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Fibrinogen and hemoglobin predict 
near future cardiovascular events 
in asymptomatic individuals
Moritz Lassé1*, Anna P. Pilbrow1, Torsten Kleffmann2, Elin Andersson Överström1, 
Anne von Zychlinski3, Christopher M. A. Frampton1, Katrina K. Poppe4, 
Richard W. Troughton1, Lynley K. Lewis1, Timothy C. R. Prickett1, Christopher J. Pemberton1, 
Arthur M. Richards1,5 & Vicky A. Cameron1

To identify circulating proteins predictive of acute cardiovascular disease events in the general 
population, we performed a proteomic screen in plasma from asymptomatic individuals. A “Discovery 
cohort” of 25 individuals who subsequently incurred a cardiovascular event within 3 years (median 
age = 70 years, 80% male) was matched to 25 controls remaining event-free for > 5 years (median 
age = 72 years, 80% male). Plasma proteins were assessed by data independent acquisition mass 
spectrometry (DIA-MS). Associations with cardiovascular events were tested using Cox regression, 
adjusted for the New Zealand Cardiovascular Risk Score. Concentrations of leading protein candidates 
were subsequently measured with ELISAs in a larger (n = 151) independent subset. In the Discovery 
cohort, 76 plasma proteins were robustly quantified by DIA-MS, with 8 independently associated with 
cardiovascular events. These included (HR = hazard ratio [95% confidence interval] above vs below 
median): fibrinogen alpha chain (HR = 1.84 [1.19–2.84]); alpha-2-HS-glycoprotein (also called fetuin 
A) (HR = 1.86 [1.19–2.93]); clusterin isoform 2 (HR = 1.59 [1.06–2.38]); fibrinogen beta chain (HR = 1.55 
[1.04–2.30]); hemoglobin subunit beta (HR = 1.49 [1.04–2.15]); complement component C9 (HR = 1.62 
[1.01–2.59]), fibronectin isoform 3 (HR = 0.60 [0.37–0.99]); and lipopolysaccharide-binding protein 
(HR = 1.58 [1.00–2.49]). The proteins for which DIA-MS and ELISA data were correlated, fibrinogen and 
hemoglobin, were analyzed in an Extended cohort, with broader inclusion criteria and longer time to 
events, in which these two proteins were not associated with incident cardiovascular events. We have 
identified eight candidate proteins that may independently predict cardiovascular events occurring 
within three years in asymptomatic, low-to-moderate risk individuals, although these appear not to 
predict events beyond three years.

Abbreviations
DIA-MS	� Data independent acquisition mass spectrometry
HR	� Hazard ratio
CVD	� Cardiovascular disease
IHD	� Ischemic heart disease
FRS	� Framingham risk score
NZ	� New Zealand
ECG	� Electrocardiograph
PREDICT-1°	� New Zealand primary prevention equations
QRISK3	� United Kingdom prediction algorithm for cardiovascular disease
UK	� United Kingdom
TC	� Total cholesterol
HDL	� High-density lipoprotein
LDL	� Low-density lipoprotein
HbA1C	� Glycated hemoglobin

OPEN

1Department of Medicine, Christchurch Heart Institute, University of Otago, Christchurch, New 
Zealand. 2Department of Biochemistry, University of Otago, Dunedin, New Zealand. 3Southern Community 
Laboratories Ltd, Dunedin, New Zealand. 4School of Population Health, Faculty of Medical and Health Sciences, 
University of Auckland, Auckland, New Zealand. 5Cardiovascular Research Institute, National University of 
Singapore, Singapore, Singapore. *email: moritz.lasse@otago.ac.nz

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-84046-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4605  | https://doi.org/10.1038/s41598-021-84046-7

www.nature.com/scientificreports/

BNP	� B-type natriuretic peptide
NT-proBNP	� Amino-terminal pro-hormone B-type natriuretic peptide
TNT	� Cardiac troponin T
TNI	� Cardiac troponin I
HF	� Heart failure
MI	� Myocardial infarction
ELISA	� Enzyme-linked immunosorbent assay
Hvols	� Canterbury Healthy Volunteers cohort
hsTnI	� High-sensitivity Troponin I
SWATH-MS	� Sequential windowed acquisition of all theoretical fragment ion spectra mass spectrometry
IQR	� Interquartile range
BMI	� Body mass index
SD	� Standard deviation
SBP	� Systolic blood pressure
BP	� Blood pressure
eGFR	� Estimated glomerular filtration rate
ACS	� Acute coronary syndrome
CoD	� Cause of death
STEMI	� ST-elevation myocardial infarction
NSTEMI	� Non-ST-elevation myocardial infarction
CHD	� Coronary heart disease
Hb	� Hemoglobin
HBA	� Hemoglobin alpha chain
HBB	� Hemoglobin beta chain
FIB	� Fibrinogen
FIBA	� Fibrinogen alpha chain
FIBB	� Fibrinogen beta chain
FIBG	� Fibrinogen gamma chain

