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Abstract: Cell-based cancer immunotherapy has revolutionized the treatment of hematological
malignancies. Specifically, autologous chimeric antigen receptor-engineered T (CAR-T) cell therapies
have received approvals for treating leukemias, lymphomas, and multiple myeloma following
unprecedented clinical response rates. A critical barrier to the widespread usage of current CAR-T
cell products is their autologous nature, which renders these cellular products patient-selective, costly,
and challenging to manufacture. Allogeneic cell products can be scalable and readily administrable
but face critical concerns of graft-versus-host disease (GvHD), a life-threatening adverse event in
which therapeutic cells attack host tissues, and allorejection, in which host immune cells eliminate
therapeutic cells, thereby limiting their antitumor efficacy. In this review, we discuss recent advances
in developing stem cell-engineered allogeneic cell therapies that aim to overcome the limitations
of current autologous and allogeneic cell therapies, with a special focus on stem cell-engineered
conventional αβ T cells, unconventional T (iNKT, MAIT, and γδ T) cells, and natural killer (NK) cells.

Keywords: stem cell engineering; allogeneic cancer therapy; off-the-shelf cell therapy; chimeric
antigen receptor (CAR); T cell receptor (TCR); graft-versus-host disease (GvHD)

1. Introduction

After decades of fervent research, tumor-targeting adoptive T cell therapy has entered
mainstream oncology [1]. In the 1980s, Rosenberg and others conducted numerous trials
testing autologous tumor infiltrating lymphocyte (TIL) therapy and witnessed notable
although rare clinical responses in certain chemotherapy refractory cancers [2–4]. Advances
in molecular engineering ushered in a new era of adoptive therapy in which tailor-made T
cells are genetically modified with the machinery to both target and kill cancer cells [5].
Chimeric antigen receptors, or CARs, link the single chain variable fragment of an antibody
to T cell intracellular activation and stimulatory domains, allowing T cells to recognize
cancer cells independently of major histocompatibility complex (MHC) restriction and
perform cytotoxic functions [6]. CAR-T cells have transformed the treatment of blood
cancers, with CD19-targeting CAR-T cells approved for treating B cell acute lymphoblastic
leukemia and large diffuse B cell lymphoma in 2017 and a BCMA-targeting CAR-T cell
therapy approved in 2021 for the treatment of multiple myeloma [7]. The current CAR-T cell
therapies are autologous and, while landmark achievements for cell therapy, limited in their
accessibility. T cell extraction, genetic manipulation, expansion, and reinfusion for each
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individual result in patient-to-patient variability, patient selectivity (time to manufacture,
access to facilities), and exorbitant costs [8,9]. Furthermore, patient pretreatment and status,
and the rapid expansion of immune cells, can result in highly differentiated and low-quality
final products that limit therapeutic efficacy [10,11].

Allogeneic cell therapies, shown in Figure 1, hold promise as accessible, readily ad-
ministrable products selected for desirable clinical attributes but face critical safety and
efficacy concerns, namely, graft-versus-host disease and host-versus-graft rejection, respec-
tively [12]. Much of our knowledge of graft-versus-host disease comes from long-standing
experience with allogeneic hematopoietic stem cell transplants (Allo-HSCT) for the treat-
ment of hematological malignancies and other blood disorders [13]. Allo-HSCT is the first
clinically validated cancer immunotherapy and remains the only curative option for several
blood cancers. Within Allo-HSCT grafts, donor T cells exert potent graft-versus-tumor
effects, but these same effector cells can recognize major and minor HLA complex mis-
matches and attack healthy host tissue. Graft-versus-host disease (GvHD) occurs in 30–70%
of Allo-HSCT patients, which can limit the therapeutic benefit of this treatment [14–18].
Although depleting these T cells from allografts reduces the risk of GvHD, it leads to in-
creased rates of tumor relapse and graft failure and is not performed in clinical care [19,20].
Typical GvHD prophylaxis and treatment consists of standard immunosuppressive med-
ication such as calcineurin inhibitors (ciclosporin or tacrolimus) and/or methotrexate,
anti-T-lymphocyte globulin (ATG), and post-transplant cyclophosphamide, as well as
steroids and several candidates for steroid-refractory GvHD, including ibrutinib (which
is approved by the FDA), alemtuzumab, JAK inhibitors, rituximab, mammalian target
of rapamycin (mTOR) inhibitors, and others [15]. The evolution of immunosuppressive
medications has greatly improved the management of GvHD, and Allo-HSCT grafts can
establish host-versus-graft (HvG) tolerance and achieve durable engraftment of donor
cells [17]. For non-hematological compartment reconstituting therapies, such as allogeneic
CAR T cell therapies, HvG responses, while not life-threatening, can weaken the cell ther-
apy before it fully executes antitumor functions [21]. Once again, scientific advancements
are opening the doors for new and improved cells therapies, including the creation of
allogeneic mature immune cell adoptive treatments that can avoid GvHD as well as HvG
responses. CRISPR knockout can be used to remove endogenous TCRs, alleviating GvH
concerns, as well as HLA Class I and II molecules (B2M and CIITA knockouts), rendering
the cells resistance to immunorejection by host T cells [22]. HLA-E and other NK cell
inhibitory receptors can be incorporated into cells to mitigate NK cell-mediated elimina-
tion [23,24] Importantly, conventional αβ T cell-based universal CD19-CAR-engineered T
cells (UCART19) using CRISPR KO of the TCRα chain have proven to be safe in the clinic
and showed notable antitumor efficacy with an objective response rate (ORR) of 67% [25].
Although the ORR and duration of responses were smaller than those of autologous CAR19
T cells of comparable design, likely due to shorter persistence of the universal CAR-T cells,
all 21 patients enrolled received their scheduled UCART19 treatment [26].

