36). Therefore, ADC values can be clinically 

useful in the differentiation of PCNSL from other primary brain tumors (35). The potential 

clinical utility of this parameter has been tested in several retrospective studies that 

provide compelling evidence for an inverse correlation between ADC measurements and 

tumor cellular density, with higher ADC values being an excellent pretreatment predictive 

biomarker for clinical outcomes such as progression-free survival (PFS) and overall survival 

(OS) after HDMTX based therapies (37–39). Similarly, patients with prolonged PFS and 

OS had a significant increase in post-therapeutic ADC values, and may reflect a true 

reduction in tumor burden compared to enhancing lesion size (39). In this context, other 

investigators, including a prospective phase II trial (n=52), did not find a significant 

difference in the predictive value of ADC (38–41). Like most primary brain tumors, 

intratumoral heterogeneity, susceptibility artifacts, and lack of anatomical clarity may 

dampen its predictive value in PCNSL. Nonetheless, DWI can provide useful information to 

aid in the neuroradiologic assessment of PCNSL.

Perfusion weighted imaging

MRI perfusion is an advanced technique that allows for quantitative assessment of tumor 

microvasculature. Two routinely utilized perfusion approaches are (I) T2* weighted DSC 

and (II) T1W DCE perfusion MRI. Both techniques utilize dynamic serial image acquisition 

over time before, during, and after contrast administration. DSC-MRI technique measures 

relative cerebral blood volume (rCBV) as a noninvasive imaging biomarker of tissue 

microvascular density. Meanwhile, DCE-MRI allows the measurement of the transfer 

constant (Ktrans), which is a mathematically derived value that reflects the leakage rate 

of contrast across the BBB (42,43).

DSC-MRI—Typically, more aggressive tumors (higher grade) have a higher degree of 

neoangiogenesis and are expected to have higher rCBV values (Figure 1F). However, 

retrospective evidence suggests that PCNSL patients (n=25) with low tumor rCBV values 

(<1.43) at pretherapy baseline are likely to have shorter PFS and OS compared with the 

patients with high tumor rCBV values (44). In the context of glioma, rCBV values have 

been widely studied and correlated with regards to histologic grade, prognosis, and clinical 

outcomes. In high grade gliomas, neoangiogenesis (e.g., microvascular proliferation) is 

incorporated as part of pathological grading system (5,45). As such, higher grade tumors 

typically exhibit microvascular proliferation, which frequently translates to higher rCBV 

values on DSC-MRI compared to other pathologies (46–50). However, the utility of DSC-

MRI in PCNSL remains less clear (compared to glioma literature) (51). In PCNSL, Valles et 
al. suggest that the observed correlation between rCBV and outcome may be a reflection of a 
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relative lack of tumor angiogenesis, which translates to fewer patent vessels that can deliver 

intravenous methotrexate to the tumor bed. The clinical utility of DSC-rCBV values may be 

further improved when combined with ADC values. Technical factors in the measurement of 

rCBV may also contribute to the observed correlations with clinical outcome. For instance, 

the moderate to high degree of BBB permeability in PCNSL, as evident by the avid contrast 

enhancement, may result in T1W leakage effects that underestimate rCBV values. Strategies 

such as the use of a preload dose (PLD) of gadolinium-based contrast, low flip angle, and 

mathematical leakage correction may mitigate these confounding effects (52–54). In this 

context, the use of alternate investigational MR contrast agents such as large molecular 

weight ultra-small superparamagnetic iron oxide (USPIO) nanoparticles may provide an 

alternative to measuring tumor microvasculature, without the need for leakage correction 

(55,56).

DCE-MRI—Among all DCE-MRI parameters, Ktrans has most consistently demonstrated its 

value in distinguishing differential diagnoses with higher Ktrans values noted in lymphoma 

when compared to other primary and metastatic tumors (57–60). A retrospective study 

(n=18) in immunocompetent PCNSL patients by Hatzoglou et al. showed that DCE-MRI 

parameters might also serve as predictive biomarkers (41). Here, the authors validated the 

work by Valles et al. by demonstrating that lower Ktrans values correlate with increased 

risk for rapid progression. Ktrans was prospectively evaluated in seven patients as part 

of a larger prospective phase II study evaluating a HDMTX based poly-chemotherapy 

regimen preceded by administration of NGR-human tumor necrosis factor (NGR-hTNF), 

a TNF-α derivative capable of targeting tumor blood vessels and increasing endothelial 

permeability (61). Investigators demonstrate an increased Ktrans value after a second dose, 

which correlated with cerebrospinal fluid (CSF) concentration of drug and an increased 

uptake of 99mTc-DTPA. This study suggests the utility of Ktrans as a noninvasive biomarker 

for tumor permeability in PCNSL. Another retrospective study (n=18) comparing ADC to 