Cardiovascular disease (CVD) is a leading cause of death and disability worldwide1. In 2015 the prevalence of 
CVD and number of CVD-related deaths was estimated at 423 million and 18 million respectively, with ischemic 
heart disease (IHD) and stroke contributing the most to loss of age-standardized disability-adjusted life years1. 
Determining an individual’s risk for developing CVD is commonly based on a set of key variables, including 
age, gender, ethnicity, blood pressure, diabetes mellitus, smoking and lipid status. These established risk factors 
for CVD have been incorporated into risk prediction models such as the Framingham risk score (FRS), which 
is used to predict CVD incidence within 10 years2,3. Subsequent strategies to improve CVD risk prediction, 
such as the updated 5-year New Zealand (NZ) primary prevention equations, PREDICT-1°, have incorporated 
additional variables including the NZ Deprivation score (an area-based measure of socioeconomic deprivation), 
atrial fibrillation confirmed by electrocardiograph (ECG) and use of blood-pressure-lowering, lipid-lowering, 
and antithrombotic drugs in the 6 months before the index assessment4. The QRISK3 risk prediction model 
implemented in the UK takes into account 22 risk variables to estimate 10-year CVD risk, with the additional 
factors being chronic kidney disease, variability of systolic blood pressure, migraine, treatment with corticos-
teroids, systemic lupus erythematosus, atypical antipsychotic medication, severe mental illness, HIV or AIDS, 
and erectile dysfunction5.

While risk prediction models such as these work well on the population level, they suffer from poor dis-
crimination at the level of the individual. It remains difficult to predict which individuals within any broad risk 
stratum will subsequently experience a CVD event6. CVD events still occur frequently in people predicted to be 
at low-to-moderate risk6. Addition of endogenous biomarkers to CVD risk scores may refine risk stratification 
for the individual. The only circulating biomarkers routinely incorporated in current CVD risk prediction mod-
els are lipids i.e. total cholesterol (TC), high-density lipoprotein (HDL) or their ratio (TC/HDL) and calculated 
low-density lipoprotein (LDL). Additional biomarker molecules used to diagnose comorbidities in conjunction 
with CVD risk estimation include glycated hemoglobin (HbA1C) for diabetic status and creatinine for renal 
status7,8. Plasma concentrations of B-type natriuretic peptide (BNP), its amino-terminal pro-hormone congener 
(NT-proBNP) and the cardiac troponins T and I (TNT, TNI) are key biomarkers in the clinical diagnosis of heart 
failure (HF) and myocardial infarction (MI), respectively9–12. Both markers have also been shown to provide pow-
erful information about CVD events in asymptomatic community populations, with modest elevations in these 
markers being independently predictive of atherosclerotic CVD, HF, fatal coronary events and total mortality13–15.

However, despite some improvement in risk prediction algorithms over the past decades, traditional risk fac-
tor profiling fails to identify many individuals at impending risk of an acute CVD event, highlighting the need 
for new strategies for risk prediction in the general population. We sought to identify novel circulating protein 
markers associated with incident CVD events in asymptomatic individuals by performing an unbiased proteom-
ics screen using data independent acquisition mass spectrometry (DIA-MS), followed up in an independent 
cohort using enzyme-linked immunosorbent assays (ELISA).

Methods
Study participant recruitment and sample collection.  Plasma samples for this case–-control study 
(n = 50 for the Discovery cohort and n = 151 for the Extended cohort) were selected from the Canterbury Healthy 
Volunteers cohort (HVols, n = 3,358). HVols participants were randomly selected from the Canterbury (New 
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Zealand) electoral rolls. Participants were screened for prior hospital admissions and cardiac diagnoses. CVD 
risk factors, anthropometric measures, personal health information and family history of cardiovascular events 
were recorded for each participant. CVD risk was estimated using both FRS and PREDICT-1° equations3,4. 
Plasma samples were biobanked at − 80  °C and subsequently assayed for high-sensitivity Troponin I (hsTnI) 
and NT-proBNP. Clinical events of participants have been continuously documented and updated 6-monthly 
(median follow-up 9.2 years). The study conformed to the Declaration of Helsinki and was approved by the New 
Zealand Health and Disability Ethics Committee (Reference CTY/01/05/062). All participants gave written, 
informed consent.

Patient selection for DIA‑MS discovery study.  For the initial Discovery arm of the study using data 
independent acquisition mass spectrometry (DIA-MS), a subset of HVols aged < 80 years, BMI < 30 kg/m2, sys-
tolic BP < 150 mmHg, without diabetes and non-smokers, who subsequently experienced an acute CVD event 
within 3  years were identified (n = 25 cases, Fig.  1). Incident ischemic CVD events were defined as non ST-

HVols Cohort
n=3,358 people with 
n=524 people incurring 
subsequent CVD events 
during follow-up.