Parallel to the rapid expansion of allogeneic conventional T cell therapy research and
investment is the development of adoptive transfer strategies using other cell populations
(Figure 2) [12,27]. In contrast to conventional αβ T cells, natural killer (NK) cells and
innate-like T cells, such as gamma delta (γδ) T, invariant natural killer T (iNKT), and
mucosal associated invariant T (MAIT) cells, do not bind peptide-MHC complexes and
therefore pose little risk of GvHD (Table 1). NK cells express germline-derived activating
and inhibitory receptors that allow recognition of missing-self, which makes NK cells
instrumental in cancer immunosurveillance, as tumor cells often alter MHC expression to
evade T cell immunity [28]. Several NK cell-targeting antibodies and adoptive therapies
seek to harness the inherent cancer-killing ability of NK cells and incorporate additional
activation signals [29]. Following phase 1/2 studies establishing the safety and feasibility
of allogeneic NK cells for cancer treatment [30], CAR-engineered cord-blood (CB)-derived
NK (CB-NK) cells have entered the clinic to increase therapeutic efficacy. This past year,
Liu et. al. reported a 73% response rate and excellent safety profile of CAR-transduced
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CB-NK cells in CD19-positive lymphoid tumors [31]. γδ T, iNKT, and MAIT cells recognize
phosphoantigens, glycolipids, and microbial vitamin B2 (riboflavin) biosynthesis bioprod-
ucts, respectively, allowing the targeting of numerous cancer cells through TCR-dependent
mechanisms [32]. These unconventional T cells also express innate killer receptors, such as
NKG2D, and can rapidly release cytokines upon stimulation [33]. Similar to standard T
cells, innate-like T cells are amenable to genetic engineering and are compatible with CAR
expression. Gamma delta and iNKT cell therapies have progressed to clinical trials [32],
with Heczey et al. recently reporting signs of clinical activity of autologous GD2-targeting
CAR iNKT cells in pediatric neuroblastoma patients [34] and Xu showing that, in 132 late-
stage cancer patients, allogeneic Vγ9Vδ2 adoptive T-cell immunotherapy was safe and
prolonged the survival of patients treated with multiple doses [35].
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Figure 1. Current allogeneic T cell-based cancer immunotherapies. (A) PBMCs are collected from healthy donors via leukapheresis and then are genetically engineered. CARs are 
transduced into target cells (e.g., T, NK, or iNKT cells) via Lenti or Retrovirus. CRISPR-Cas9-mediated gene editing is used to knock out genes encoding TCR, HLAs, and CD52 to lessen 
the GvHD risk, HvG risk, and anti-CD52 monoclonal antibody alemtuzumab-induced cell depletion, respectively. (B) Human CD34+ HSCs are collected from either cord blood or from 
G-CSF-mobilized human peripheral blood. These HSCs are transduced with transgenic TCRs or CARs and other molecules (e.g., HLA-E and HLA-G) and then engineered with a 
CRISPR-Cas9/gRNAs complex to knockout HLAs. The gene-engineered HSCs are put into “off-the-shelf” in vitro culture systems including OP9-DL, ATO, or feeder-free culture systems 
to differentiate into mature immune cells. Of note, gene engineering and editing steps could be performed on stem cells or differentiated mature immune cells. Performing gene-
engineering and/or gene-editing on stem cells could save on the use of gene-engineering/editing materials such as lentivectors and CRISPR-Cas9/gRNAs and also enable the maximal 
gene engineering/editing efficiency, which can be carried on into the final cell products. (C) Clonally expanded tumor antigen-specific T cells are reprogrammed to pluripotency. These 
T cell-derived iPSCs are then re-differentiated into mature T cells in vitro. These “rejuvenated” T cells may have potentials in the field of adoptive and allogeneic immunotherapy. 
Abbreviations: PBMC, peripheral blood mononuclear cells; CAR, chimeric antigen receptor; KO, knockout; G-CSF, granulocyte-colony stimulating factor; iPSC, induced pluripotent 
stem cells; SV40, simian vacuolating virus 40. 