DCE-MRI suggest that the enhancing component of primary CNS lymphoma was found 

to have significantly lower mean and relative ADC than the enhancing component of 

glioblastoma (GBM), but not significantly different relative 90th percentiles for Ktrans values 

(62). In this study, authors note that ADC was superior to DCE-MRI in differentiating 

primary CNS lymphoma from GBM. Other investigators have suggested the use of initial 

area under the curve (IAUC) derived from DCE-MRI which has better reproducibility when 

evaluated with ADC may better distinguish between PCNSL and atypical GBM (63).

Small sample sizes and inconsistent acquisition parameters along with relatively poor 

image resolution, susceptibility artifacts from bone, calcification, and blood products 

especially after biopsies and need for post processing may define ultimate clinical utility of 

perfusion imaging. Since perfusion imaging is already a standard sequence at most tertiary 

centers, investigators should strongly consider prospective collection and publishing these 

parameters when reporting prospective studies. Nonetheless, there remains limited data on 

DCE correlations with treatment response and outcome, and further studies are likely needed 

to help confirm the results of these previous studies.

Ambady et al. Page 6

Ann Lymphoma. Author manuscript; available in PMC 2022 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nuclear imaging and positron emission tomography (PET)

Physiologic differences between lymphoma and infectious lesions such as toxoplasmosis 

in the brain are a key aspect of pre-biopsy workup in CNS lymphoma patients with 

HIV. Noninvasive functional nuclear imaging modalities such as single-photon emission 

computed tomography (SPECT) and PET are being evaluated with mixed results (64–66). 

A meta-analysis of 26 manuscripts comparing SPECT to PET suggest that PET may have 

higher sensitivity and specificity than SPECT in this scenario. However, it is noted that 

studies using a quantitative approach tend to have higher sensitivity than those using a 

qualitative approach (66). Their role in the workup of immunocompetent patients is less 

clear.

Fluorodeoxyglucose (FDG)-PET

Radiolabeled glucose analog 18F-FDG is actively transported across the BBB and 

phosphorylated within cells; its uptake reflects the tissue glucose metabolism and is usually 

high in high-grade tumors and relatively low in low-grade tumors. PET imaging with the 

FDG has become the standard study for staging systemic NHL (67,68). There is increasing 

evidence to suggest that FDG-PET imaging may be more sensitive than a conventional 

CT of the chest, abdomen, and pelvis as well as bone marrow biopsies for detecting 

systemic disease in PCNSL (69). Recent prospective studies suggest a significantly higher 

FDG-uptake in CNS lymphomas (n=45) compared to other histologic diagnoses (n=23) 

(70). Similarly, other authors have suggested that metabolic PET imaging with agents such 

as FDG and 11C-methionin shows promise as a predictive biomarker and early detection 

of recurrences (71,72). This modality may be limited by availability in the community 

and cost, in addition to other factors such as timing of administration and concomitant 

medications (steroids, anesthetics etc.). The value of FDG-PET in the diagnosis and/or 

response assessment is investigational at this time, but offers significant value in early phase 

biomarker driven clinical trials.

Novel MR contrast agents

CE-MR provides a noninvasive tool for the assessment of BBB permeability. Gadolinium 

based MRI contrasts remain the clinical agent of choice for monitoring most CNS 

pathologies. More recently, there is an interest to develop new molecularly targeted 

contrast agents or agents capable of detecting pathological changes in the local tumor 

microenvironment. Ferumoxytol, a superparamagnetic iron-oxide nanoparticle (SPION), is 

an FDA approved medication for intravenous iron supplementation and has received orphan 

drug designation as an MRI contrast agent (56). In addition to being approved for use in 

patients with poor renal functions, due to its large molecular weight ferumoxytol is also 

used as a blood pool agent in the early phase (up to 24 hrs) after administration, where it 

can be used to develop high resolution rCBV maps using the steady state technique (73). 