(Median follow-up of ~9 
years) Extended Cohort

ELISA (n=151)

Gender: male or female
BMI: < 35
Age: < 80 years old
Systolic BP: < 160 mmHg
Current Smoker: No
Diabetes T1/T2: No
Plasma available: Yes
In Discovery: No

Discovery Cohort
DIA-MS & ELISA (n=50)

Gender: male or female
BMI: < 30
Age: < 80 years old
Systolic BP: < 150 mmHg
Current Smoker: No
Diabetes T1/T2: No
Plasma available: Yes

CVD cases 
(n=25)
acute CVD event < 3 
years of recruitment

No CVD controls 
(n=25 matched)
No hospital admission or 
deaths > 6 years of 
recruitment

CVD cases 
(n=76)
acute CVD event < 5 
years of recruitment

No CVD controls 
(n=75 matched)
No hospital admission  or 
deaths > 7 years of 
recruitment 

Figure 1.   Sample Selection Criteria. The Canterbury Healthy Volunteers cohort (HVols) is a community-based 
cohort of 3358 individuals of middle to older age with no previously diagnosed cardiovascular disease (CVD). 
The Discovery cohort included 25 participants who subsequently incurred an acute CVD event within 3 years 
and 25 who remained event-free for at least 5 years. The Extended cohort was an independent sample of 76 
HVols who incurred an acute CVD event within 5 years and 75 controls who remained event-free for at least 
7 years. Figure generated using Microsoft PowerPoint 2019.
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elevation myocardial infarction, ST-elevation myocardial infarction, ischemic stroke, transient ischemic attack, 
unstable angina, other angina or death due to coronary heart disease. Matched controls (n = 25) meeting the 
same criteria but without incurring any CVD events for at least 5 years from recruitment were selected using 
the R package MatchIt16 with “nearest” matching for age, BMI, and systolic blood pressure, and exact matching 
for gender.

Patient selection for ELISA extended cohort study.  For the Extended arm of the study, a separate 
subset of healthy volunteers aged < 80 years, BMI < 35 kg/m2, systolic BP < 160 mmHg, without diabetes and non-
smokers, who experienced an acute CVD event within 5 years were selected (n = 76 cases, Fig. 1). Criteria for the 
Extended arm had to be relaxed compared with the Discovery Cohort, particularly the time to first event, due to 
limited sample numbers. Matched controls (n = 75) were selected as described above.

DIA‑MS.  To mitigate batch effects a randomized blocked experiment design was used with equal numbers of 
cases and controls processed at the same time. Plasma was thawed on ice and centrifuged to remove particulate 
matter. The detailed sample preparation and data analysis methods are outlined in supplementary information. 
In brief, plasma (2 µL) was denatured (Supplementary Table 1) and hydrolyzed with trypsin. Tryptic peptides 
were C18 purified and then spiked with retention time calibration peptides to correct for relative retention time 
differences between runs (Escher et al. 2012). DIA-MS of the 50 individual, trypsinized plasma samples was 
undertaken using an AB Sciex 5600 + TripleTOF mass spectrometer coupled to an ekspert nanoLC 415 system 
(eksigent, AB Sciex, Dublin, CA, USA). DIA-MS data were compared to a spectral library generated from pooled 
samples. Data analysis was carried out with AB Sciex software (SWATH Acquisition MicroApp (version 2.0.0.1) 
in PeakView (version 2.2) Software) and R (version R-3.6.1) and RStudio (version 1.2.5001)17,18.

Immunoassays.  The concentrations of three leading candidate plasma proteins were measured using com-
mercial ELISA kits, including fetuin A (DFTA00 Human Fetuin A Quantikine ELISA Kit, R&D Systems, Minne-
apolis, MN, USA), hemoglobin (AB157707 Human Hemoglobin ELISA Kit, Abcam, Cambridge, MA, USA) and 
fibrinogen (AB208036 Human Fibrinogen SimpleStep ELISA Kit, Abcam), with each assay performed accord-
ing to manufacturer’s instructions. All samples were run in duplicate, using a randomized, blocked experiment 
design to minimize bias due to inter-plate variability.

Protein concentration was calculated from a calibration curve using StatLIA (Brendan Technologies, Inc, 
Carlsbad, CA, USA)19. Samples were re-analyzed if the coefficient of variation between duplicates was ≥ 20%.

Ethics approval and consent to participate.  The study conformed to the Declaration of Helsinki and 
was approved by the New Zealand Health and Disability Ethics Committee (Reference CTY/01/05/062). All 
participants gave written, informed consent.

Results
A flow chart describing participant selection criteria is shown in Fig. 1. The baseline characteristics of participants 
in the Discovery and Extended arms of the study are summarized in Table 1. There were no significant differences 
in baseline characteristics or cardiovascular risk factors between cases and controls in either the Discovery or 
the Extended sub-study, with the exception of hsTNI, which was higher in cases compared with controls in the 
Extended cohort (p = 0.015).