Figure 1. Current allogeneic T cell-based cancer immunotherapies. (A) PBMCs are collected from healthy donors via
leukapheresis and then are genetically engineered. CARs are transduced into target cells (e.g., T, NK, or iNKT cells) via
Lenti or Retrovirus. CRISPR-Cas9-mediated gene editing is used to knock out genes encoding TCR, HLAs, and CD52 to
lessen the GvHD risk, HvG risk, and anti-CD52 monoclonal antibody alemtuzumab-induced cell depletion, respectively.
(B) Human CD34+ HSCs are collected from either cord blood or from G-CSF-mobilized human peripheral blood. These
HSCs are transduced with transgenic TCRs or CARs and other molecules (e.g., HLA-E and HLA-G) and then engineered
with a CRISPR-Cas9/gRNAs complex to knockout HLAs. The gene-engineered HSCs are put into “off-the-shelf” in vitro
culture systems including OP9-DL, ATO, or feeder-free culture systems to differentiate into mature immune cells. Of note,
gene engineering and editing steps could be performed on stem cells or differentiated mature immune cells. Performing
gene-engineering and/or gene-editing on stem cells could save on the use of gene-engineering/editing materials such
as lentivectors and CRISPR-Cas9/gRNAs and also enable the maximal gene engineering/editing efficiency, which can
be carried on into the final cell products. (C) Clonally expanded tumor antigen-specific T cells are reprogrammed to
pluripotency. These T cell-derived iPSCs are then re-differentiated into mature T cells in vitro. These “rejuvenated” T
cells may have potentials in the field of adoptive and allogeneic immunotherapy. Abbreviations: PBMC, peripheral blood
mononuclear cells; CAR, chimeric antigen receptor; KO, knockout; G-CSF, granulocyte-colony stimulating factor; iPSC,
induced pluripotent stem cells; SV40, simian vacuolating virus 40.
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Figure 2. Engineering stem cells to generate allogeneic CAR-expressing αβ T, γδ T, iNKT, MAIT, 
and NK cells. (A) FACS plots showing the analysis of cells from healthy donor PBMCs. 
Figure 2. Engineering stem cells to generate allogeneic CAR-expressing αβ T, γδ T, iNKT, MAIT, and
NK cells. (A) FACS plots showing the analysis of cells from healthy donor PBMCs. Conventional αβ
T, γδ T, iNKT, MAIT, and NK cells were analyzed. (B) Healthy donor PBMCs are used to generate
the CAR-engineered conventional αβ T, γδ T, iNKT, MAIT, and NK cells. To generate conventional
αβ T cells, PBMCs are stimulated using CD3/CD28 T-activator beads or antibodies. To generate
iNKT cells, PBMCs are MACS-sorted via anti-iNKT microbeads labeling to enrich iNKT cells and
then stimulated with αGC. To generate γδT or MAIT cells, PBMCs are stimulated with Zoledronate
or 5-OP-RU, respectively. To generate NK cells, PBMCs are FACS-sorted via human CD56 antibody
labeling or MACS-sorted using a human NK Cell Isolation Kit. (C) UCB-derived HSCs, donor
bone marrow-derived HSCs, or PSCs-differentiated HSCs can be transduced with different TCRs,
including tumor antigen specific TCRs (e.g., NY-ESO-1 TCR), iNKT αβ TCRs, MAIT αβ TCRs, and
γδ TCRs. The gene-engineered HSCs are then put into in vitro culture systems allowing these HSCs
to differentiate into mature T cells with specific TCRs. NK cells can also be differentiated from CD34+

HSCs using a cocktail of cytokines in vitro. The resulting T or NK cells are engineered with CARs and
then expanded in vitro before infusion into patients. Abbreviations: MR1, major histocompatibility
complex, class I-related protein; 5-OP-RU, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil.
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Table 1. Summary of αβ T, γδ T, iNKT, MAIT, and NK cell-based allogeneic cell products.

Immune Cell
Types Tumor Recognition Receptors Restriction

Reactivity
Staining
Markers GvHDRisk Allogeneic Cell Products

Conventional αβ T
cells

Highly diverse αβ TCRs MHC-I and MHC-II
CD3+

TCR αβ+ High

Genome-edited, donor-derived UCART19
[25,36]

CD19 CAR-T cells with CAR integrated into
the TCR α chain [37]

iPSC-derived CD19 CAR-T cells [38]
In vitro generation in OP9-DL1 cultures [39]
In vitro generation in ATO cultures [40,41]
Rejuvenated iPSC-Derived T Cells [42–47]

Invariant natural
killer T (iNKT) cells

Invariant TCR α-chain
(Vα14-Jα18 in mice or

Vα24-Jα18 in humans), restricted
diverse TCR β-chain

CD1d
CD3+TCR

αβ+6B11(iNKT
TCR)+

Low iPSC-derived iNKT cells [48,49]

Mucosal associated
invariant T (MAIT)

cells

Semi-invariant TCR α-chain
(Vα19-Jα33 in mice or

Vα7.2-Jα33 in humans),
restricted diverse TCR β-chain

MR1 CD3+TCR
αβ+Vα7.2+ Low iPSC-derived MAIT cells [50–52]

Gamma delta (γδ)
T cells Restricted diverse γδ TCRs Butyrophilin 3A1, CD1d CD3+

TCR γδ+ Low iPSC-derived γδ T cells [53]

Natural killer (NK)
cells

NK activation and inhibition
receptors (e.g., NKG2D,

DNAM-1, KIR)

e.g., MIC-A/B, ULBP,
CD155, CD112 CD3-CD56+ Low

Cord blood-derived CD19 CAR-NK cells
[31,54]

PSC-derived NK cells [55–61]

Autologous iNKT cell therapies face the same challenges as autologous conventional
αβ T cell therapy, with an additional hurdle mounted by the rarity of iNKT cells, which
account for about less than 1% of peripheral blood mononuclear cells [62–65]. γδ T cells, al-
though to a lesser extent, are also scarce in the periphery (5% of PBMCs) [66]. Strategies that
use mature immune cells as the product starting material also struggle to create homoge-
nous and fecund cell products as a result of gene transduction and knockout inefficiencies,
variability in the initial cell composition, and exhaustive expansion procedures. Despite
these hurdles, allogeneic cell therapies created from fully differentiated conventional αβ T,
γδ T, iNKT, and NK cells are being actively pursued in early phase clinical trials, where
thus far the therapies have displayed encouraging safety profiles and signs of efficacy.

