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Abstract

Multiple sclerosis (MS) is thought to be a Th17-mediated dysimmune disease of the central

nervous system. However, recent publications have questioned the pathogenicity of IL-17

per se and rather suggest the implication of other Th17-related inflammatory mediators.

Therefore, we studied the expression of GM-CSF, IL-22, IL-24, IL-26 and CD39 in peripheral

blood mononuclear cells (PBMCs) from MS patients during relapses, remission and follow-

ing corticosteroid treatment. We performed qPCR to measure mRNA levels from ex vivo or

in vitro-stimulated PBMCs. Cytokine levels were determined by ELISA. We used flow

cytometry to assess GM-CSF+, IL-22+ and CD39+ cells in relationship to IL-17+ CD4+ T

cells. Our results showed that IL-22 mRNA and IL-22+CD4+ lymphocytes are increased in

circulating cells of relapsing MS patients compared to remitting patients while GM-CSF was

unchanged. We have further shown that 12.9, 39 and 12.4% of Th17 cells from MS patients

during relapses expressed IL-22, GM-CSF and CD39 respectively. No changes in these

proportions were found in stable MS patients. However, the majority of GM-CSF+ or IL-22+

T cells did not co-express IL-17. GM-CSF mRNA, but not IL-22 mRNA, was dramatically

decreased ex vivo by ivMP. Our results contribute to a better characterisation of Th17, Th22

and ThGM-CSF cells in the setting of MS and according to disease activity.

Introduction

Multiple sclerosis (MS) is a chronic multifocal inflammatory disease of the central nervous sys-

tem (CNS). MS lesions are characterised by immune cell infiltrates, demyelination, axonal

degeneration and astrogliosis. Early in disease pathogenesis, repair mechanisms compensate

ongoing CNS damage. Over time, these mechanisms become insufficient, resulting in the

accumulation of permanent disability.

Th17 cells have been implicated in MS pathogenesis. These cells are characterised by the

production of proinflammatory cytokines such as IL-17A, IL-17F, IL-21, IL-22 and GM-CSF.
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Several lines of evidence highlight the involvement of Th17 cells in experimental autoimmune

encephalomyelitis (EAE) and MS. In EAE for instance, IL-17 deficient mice show delayed

onset and decreased disease severity and disease cannot be induced in IL-23p19 or IL-23R

knock-out mice [1, 2], suggesting a strong implication of the IL-23/IL-17 pathway in CNS

autoimmunity. In MS, higher levels of IL-17 mRNA and protein have been detected in PBMCs

and cerebrospinal fluid (CSF) cells [3–5]. However, the mechanisms by which Th17 cells are

pathogenic are still not fully understood.

Some findings question however the primary role of IL-17 in the pathogenicity of Th17

cells. Notably, IL-17-deficient mice can still develop EAE, although with a milder course, and

IL-17 neutralization only attenuates the disease [1]. Conversely, as GM-CSF-deficient mice are

completely resistant to EAE induction, this cytokine could be crucial to disease pathogenesis

[6]. In humans, GM-CSF can promote monocytic migration across the blood-brain barrier

and a pro-inflammatory phenotype in CCR2+ monocytes [7, 8].

Th17 cells have also been shown to produce IL-22. Together with IL-24 and IL-26, IL-22

belongs to the IL-10 cytokine family. In the murine setting, Th17 cells seem to be the major IL-

22 producers [9]. In humans, a cell linage distinct from Th1, Th2 and Th17 has been described

and named Th22 [10]. Although IL-22 knock-out mice remain fully susceptible to EAE, the

role of IL-22 needs to be clarified since a single-nucleotide polymorphism located near

IL22RA2 has been established as an MS risk factor [11].