Plasma mass spectrometric analysis.  In the Discovery cohort, the 5-year risk PREDICT-1° score did 
not correspond to time-to-CVD-event (Cox model HR = 1.11 [0.79–1.56], p = 0.53), reflecting that the score 
alone was not able to distinguish those with subsequent CVD events from those who remained event free in 
this low-moderate risk sample. In the Discovery cohort, 76 proteins were robustly quantified in human plasma 
by DIA mass spectrometry. Of these, eight proteins/subunits were associated with CVD events independent of 
the PREDICT-1° score (Supplementary Table 2). The hazard ratios of these associations were (HR = hazard ratio 
[95% confidence interval] above vs below median): fibrinogen alpha chain (HR = 1.84 [1.19–2.84]); alpha-2-HS-
glycoprotein (fetuin A) (HR = 1.86 [1.19–2.93]); clusterin isoform 2 (HR = 1.59 [1.06–2.38]); fibrinogen beta 
chain (HR = 1.55 [1.04–2.30]); hemoglobin subunit beta (HR = 1.49 [1.04–2.15]); complement component C9 
(HR = 1.62 [1.01–2.59]), fibronectin isoform 3 (HR = 0.60 [0.37–0.99]); and lipopolysaccharide-binding protein 
(HR = 1.58 [1.00–2.49]), (all p unadjusted < 0.05, Fig. 2). On average, protein levels differed 1.2-fold (range 1.1- 
to 1.3-fold) between cases who had an event compared with controls who remained event free (Supplementary 
Table 2). Fibrinogen alpha chain, fetuin A, clusterin isoform 2 and hemoglobin were also independent of BNP, 
NT-proBNP, and hsTNI in Cox models (Supplementary Tables 3 & 4). Fetuin A and clusterin isoform 2 were 
highly correlated to one another (Supplementary Fig. 1) leading to the final choice of candidates, fibrinogen, 
fetuin A and hemoglobin, for further analysis via ELISA assay.

ELISA versus DIA‑MS assessment.  The concentration of fibrinogen, hemoglobin and fetuin A in the 
same 50 samples from the Discovery arm were also measured using commercially-available ELISAs (Fig. 3). 
Limits of detection for DIA-MS were applied on each of the detected 9576 ions using IQR guided lower-end cut-
offs (see Supplementary Methods). Our stringent quality control also included CV filtering of ions resulting in 
1288 high-confidence ions for relative quantification with > 97% of these ions being detectable in each of the 50 
people of the Discovery cohort. The coefficient of variation between duplicates measured by ELISA was ≤ 20% 
with all samples diluted appropriately to lie within the range of the standard curves. DIA mass spectrometry and 
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ELISA methods were strongly correlated for hemoglobin (Spearman correlation r = 0.76 and 0.70, p < 0.05 for the 
hemoglobin alpha chain and the hemoglobin beta chain, respectively), and moderately correlated for fibrinogen 
(Pearson correlation r = 0.45, r = 0.45, r = 0.50, p < 0.05 for fibrinogen chains alpha, beta and gamma). However, 
no correlation was observed between DIA-MS and ELISA quantitation for fetuin A (Pearson correlation r = 0.15, 
p = 0.30). Therefore, we took both hemoglobin and fibrinogen (but not fetuin A) as candidates to validate our 
findings in the larger Extended cohort using ELISA assays.

Extended cohort.  There were statistically significant differences between the risk factor profiles of the 
Extended and the Discovery cohorts, including a longer duration between recruitment and first CVD event 
(median [IQR] = 1178.0 [791.2, 1432.5] days in the Extended cohort versus 411.0 [244.0, 748.0] days in the 
Discovery cohort, p < 0.001) and a higher body mass index (BMI) (26.4 ± 3.4 kg/m2 in Extended cohort versus 

Table 1.   Patient characteristics in the Discovery (n = 50) and Extended (n = 151) cohorts. SD standard 
deviation, BMI body mass index, SBP systolic blood pressure, BP blood pressure, HDL high density 
lipoprotein, eGFR estimated glomerular filtration rate, BNP B-type natriuretic peptide, NT-proBNP amino-
terminal pro-hormone B-type natriuretic peptide, hsTNI high-sensitivity Troponin I, ACS acute coronary 
syndrome, PREDICT-1° NZ Primary Prevention Equations, CoD cause of death, MI myocardial infarction, 
STEMI ST-Elevation Myocardial Infarction, NSTEMI Non-ST-elevation myocardial infarction, CHD 
coronary heart disease. Where missing, values for the total cholesterol/HDL ratio (1 missing in Discovery 
cohort and 12 missing in Extended cohort) were set to the median value of the entire Hvols cohort 
(n = 3358), total cholesterol/HDL (women) = 3.82, total cholesterol/HDL (men) = 4.46. The NZ Deprivation 
quintile information was not available for this cohort and set to 3 for both men and women to calculate the 
PREDICT-1° Risk Score. Table generated using the ‘tableone’ (https​://githu​b.com/kaz-yos/table​one/) package 
within R/RStudio17,18,39.