Stem cell engineering has emerged as a novel solution to address the limitations faced
by current autologous and allogeneic cell therapies. Stem cells can undergo multiple gene
edits and expand clonally to produce pure, high quality effector cells. Recent progress
in stem cell culture and differentiation has resulted in the burgeoning development of
stem cell-derived adoptive cellular candidates. In this review, we highlight hematopoietic
and pluripotent stem cell engineering methods and their ability to produce effective and
safe products.

2. Stem Cell Resources and Culture Systems

Two major categories of stem cell resources are used for developing allogeneic thera-
peutic cells: hematopoietic stem cells (HSCs) and pluripotent stem cells (PSC). Multipotent
HSCs can be collected from umbilical cord blood (UCB), donor bone marrow, and granulo-
cyte colony stimulating factor-mobilized peripheral blood [67,68]. Established PSC lines,
including embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) lines, are
widely utilized to differentiate and generate to hematopoietic stem/progenitor cells and
mature immune cells. In addition, peripheral blood mononuclear cell (PBMC)-derived
immune cells including T, NK, iNKT, and MAIT cells could be reprogramed to pluripotency
and then re-differentiated into functional immune cells [38,55,69,70].

Various culture systems were developed to support stem cell differentiation, including
the humanized mouse models (e.g., bone marrow-liver-thymus, BLT mouse model), in vitro
feeder-dependent culture systems (e.g., OP9-DL and artificial thymic organoid, ATO), and
in vitro feeder-free culture systems.

The in vitro OP9-DL system relies on a genetically engineered murine bone marrow
stromal cell line OP9, which overexpresses the Notch ligands Delta-like ligand 1 (DLL-1)
or 4 (DLL-4) [71–73]. This culture system supports the efficient generation of human
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HSC-derived T and NK cells [74,75]. To differentiate into T cells, ESCs or iPSCs are first
co-cultured with C3H10T1/2 stromal cells for efficient hematopoietic stem/progenitor
cells (HSPCs) generation [76,77] and then co-cultured with OP9-DL1 stromal cells to ignite
Notch signaling for T-lineage commitment [78,79]. The cells are finally mixed with PBMCs
for stimulating mature T cell proliferation [70]. To differentiate into NK cells, ESCs or
iPSCs are cultured in a stromal cell-based or a stromal-free system supplemented with
stem cell factor (SCF), vascular endothelial growth factor (VEGF), and bone morphogenetic
protein 4 (BMP4) to induce hematopoietic differentiation and then are switched to cultures
containing IL-3, IL-15, IL-7, SCF, and FLT3L to stimulate NK cell differentiation, followed
by propagation with a stimulatory cell line expressing membrane-bound IL-15 (mbIL-15)
or mbIL-21 [56,57,80–82].

The in vitro ATO culture system was developed by Dr. Crooks team at UCLA and
has been used for generating human T cells from HSCs or PSCs [40,41]. ATO supports T
cell differentiation by mimicking natural human T commitment [40,41] and ATO-derived
mature T cells exhibit a highly diverse TCR repertoire, an antigen-naïve phenotype, and
a vigorous response to antigen stimulation. Genetically engineered stem cells could also
be cultured in ATO system and differentiated into TCR-engineered, antigen-specific T
cells [40,41].

The “off-the-shelf” in vitro generation of human T cells has been an important ap-
proach for studying T cell development and applying this to T cell-based immunother-
apy. However, due to mouse origins, OP9-DL and ATO culture systems have not been
used for clinical studies. Two strategies have been developed to circumvent the poten-
tial issue: (1) design feeder cells of human origin that can support T cell development
similar to OP9-DL cells; (2) create a feeder-free culture system where all the molecular
necessities supporting T cell development are supplied with defined media, cytokines, and
reagents with minimal animal or human origins. Remarkably, a Notch signaling-dependent
ex vivo differentiation/expansion system using feeder-free/serum-free Stemspan media
has been studied [83]. This system supports the development of human hematopoietic
stem/progenitor cell-derived immune cells and the engraftment of these immune cells into
humanized mice [83]. However, clinical trials showed that the CD34+ stem/progenitor cells
expanded ex vivo in the presence of Notch ligand led to a rapid myeloid reconstitution post
adoptive transplant, rather than T cell lineage [83]. Further improvements are necessary to
achieve T cell reconstitution and expansion.

The BLT mouse (human bone marrow-liver-thymus engrafted NOD/SCIDγc−/−

mouse) model was created by co-transplanting human CD34+ HSCs, liver, and fetal thymus
into humanized immunodeficient mice. BLT provides a humanized mouse carrier sup-
porting human immune system establishment and human immune cell generation [84,85].
TCR-engineered antigen-specific T cells can be generated by transducing HSCs using
lentivirus or retrovirus and adoptively transferring these HSCs to BLT mice [64,86–88]. The
BLT model can also be utilized as a valuable tool to study the biology and translational
potential of human HSC-derived T cells. However, these generated T cells are educated
in the transplanted human thymus and they do not develop tolerance to the BLT mouse
host; therefore, these self-reactive T cells eventually cause GvHD and host fatality [89]. To
overcome this issue, sub-lethally irradiated neonatal mice were used as a new BLT model,
where the transplanted human T cells were educated in the host thymus, leading to a
restricted TCR repertoire and improved safety profile compared with the previous BLT
model [64,89]. This new model likely contributes to the host-tolerant mature human T cells
and allows long-term studies of these humanized animals. In addition, using NSG hosts
engineered to express homozygous human HLA class I heavy chain and light chain can
allow the generation of an HLA-restricted T-cell repertoire [90].