Steady state imaging is not feasible with conventional gadolinium contrasts at delayed time 

points (over 24–48 h) after administration (56). Contrast enhancement is found on various 

clinically used T1W MRI sequences, which improves border delineation, allows for the 

assessment of lesion internal morphology, and may be helpful in diagnosing and monitoring 
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PCNSL (55). Elegant preclinical and clinical work by the same group demonstrates that 

MR signal can be co-localized to areas with activated macrophage and astrocytes (74–76). 

In a small study, 26 patients with PCNSL who underwent ferumoxytol MRI went on to 

get tissue biopsy 24–72 hrs after administration. Fixed biopsy tissues were stained by 

immunohistochemical staining for the dextran coating on the SPION (Dx1 staining) and 

Perls’ stain. Hypointensity on delayed SPION T2W scans demonstrated that iron that is 

predominantly concentrated in macrophages and more diffused and variable in and around 

lymphoma cells suggesting that SPION imaging may be a useful biomarker to identify 

activated macrophages in PCNSL and may have important diagnostic, prognostic, and 

therapeutic implications (77). The relevance of this approach in PCNSL lies in the fact 

that unlike Gadolinium, ferumoxytol allows evaluation of the tumor microenvironment 

(vascularity and local innate immune response). Further evaluation in the context of 

emerging immunotherapy trials in PCNSL is needed.

Summary

Anatomical brain imaging remains a valuable tool that can be easily incorporated to 

existing diagnostic and response assessment criteria in PCNSL. However, Institutional 

imaging variation and inconsistent clinical trial reporting diminishes the reliability and 

reproducibility of most of these tools. In an attempt to standardize imaging practices and set 

biologically based recommendations for the use of MRI and PET imaging in the diagnosis 

and monitoring PCNSL, a guideline statement was recently published by the International 

Primary CNS Lymphoma Collaborative Group (IPCG) (30). This manuscript provides 

detailed imaging parameters that will facilitate the adoption of these recommendations in 

both research and clinical settings. To enhance clinical feasibility, authors have developed 

both “ideal” and “minimum standard” protocols that will facilitate widespread adoption. 

Table 1 summarizes the advantages and disadvantages of various imaging parameters 

discussed in this review.

Conclusions

CE-MRI remains the imaging modality of choice for diagnosis and monitoring patients 

with PCNSL. MR sequences such as DWI, perfusion, and other novel metabolic imaging 

techniques such as PET and SPECT are capable of providing additional biological 

information not capable with CE-MRI alone. These imaging biomarkers may better assess 

therapeutic response and provide prognostic information about clinical outcomes. High 

degree of reproducibility as well as better estimates of their sensitivity and specificity is 

essential for clinical implementation of advanced MRI parameters. However, these imaging 

metrics require further prospective evaluation and consideration in prospective clinical trial 

settings.
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Figure 1. 
Sixty-six-year-old male patient with primary CNS lymphoma. (A) T2W image shows a 

relatively T2W hypointense mass (yellow arrowheads) centered along the midline within 

the corpus callosum, which is distinct from the hyperintensity of the extensive surrounding 

non-tumoral vasogenic edema (white arrows). The mass demonstrates homogeneous diffuse 

contrast enhancement on post-contrast T1W imaging (B, yellow arrowheads), which is 

confirmed on T1W pre-contrast imaging (C). There is an additional remote enhancing lesion 

(B, red arrows), as these patients can often present with multi-focal disease. On DWI (D,E), 

the mass shows characteristic restricted diffusion seen as bright signal on diffusion trace 

imaging (D, yellow arrowhead) and confirmed as hypointensity on maps of ADC (E, yellow 

arrowheads). This has been attributed to paucity of extracellular fluid relative to highly 

cellular content of these tumors. Of note, the ADC values of non-tumoral vasogenic edema 

are seen as hyperintense regions on ADC maps, presumably due to greater proportion of 

extracellular fluid relative to tissue cellularity (E, white arrows). (F) On DSC-MRI maps 

of rCBV, the mass demonstrates a relatively homogeneous pattern of moderately elevated 

(>2.0) rCBV (yellow arrowheads). CNS, central nervous system; T2W, T2-weighted; T1W, 

T1-weighted; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; DSC, 

dynamic susceptibility contrast; MRI, magnetic resonance imaging; rCBV, relative cerebral 

blood volume.
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