Variable

Discovery cohort Extended cohort Discovery versus Extended

Controls Cases p value controls cases p value p value

n 25 25 75 76

Age , years (mean (SD)) 67.6 (9.9) 68.3 (10.8) 0.830 69.1 (6.2) 69.3 (7.0) 0.893 0.314

Gender = Male (%) 20 (80) 20 (80) 1 59 (79) 60 (79) 1 1

Ethnicity (%) 1 1 0.685

 European 24 (96) 25 (100) 74 (99) 74 (97)

 Māori 0 (0) 0 (0) 1 (1) 0 (0)

 Other 1 (4) 0 (0) 0 (0) 2 (3)

Smoker = yes (%) 0 (0) 0 (0) NA 0 (0) 0 (0) NA 1

BMI [kg/m2] (mean (SD)) 25.4 (2.3) 24.8 (3.1) 0.412 26.3 (3.4) 26.5 (3.4) 0.847 0.014

SBP [mmHg] (mean (SD)) 133.0 (14.3) 132.1 (15.9) 0.831 135.1 (12.4) 135.4 (13.2) 0.870 0.219

History of Hypertension = yes (%) 8 (32) 11 (44) 0.560 25 (33) 34 (45) 0.181 1

BP lowering Medications = yes (%) 7 (28) 9 (36) 0.762 24 (32) 32 (42) 0.264 0.631

History of Diabetes = yes (%) 0 (0) 0 (0) NA 0 (0) 0 (0) NA 1

Total cholesterol/HDL (mean (SD)) 4.4 (1.0) 4.7 (1.1) 0.342 4.6 (1.2) 4.6 (1.2) 0.966 0.700

History of High Cholesterol = yes 
(%) 5 (20) 7 (28) 0.741 20 (27) 29 (39) 0.164 0.329

eGFR [mL/min/1.73m2] (mean 
(SD)) 72.2 (10.3) 72.9 (14.0) 0.851 69.8 (9.4) 72.5 (11.9) 0.140 0.472

BNP [ng/L] (median [IQR]) 22.1 [13.6, 30.4] 23.6 [16.3, 31.2] 0.808 21.5 [10.9, 29.3] 19.6 [12.6, 31.2] 0.656 0.145

NT-proBNP [ng/L] (median [IQR]) 146.3 [100.6, 292.8] 204.7 [93.9, 319.7] 0.438 176.1 [90.5, 258.5] 142.6 [96.8, 294.9] 0.523 0.463

hsTNI [ng/L] (median [IQR]) 2.5 [1.8, 5.2] 2.7 [1.9, 6.3] 0.554 2.8 [1.8, 4.1] 3.4 [2.4, 7.6] 0.015 0.513

CVD event type (%) NA NA 0.479

Death due to MI or CHD 0 (0) 3 (12) 0 (0) 3 (4)

STEMI 0 (0) 2 (8) 0 (0) 10 (13)

NSTEMI 0 (0) 7 (28) 0 (0) 24 (32)

Unstable Angina 0 (0) 2 (8) 0 (0) 3 (4)

Other Angina 0 (0) 2 (8) 0 (0) 13 (17)

Ischemic Stroke 0 (0) 5 (20) 0 (0) 17 (22)

Transient Ischemic Attack 0 (0) 4 (16) 0 (0) 6 (8)

Days to first event (median [IQR]) NA 411.0 [244.0, 748.0] NA NA 1178.0 [791.2, 1432.5] NA  < 0.001

Framingham Risk Score 10-year risk 
(median [IQR]) 21.8 [15.9, 26.9] 24.2 [15.0, 30.3] 0.646 24.6 [15.8, 34.0] 25.4 [18.7, 31.9] 0.810 0.271

PREDICT-1° Risk Score 5-year risk 
(median [IQR]) 10.2 [7.2, 12.0] 10.8 [8.2, 14.4] 0.455 10.3 [6.7, 14.2] 10.6 [7.0, 14.2] 0.437 0.747

https://github.com/kaz-yos/tableone/


6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4605  | https://doi.org/10.1038/s41598-021-84046-7

www.nature.com/scientificreports/

1.84 (1.19−2.84)

1.55 (1.04−2.30)

1.86 (1.19−2.93)

0.64 (0.40−1.01)

1.46 (1.00−2.13)

1.59 (1.06−2.38)

1.52 (0.98−2.36)
1.51 (0.98−2.34)

0.60 (0.37−0.99)