Several studies have reported the approaches reprogramming PBMCs to pluripotent
iPSCs. Human T-lineage cells, such as antigen-specific cytotoxic T cells, invariant natural
killer T (iNKT) cells, or mucosal associated invariant T (MAIT) cells, are transduced with
defective Sendai virus vectors encoding four reprogramming factors (OCT3/4, SOX2, KLF4,
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and c-MYC) [91] and SV40 T antigen to be reprogrammed into pluripotency [43,46,49,50].
Non-T cell-derived PBC-iPSCs are used for enhanced NK cell commitment [92].

3. Allogeneic Stem Cell-Engineered T Cell-Based Therapy

Allogeneic T cell therapy, especially allogeneic CAR-T therapy, has attracted much
attention because of the great advantage of wide and prompt usage for patients. The two
main hurdles of widely using allogeneic T cell-based therapy are the risks of inducing
GvHD and being rejected by the host [9]. To overcome these issues, multiple genes
including TRAC, B2M, and PDCD1 were depleted in CAR-T cells to enhance their antitumor
activity and decrease risk of GvHD and host allorejection [23,93]. Various strategies have
been applied to improve the manufacture, cancer-treating potential, and safety of allogeneic
T cell products, including applying base editor technology to mediate highly efficient
multiplex gene disruption with minimal double-strand break induction [94] and targeting
the insertion of a CAR Transgene directly into the native TCR locus using an engineered
homing endonuclease and an adeno-associated virus (AAV) donor template [37]. Notably,
one allogeneic cell product, UCART19, was recently tested in phase I clinical trials to treat
CD19+ B cell malignancies [25,95]. The UCART19-based therapy was developed to ablate
the endogenous αβ TCR of CAR-T cells to diminish GvHD, lymphodeplete to reduce host
cell-mediated allorejection, and disrupt the CD52 of CAR-T cells to grant the cells resistance
to lymphodepleting drugs [25,95].

Alternative methods to generate allogeneic CAR-T cells without expression of the
endogenous TCR are gene engineering of stem cells. Because of allelic exclusion, T cells
generated from TCR-transgenic hematopoietic progenitor cells do not rearrange endoge-
nous TCR loci and express only the transgenic TCR, leading to a reduced risk of inducing
GvHD [96,97]. The development of stem cell-derived allogeneic CAR-T therapy involves
the transduction of stem cells to express a tumor-specific TCR (e.g., NY-ESO-1 and MART1-
specific TCRs) or CARs and subsequent differentiation of the stem cells to T cells in stem
cell culture system (e.g., OP9-DL, ATO, and feeder-free systems) [38–41,96]. These stem
cell-derived T cells display specific cytokine production upon activation, potent antitumor
capacity, and limited occurrence of GvHD [38–41,96].

Several studies have investigated the production of iPSCs from antigen-specific T cells
from patients [43,46,70]. Researchers reprogrammed antigen-specific CD8+ cytotoxic T cells
to pluripotency and then re-differentiated these T cell-derived iPSCs into mature CD8+ T
cells. These “rejuvenated” cytotoxic T cells demonstrated specific reactivity upon the same
antigen stimulation and displayed TCR gene-rearrangement patterns identical to those
of the patient’s original CD8+ T cells [43,46,70]. The unlimited resources of T cell-derived
iPSCs illustrate a strategy generating functional antigen-specific CD8+ T cells that might be
applicable in cancer immunotherapy.

Engineering stem cells also provides an efficient approach to generate off-the-shelf
therapeutic cells without the rejection due to recognition by host T cells or NK cells. Knock-
out or knock-down of MHC molecules has been explored to avoid host T cell-mediated
allorejection [98]. However, the lacking MHC expression on therapeutic cells may induce
the target and elimination by host NK cell [98]. Expression of the ligands to NK inhibitory
receptors, such as HLA-E or HLA-G, can further increase the resistance of engineered
cells to host NK cell-mediated allorejection [24,99–102]. Overall, the advantages of stem
cell-derived CAR-T cells including large-grade manufacturing and relative ease of genomic
modification, provide the potential to generate ready-to-use cell banks as standardized
“off-the-shelf” immunotherapies to treat blood cancers and solid tumors using different
CAR constructs.

4. Allogeneic Stem Cell-Engineered Unconventional T Cell-Based Therapy

While conventional αβ T cells have been utilized for generating allogeneic cell prod-
ucts by ablating their endogenous TCR expression, exploring third-party off-the-shelf
strategies that do not require genome editing for safe administration is intensively appeal-
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ing. Unconventional T cells, such as lipid-restricted invariant natural killer T (iNKT) cells,
MR1-restrict mucosal associated invariant T (MAIT) cells, and gamma delta T (γδ T) cells
harbor unique features that could potentially qualify them as universal donor cells for
cancer immunotherapy.