1.49 (1.04−2.15)
1.62 (1.01−2.59)

1.47 (0.98−2.22)

1.58 (1.00−2.49)

1.39 (0.94−2.04)

1.42 (0.93−2.17)

1.32 (0.89−1.95)

1.34 (0.90−2.02)

1.32 (0.95−1.84)

0.75 (0.49−1.16)

1.28 (0.91−1.82)

1.33 (0.93−1.90)

1.32 (0.91−1.91)

1.30 (0.86−1.95)

1.34 (0.87−2.05)

0.77 (0.48−1.23)

1.32 (0.89−1.96)

1.33 (0.84−2.09)

0.78 (0.51−1.19)

1.12 (0.77−1.65)

1.41 (0.94−2.13)

1.16 (0.78−1.73)

0.80 (0.52−1.23)
0.79 (0.51−1.22)

1.18 (0.79−1.76)

1.29 (0.84−1.98)

1.17 (0.79−1.73)

0.86 (0.58−1.29)

1.17 (0.76−1.78)

0.77 (0.49−1.20)

1.19 (0.81−1.73)

1.12 (0.73−1.70)

1.18 (0.80−1.73)

1.12 (0.75−1.67)

0.87 (0.56−1.34)

1.12 (0.77−1.62)

0.91 (0.60−1.40)

0.96 (0.59−1.54)

1.16 (0.78−1.72)

0.90 (0.62−1.32)

1.19 (0.76−1.88)

1.23 (0.74−2.05)

1.04 (0.69−1.56)

1.21 (0.80−1.83)

1.08 (0.71−1.67)

1.04 (0.70−1.54)

1.11 (0.77−1.62)

0.93 (0.63−1.37)
0.94 (0.64−1.38)

0.98 (0.66−1.45)

1.14 (0.76−1.71)

0.92 (0.60−1.40)

0.92 (0.62−1.37)

1.18 (0.74−1.88)

1.10 (0.75−1.62)

0.98 (0.65−1.48)

0.95 (0.61−1.49)

1.09 (0.72−1.65)

0.92 (0.61−1.39)

1.13 (0.74−1.72)

1.07 (0.71−1.61)

1.01 (0.67−1.53)

0.99 (0.67−1.46)

0.95 (0.62−1.47)

1.04 (0.68−1.58)

1.00 (0.68−1.48)

0.93 (0.62−1.38)

C4BPA
PGRP2 i.2

LUM
ANT3

KV320
IGHG1
AACT
PROS
TTHY
CO6

ITIH2
ITIH1
THRB
PEDF
A1AT

APOB
GELS
PLMN
IGHM
KNG1

APOC1
APOA4

TETN
APOC2

HPTR
A1BG
C1QC
A2MG
KAIN

SAMP
FA12
ITIH4
TRFE

HV372
CO3

HEMO
CO8G
CERU
A2AP
CFAB
HEP2
CO8B

KV311
VTDB i.3

PHLD
GPX3

APOC3
KLKB1
APOE
ANGT

HBA
LCAT
FIBG
CO5

C1QB
A1AG1
A1AG2
APOL1
LV321

CFAI
CFAH

C1R
PON1

HV307
VTNC

C1S
HPT

HV349
LBP

FINC i.3
CO9
HBB
FIBB

CLUS i.2
FETUA

FIBA
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Cox Hazard Ratio of z−score normalised protein intensity, 

             adjusted for PREDICT 5−year CVD risk score
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25.1 ± 2.7 kg/m2 in the Discovery cohort, p = 0.01) (Table 1). As was the case in the Discovery cohort, the PRE-
DICT-1° score alone did not contribute significantly to risk prediction in our Cox models in the Extended cohort 
(HR = 1.16 [0.86–1.57], p = 0.33). In the Extended cohort, concentrations measured by ELISA of neither hemo-
globin nor fibrinogen were significantly different between cases and controls. The measured hemoglobin con-
centration (median [IQR]) in controls was 141.5 µg/mL [103.3, 317.3] compared with 148.3 µg/mL [78.3, 304.0] 
in cases, p = 0.537. The fibrinogen concentration was 2.2 mg/mL [1.9, 2.6] in controls compared with 2.1 mg/
mL [1.8, 2.4] in cases p = 0.099. When included in Cox-proportional hazard models, adjusted for PREDICT-1° 
5-year CVD risk, neither fibrinogen nor hemoglobin showed significant associations with the time-to-event in 
Cox models (fibrinogen (HR = 0.86 [0.68–1.10]), p = 0.37 and hemoglobin (HR = 0.92 [0.73–1.15]), p = 0.59).