4.1. Allogeneic iNKT Cell-Based Therapy

iNKT cells are a distinctive T cell subpopulation expressing semi-invariant TCRs
that recognize lipid antigens in the context of monomorphic antigen-presenting molecule
CD1d [12,103,104]. The restricted TCR is comprised of a canonical invariant TCRα chain
(Vα14-Jα18 in mice; Vα24-Jα18 in human) paired with a semi-variant TCRβ chain (mostly
Vβ8.2 in mice; mostly Vβ11 in human). Upon TCR engagement, iNKT cells can upregulate
killing receptors (e.g., FasL, TRAIL) and rapidly secret cytotoxic molecules (perforin and
granzymes) and high levels of cytokines (e.g., IFN-γ, TNF-α, IL-2, IL-4, IL-17), leading to
the activation of both innate and adaptive immune cells. Thus, they can rapidly attack
tumor cells through multiple mechanisms [105,106] and strongly modulate the tumor mi-
croenvironment [88,107,108]. Their capacity to mount strong anti-tumor responses without
inducing GvHD makes them an attractive candidate for cancer immunotherapy [109–112].
The widespread application of iNKT cell-based cancer therapy is severely hindered by the
extremely low frequency of iNKT cells in the peripheral blood. Although clinical trials
have focused on administrating a-GalCer/a-Galcer-pulsed dendritic cells (DC) to boost
endogenous iNKT cell numbers or adoptively transferring ex vivo expanded iNKT cells to
restore iNKT cell functions, the responses were not as encouraging as expected [113–115].
The current GMP-compatible ex vivo expansion protocols are now being used to expand
autologous iNKT cells with CAR engineering, which produced very promising results
in pre-clinical studies on treating neuroblastoma and B cell lymphoma [116–119]. The
safety and long-term persistence are still under clinical evaluation. Since stem cells possess
unique properties for creating allogeneic cell therapies, using stem cell-derived iNKT cells
or CAR-iNKT cells is an active area research. The Yang, Kaneko, and Taniguchi groups
have reported the successful production of human iNKT cells by the genetic engineering
of HSCs or differentiation iPSCs, and the iNKT cells were responsive to a-Galcer stimula-
tion and executed potent anti-tumor capability toward leukemia, multiple myeloma, and
solid tumors [9,49,64,65,88,120]. These pre-clinical results provide promising support for
the development of iNKT cells as allogeneic third-party universal donors to change the
paradigm of cancer immunotherapy.

4.2. Allogeneic MAIT Cell-Based Therapy

Mucosal-associated invariant T (MAIT) cells are another innate T lymphocyte pop-
ulation. They express a semi-invariant TCR, consisting of an invariant TCRVα chain
paired with a limited number of Vβ chains [121,122]. MAIT TCRs recognize riboflavin
metabolite-based antigens and folate derivatives presented by an evolutionary conserved
and monomorphic protein MR1 [9,12]. MAIT cells constitute 5% of the total T cell popula-
tion in humans and exhibit tissue-specific distribution. TCR engagement of MAIT cells lead
to the secretion of perforin, granzyme B, and other TH1 and TH17 type of cytokines [122].
Studies have showed that MAIT cells are part of tumor-infiltrating lymphocytes in cancer
patients [123–127], although it remains controversial whether tumor-infiltrating MAIT
cells are pro- or anti-tumorigenic [128]. Further investigations are necessary to elucidate
the role of MAIT cells in cancer progression. Since MAIT cells are not MHC-restricted,
they can be another candidate for developing allogeneic cell therapy. Compared to other
unconventional T cells, MAIT cells are still not well studied.

iNKT, MAIT, and γδ T cells have demonstrated strong antitumor ability indepen-
dent of MHC-restriction. Furthermore, the unique feature that they are not expected
to induce GvHD risks provides them with great promise for developing allogeneic
cell therapy to treat cancer. It has been shown that genetic engineering of HSCs or
iPSC-reprogramming can successfully generate allogeneic iNKT cells, γδ T, and MAIT
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cells [49,50,64,120]. While production yield is still a critical hurdle that limits the manu-
facturing of these unconventional T cell products, there are novel cell culture systems
(e.g., ATO, feeder-free culture system) that may allow large-scale production of ‘off-
the-shelf’ cell products [40,41,129,130]. These approaches will provide platforms for
studying the potential of iNKT, MAIT, and γδ T cell-based allogenic therapies and set
up a foundation for future off-the-shelf cancer immunotherapy.

4.3. Allogeneic γδ T Cell-Based Therapy

Another promise candidate for developing off-the-shelf cell therapy is butyrophilin
(BTN)-restricted Vγ9Vδ2T cells [122,131]. This unique subpopulation cells represents
0.5–5% of all T cells and 50–90% of γδ T cells [132,133]. Vγ9Vδ2T cells express an invariant
TCR that responds to phosphoantigens (pAgs) or phosphorylated isoprenoid metabolites
that are derived from the mevalonate pathway. These pAgs are widely expressed on
transformed or infected cells that have dysregulated metabolism [134]. pAgs bind to the
intracellular domain of BTN3A and induces the activation of Vγ9Vδ2T cells. The activated
Vγ9Vδ2T cells display similar effector functions as conventional αβ T cells that secrete
perforins and granzymes and produce pro-inflammatory cytokines to directly kill tumor
cells and modulate immune responses [133,134]. The activated Vγ9Vδ2T cells themselves
can also differentiate into professional APCs that can phagocytose cells and cross-present
antigens, leading to the activation of conventional T cells [135,136]. The current approach
to expand PBMC Vγ9Vδ2T cells in vitro is the use of a synthetic aminobisphosphonate
drug, Zoledronate [137–139]. Zoledronate stimulation can generate clinically reasonable
numbers of functional Vγ9Vδ2T cells that are able to migrate to tumor sites and perform
tumor cell killing. The effects of allogeneic γδ T cell therapy on blood cancers and solid
tumors are still under investigation (NCT03533816, NCT03790072). If the clinical safety of
allogenic Vγ9Vδ2T cells is validated, similar to iNKT cells, engineering stem cells with γδ

TCR to produce pure and clonal cells can further facilitate γδ T cell-based therapy.

5. Allogeneic Stem Cell-Engineered NK Cell-Based Therapy

In recent years, CAR-engineered NK cells have gained enormous attention because of
their unique properties fitting for cancer immunotherapy. NK cells are innate immune cells
showing strong cytotoxicity against physiologically stressed cells such as tumor cells and
virus-infected cells through multiple mechanisms of action. Their recognition of the target
cell is independent of MHC expression [140]. NK cell activation and effector functions
rely on the signals derived from both activating and inhibitory receptors. Activating
signals include cytokine-binding receptors, integrins, killing-receptors (e.g., CD16, NKp30,
NKp40, and NKp44) [140]. Inhibitory signals mainly come from receptors recognizing
MHC-I, as well as some MHC-I non-related receptors [141]. In addition, MHC-I inhibitory
receptors can be divided into three categories based on structure and function: killer lectin-
like receptors (KLRs), killer cell immunoglobulin-like receptors (KIRs), and leukocyte
immunoglobulin-like receptors (LILRs) [141].

NK cells, even when genetically engineered CAR molecules, retain the capacity to
target tumor cells through their intrinsic activating receptors, thereby granting them with
an additional mechanism of anti-tumor reactivity independent of CAR-mediated killing.
Notably, NK cells do not rely on the TCR for cytotoxic killing, and this feature endows
NK cells with a more favorable safety profile compared to T cell contenders, which, in the
allogeneic setting, need to be further modified to diminish GvHD [142].

5.1. CAR-NK Cells Derived from Umbilical Cord Blood (UCB)

CAR-NK cells can be generated from different sources. UCB is a readily available
source for allogeneic NK cell production [143]. Although the starting cell numbers are
low, they can be easily expanded to large, highly functional products due to their inherent
capacity of high proliferation. The first large-scale clinical trial of CD19 CAR-engineered
NK therapy was performed on 11 chronic lymphocytic leukemia and non-Hodgkin’s
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lymphoma patients in MD Anderson cancer center [31,142]. All patients were treated with
lymphodepleting chemotherapy before CAR-NK infusion. Patients received UCB-derived
CD19 CAR-NK cells containing a suicide gene switch and an immune enhance gene IL-15.
Seven out of 11 patients responded well and experienced sustained complete remission
up to 13.8 months. Notably, the infused CAR-NK cells were able to persist in the patient
blood over one year. This clinical study exhibited the administration of UCB-derived CD19
CAR-engineered NK therapy in B cell lineage malignancies to be efficacious and safe [31].

5.2. CAR-NK Cells Derived from Other PSCs

CAR-NK cells can also be generated from PSCs including ESCs and iPSCs [144].
In 2005, Woll et al. generated human ESC-derived NK cells using a two-stage culture
system. These cells resembled endogenous NK cells, targeted tumor cells using multiple
mechanisms including direct cell-mediated cytotoxicity and antibody-dependent cellular
cytotoxicity (ADCC), and displayed powerful antitumor capacity in vivo [57,82]. The same
group also developed a novel platform to produce NK cells from iPSCs [80,145,146]. The
NK cells were developed from a clonal master iPSC line cell bank, making it feasible to
mass generate iPSC-NK cells, which are relatively homogenous, quality controlled, and
able to be cryopreserved for long-term storage. iPSCs were first genetically modified to
express or knockout the genes of interest, and then they were made into aggregates by
centrifugation to form embryoid bodies [80,145,146]. After differentiating into CD34+CD45+

hematopoietic progenitor cells, they were further differentiated into mature NK cells using
a specific cytokine cocktail. The generated iPSC-derived NK cells displayed common
NK cell markers, including NKG2D, NKp44, NKp46, KIRs, CD16, and TRAIL, and these
cells were cytotoxic against hematological and solid tumor cells in vitro and in vivo [80].
Next, iPSC-derived NK cells were stimulated and expanded using cytokines and K562-
based artificial APCs with membrane-bound IL-21 to achieve high yield for clinical and
translational applications. These iPSC-derived NK cells could be further engineered with
either conventional T cell CARs or NK cells CARs containing the transmembrane domain of
NKG2D to enhance their tumor targeting abilities [56]. A high-affinity noncleavable CD16a
(hnCD16) was engineered on iPSC-derived NK cells to improve their ADCC properties,
and the hnCD16-engineered NK cells combined with mAbs showed highly effective killing
of hematologic malignancies and solid tumors [59].