Discussion
Biomarkers to improve prediction.  This study provides the first proof of principle that a DIA-MS pro-
teomic approach can be used to identify additional circulating plasma biomarkers to improve current popula-
tion-based screening approaches to predict future CVD events in asymptomatic individuals. The absence of pre-
dictive value of the PREDICT-1° score on its own in this low-to-moderate risk population sample demonstrates 
the need for improved models to estimate CVD risk. The three top ranked candidate plasma biomarkers from 
our DIA-MS Discovery screen (hemoglobin, fibrinogen and fetuin A) were independently associated with near-
future CVD events (≤ 3 years) in asymptomatic individuals, independent of the PREDICT-1° score. However, in 
the Extended cohort, where the median time-to-event was considerably longer and individuals with a broader 
range of risk factors were included, neither hemoglobin nor fibrinogen were independently predictive of future 
CVD events in Cox-modelling. It is conceivable that these two proteins are associated with more immediate risk 
as the time to first event was ~ threefold shorter in the Discovery cohort (median of 244 days) compared with 
791 days in the Extended Cohort, despite the Discovery cohort being characterised by a generally lower burden 
of other known risk variables than the Extended cohort (Table 1). Further, it is possible that the moderate cor-
relation between detection techniques, DIA-MS and ELISA, contributes to the fact that the relationship between 
protein and CVD outcome observed in the Discovery cohort was not demonstrated in the Extended cohort. In 
general, a high correlation between ELISA and mass spectrometric results can be expected if the peptides used 
for quantification in DIA-MS and the detection of epitopes by ELISA antibodies allow equivalent detection of 
the analyte by the respective technology. However, there are many examples of mass spectrometry and ELISA 
not correlating strongly, oftentimes due to post-translational modification or due to cross-reactivity issues in 
ELISA20–22. Our findings indicate that certain circulating markers may improve risk prediction of impending 
CVD events in low-to-moderate CVD risk individuals.

Risk prediction models such as the NZ PREDICT-1° score, and the UK QRISK3 work best on the population 
level but suffer from poor discrimination at the level of the individual. Up to 20% of patients diagnosed with 
CVD have no traditional risk factors, and up to 40% have only one, suggesting that the accuracy of risk prediction 
models for individuals is modest and that CVD commonly occurs in people predicted to be at low-to-moderate 
risk6. Biomarkers may add value for individual risk stratification, especially for those in the low-to-moderate risk 
“grey zone,” where clinicians often do not have appropriate tools available to guide their decision making, and 
in those of older age (i.e. > 75 years). In our study of older individuals with a relatively low burden of cardiovas-
cular risk factors, the NZ PREDICT-1° risk score was unable to discriminate between those who subsequently 
incurred a CVD event and those that remained event-free. Our findings highlight the feasibility of an unbiased 
DIA-MS approach for discovery of additional circulating plasma biomarkers that may add value to established 
risk factors and current approaches.

In the Discovery cohort we identified eight proteins (i.e. fibrinogen alpha chain, fetuin A, clusterin isoform 
2, fibrinogen beta chain, hemoglobin subunit beta, fibronectin isoform 3, complement component C9, lipopol-
ysaccharide-binding protein) that have potential to improve risk prediction of a near-future CVD event (within 
3 years). Of these, fibrinogen is probably the best characterized in terms of its relation to CVD risk prediction. It 
has been previously proposed that circulating fibrinogen concentration be included in CVD risk stratification23,24. 
A previous study reported the age- and sex-adjusted hazard ratio per 1 g/L increase in usual fibrinogen concen-
tration was 2.42 (95% CI, 2.24–2.60) for coronary heart disease; 2.06 (95% CI, 1.83–2.33) for stroke; 2.76 (95% 
CI, 2.28–3.35) for other vascular mortality and 2.03 (95% CI, 1.90–2.18) for nonvascular mortality25. Our data 
extend these findings by suggesting that fibrinogen remains independently predictive of outcomes even when 
adjusted for multiple other cardiovascular risk factors.

Hemoglobin circulating freely in the plasma and not contained within the erythrocyte has been implicated 
in pathological conditions, and has been proposed to contribute to abnormal production of highly reductive 
and oxidative compounds via the four heme ligands incorporated into each hemoglobin protein26. While not 
specifically associated with CVD risk, increased concentrations of cell-free hemoglobin have been linked to 

Figure 2.   Cox Hazard Ratios of z-score standardized protein abundance in the Discovery cohort, adjusted for 
the log2-transformed PREDICT-1° 5-year CVD risk score. The whiskers represent 95% confidence intervals. The 
dashed vertical line corresponds to a Hazard Ratio of 1 (i.e. no difference of CVD risk based on this protein). 
The dashed horizontal line divides those proteins with p < 0.05 from those proteins with p 0.05. Z-score scaling 
of protein biomarker data was used instead of using raw protein mass spectrometric intensity to allow easy 
comparison between proteins. A one unit increase in z-score scaled data represents a one standard deviation 
increase in protein concentration. Protein IDs are the mnemonic of the uniprot ID (Supplementary Table 5). 
Figure generated using the ‘survival’ (https​://githu​b.com/thern​eau/survi​val) and ‘ggplot2′ (https​://githu​b.com/
tidyv​erse/ggplo​t2) packages within R/RStudio17,18,37,38.
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micro ruptures in the fragile vasculature of unstable atherosclerotic plaques27. In this context, hemoglobin has 
been reported to function as a “locally active disease modifier” and “intrinsic alarm molecule” (i.e. a biomarker) 
indicating bleeding and tissue destruction28.