Currently, Fate Therapeutics Company is conducting clinical trials based on the
iPSC-derived NK products [146]. For example, FT596 is an investigational, universal, off-
the-shelf iPSC-derived NK cell product engineered with hnCD16 and CD19 CAR (denoted
as CAR.19-NKG2D-2B4-CD3ζ-IL15RF-hnCD16) [140]. The clinical trial is studying the
efficacy of FT596 monotherapy and a combination of FT596 with a CD20 monoclonal
antibody in the treatment of chronic lymphocytic leukemia and B cell lymphoma. The
Phase I interim result showed the treatments were well-tolerated, with no dose-limiting
toxicities, and 10 out of 14 patients achieved the objected response [140].

6. Outlook

Autologous cell therapy has transformed the treatment of hematological malignancies.
Patients with relapsed and refractory B cell cancers experience response rates of up to
90% with CAR-T cell treatment, and durable clinical benefit occurs in about 30–40% of
patients [147]. Tumor-infiltrating lymphocyte (TIL) therapy continues to show clinical
promise, with durable responses in some patients with refractory melanoma and cervical
squamous cell carcinoma [148,149], and recombinant TCR-transduced T cells have shown
encouraging clinical activity in multiple myeloma and melanoma [150]. These autologous
therapies are by nature one of one, which hinders their manufacturability, accessibility,
and affordability. Current CAR-T cell therapies are priced over $300,000 per treatment, not
including additional costs associated with adverse events, and typically require over two
weeks for production and administration [151]. Patients with rapidly progressing disease
may not qualify for CAR-T cell therapy, and patient-derived cell starting material results
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in highly variable final products [152]. Allogeneic cell sources enable “off-the-shelf” cell
therapies that can be produced at scale and administered on demand but face severe chal-
lenges of their own [153]. Graft-versus-host responses of conventional αβ T cells require
efficient gene-editing of T cells or the use of non-alloreactive cell populations. Allogeneic
cells also confront the host immune system, which can limit the persistence and efficacy of
donor-derived cells. Various cell populations have been studied to achieve the holy grail
of allogeneic cell therapy: maximizing the cancer-fighting ability of allogeneic cells while
minimizing GvHD and allorejection. In this review, we highlighted the potential of stem
cell-engineered immune cell populations other than conventional αβ T cells, specifically
NK, γδ T, iNKT, and MAIT cells, to achieve this aim. Of note, mesenchymal stem cells
(MSCs) have also been investigated for cancer treatment [154,155]. MSCs can be used as cell
carriers for targeted cancer therapy given their immune evasive and migratory properties.

The intrinsic genomic instability of cancer cells coupled with the Darwinian process
of immunoediting precipitates cancer cells that can avoid immune destruction [156,157].
Antigen negative relapse has been documented in CAR-T cell therapy [158], as well as the
loss of an immunogenic epitope following TIL therapy [159]. We propose that multiple
tumor-killing mechanisms are vital for adoptively transferred cells to contend with a
cancer’s plasticity and heterogeneity. NK, γδ T, iNKT, and MAIT cells all possess intrinsic
cancer-killing ability. Using these cellular populations as carriers for CARs thus enables
the killing of CAR-antigen positive and negative tumor cells.

The ex vivo activation, genetic manipulation, and expansion of patient or healthy
donor lymphocytes lead to the differentiation of effector cells to achieve necessary cell
numbers for dosing. This can result in cell products with limited self-renewal potential and
diminished persistence upon infusion [10,160]. Telomere, differentiation, and CDKN2a
mRNA analysis revealed that 15 days of T cell expansion aged cells the equivalent of 30
years [161]. Initiating genetic engineering and immune cell development at the stem cell
level gives researchers control over the differentiation status of the final cell product while
maintaining production of sufficient cell numbers. The massive expansion of stem cells can
make multi-, high-dose strategies possible for all patients.

The number of genetic alterations that can be successfully applied to stem cells is
continuing to grow. Wang et al. recently reported the generation of hypoimmunogenic T
cells from genetically engineered allogeneic human iPSCs, in which iPSCs lacking MHC
Class I, MHC Class II, and NK cell-ligand poliovirus receptor CD155 were transduced
to express single-chain MHC Class I antigen E [162]. Following iPSC to T cell differen-
tiation, the resulting T cells were resistant to T, B, and NK cell alloreactivity and, when
further manipulated to express CAR, controlled preclinical tumor growth. The next steps
are to incorporate modifications that allow the adoptively transferred cells to persistent
autonomously, maintain proliferative potential, outmaneuver the immunosuppressive
tumor microenvironment, infiltrate tumor beds, and stimulate endogenous antitumor
immunity. Each of these goals has been addressed extensively in preclinical T and NK cell
studies [163–166], such as through the exogenous expression of IL-15, immune checkpoint
inhibitors, chemokine receptors, or immunomodulatory proteins, but are usually targeted
individually or in pairs due to the limited genetic pliability of mature immune cells. Stem
cell engineering opens the door for increasingly complex designer cell products, and future
research will need to reveal if the accumulated changes hinder immune cell antitumor
efficacy. By pursuing allogeneic therapies using stem cell-derived NK, gamma delta T,
iNKT, and MAIT cells, we can take advantage of their natural tumor-targeting abilities and
superior safety profiles to create ideal candidates for off-the-shelf cancer cell therapies.
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