The multifaceted biological role of Fetuin A has been recently reviewed and has been variably reported to be 
inversely correlated with coronary artery disease and atherosclerotic burden (presumed due to protection against 
vascular calcification) and positively correlated with coronary artery disease, possibly via its role in diabetes 
mellitus through the inhibition of insulin receptor tyrosine kinase29.

Proteomics and biomarker discovery approaches.  We have used a robust and unbiased analysis pro-
tocol for measuring plasma proteins in human plasma. Applying DIA mass spectrometry to biomarker discovery 
allows the identification and quantifation of > 300 proteins30. All of these proteins tend to be in the high- to 
medium-abundant concentration range in plasma, and so are readily detectable by a number of clinical assay 
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Figure 3.   Scatterplots comparing protein concentrations measured via ELISA versus DIA-MS. Panel A1) 
hemoglobin (Hb) vs Hb alpha chain (HBA) and Hb beta chain (HBB). Panel B) fibrinogen (FIB) vs FIB 
chains alpha, beta, and gamma (FIBA, FIBB, FIBG) and Panel C) fetuin A (FetA). Correlations were assessed 
via Pearson for fibrinogen and fetuin A and via Spearman test for hemoglobin due to slight non-normal 
distribution of the HB ELISA data. Trendlines represent fits using linear regression models. Residual plots for 
model assessment provided as Supplementary Fig. 2. Figure generated using the ‘ggplot2′ (https​://githu​b.com/
tidyv​erse/ggplo​t2) package within R/RStudio17,18,37.
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platforms. However, depletion or further fractionation steps may be required to detect low-abundance proteins 
using DIA31. Plasma is the ideal, accessible sample reservoir for discovery of potential disease biomarkers, as it 
captures a considerable proportion of the proteome (~ 2,000 out of ~ 20,000 known proteins detectable using 
mass spectrometry, not considering isoforms)32. Furthermore, DIA approaches interrogating phosphorylation 
and glycosylation patterns, important for cell-signalling and protein function, are also being elucidated and 
likely to contribute further in the identification of novel biomarkers33,34. Continuous improvements in mass 
spectrometry technology, analysis pipelines and sample throughput are likely to contribute to future precision 
medicine biomarker discovery35.

The selectivity/specificity of mass spectrometry is superior to that of many ELISAs and also facilitates inter-
rogation of post-translational modifications, which carry additional biological information that may be related 
to pathophysiology36. However, sensitivity of MS methods is still lacking compared with ELISA, especially for 
complex mixtures such as plasma where a small fraction of proteins dominates the contribution to the overall 
protein concentration. Additionally, ELISA is easily scalable with high-throughput easily implemented. DIA-MS 
methods are especially useful for tissue and cell-line proteomics, where the dynamic range of protein concentra-
tions is smaller compared to that of plasma.

Limitations.  Our study has several limitations. First, by design we selected individuals with a relatively low 
burden of cardiovascular risk considering their older age, which limited the sample size of our Discovery and 
Extended cohorts. Second, our Discovery and Extended cohorts were not well-matched for time to first event 
(3 years vs. 5 years) and cardiovascular risk, reducing our ability to replicate our findings. Third, the heterogene-
ity of outcomes and the different proportions of each outcome in the Discovery and the Extended cohorts may 
reduce power to detect biomarker associations with specific outcomes. Fourth, despite the good correlation in 
the Discovery phase, the two techniques (DIA-MS and ELISA) have inherent differences affecting their speci-
ficity in terms of which part of the protein is detected. Fifth, the presence of abundant plasma proteins in our 
samples may have prevented detection of less abundant proteins with similar or stronger associations with CVD 
events. The MS-detectable plasma proteome is approximately 2000 proteins32, of which 76 were robustly quanti-
fied across the 50 DIA samples in this study. This is approximately 28% of the number of proteins observed in 
other studies (272 robustly quantified proteins) using MS1-level BoxCar quantification. This reflects differences 
in mass spectrometric data acquisition methods and quality filtering for inclusion/exclusion of peptides into the 
final data-set32.

Conclusions
DIA-MS methods have great potential in biomarker discovery/hypothesis generation due to measuring many 
proteins simultaneously. Using DIA-MS we have identified eight protein biomarkers that may be independently 
associated with near-future CVD events (< 3 years) in asymptomatic individuals of older age with a relatively 
low cardiovascular risk.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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