Th17 cells with immunosuppressive functions have been identified in several human dis-

eases [12–14]. These cells express the ectonucleotidase CD39 which degrades extracellular

ATP to AMP. As ATP stimulation of immune cells induces largely proinflammatory responses

such as activation of the inflammasome and subsequent IL-1β maturation, its degradation by

CD39 contributes to decrease the inflammatory microenvironment [15]. Furthermore, AMP

is in turn rapidly degraded to adenosine by CD73. Adenosine has general inhibitory effects on

lymphocytic migration into inflamed areas through A2A receptor signalling [16].

Glucocorticoids (GC), particularly intravenous methylprednisolone (ivMP) are used since

the early 1950s and still represent the agent of choice in the treatment of acute MS relapses.

Their therapeutic effects are related to multiple immunosuppressive mechanisms, acting in

various ways to decrease cytokine production, immune cell extravasation and to induce apo-

ptosis. In the setting of MS relapses, GC could have a dual role, by inhibiting proinflammatory

processes [17], but also by increasing the production of anti-inflammatory molecules such as

CD39, IL-10 and TGF-β [18–20].

Th17 cells and their related cytokines such as GM-CSF and IL-22 have been repeatedly

linked to MS and EAE. However, the cytokine expression profile of Th17 cells in the setting of

MS and according to disease activity is not fully described. In this study, we aimed to charac-

terize Th17-associated cytokines during MS relapses in comparison to the remitting phase of

the disease and to HC (healthy controls). Furthermore, we evaluated the impact of ivMP treat-

ment on these immunological markers.

Material and methods

Subjects

The study was approved by the local ethics committee (Comité d’Ethique hospitalo-facultaire,

Cliniques Universitaires Saint-Luc, Université Catholique de Louvain) and written informed

consents were obtained from all patients. A total of 80 patients with MS, according to revised

McDonald’s Criteria, were enrolled in the study [21]. Blood samples were used for the different

experiments. Patients were between 18 and 63 years old. Blood samples were collected from 35

healthy controls (HC). Clinical and demographic features are summarized in Table 1.
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23 patients had a stable disease (Stable MS) without any acute clinical event or disability

progression at least 6 months before sampling. Four stable patients were treated with glatira-

mer acetate. They were included in the study, since GA did not affect cytokine expression at

the mRNA level (van Pesch et al., unpublished data). Blood samples were collected from a total

of 57 relapsing patients (Relapsing MS) who presented with a mono- or multifocal neurologi-

cal deficit, compatible with MS, lasting more than 24 hours, which was not associated with

fever or infection, before administration of ivMP (1g/day for 3 or 5 days). Among these

patients, none was previously treated with a disease-modifying drug. 27 samples were collected

from relapsing MS patients before the last administration of ivMP on day 5 (ivMP MS). Stable

patients were older than relapsing patients. Several years of follow-up are required to deter-

mine that a patient with clinically definite MS is stable and to allow eventually suspension of

immunomodulatory treatment. This delay accounts for the age difference observed between

the patients recruited in the relapsing group and those included in the stable cohort.

Blood samples collection and PBMC culture

For serum studies, blood samples were collected in S-Monovette tubes (Sarstedt), centrifuged

at 3600 rpm for 6 min, aliquoted and stored at -80˚C for later analysis.

Peripheral blood mononuclear cells (PBMCs) were prepared by Ficoll-Paque PLUS (GE

Healthcare) density gradient centrifugation. Cells were stored in liquid nitrogen until further

use in sterile freezing solution containing 60% of RPMI1640 medium (Gibco), 30% of sterile

heat-inactivated human serum and 10% of dimethyl sulfoxyde. Vials were thawed in 37˚C

water bath and washed with RPMI1640 medium with 10% fetal calf serum (Gibco). PBMCs

were cultured in X-VIVOTM10 medium (Lonza) with IL-2 (5U/ml). For in vitro MP analysis,

PBMCs from healthy individuals were cultured in presence or absence of 1μM of MP during

24h. Cells were then stimulated during 2h with PHA.

cDNA synthesis and qPCR

mRNA were extracted from PBMCs either ex vivo, without any in vitro culture, or after 4h of

stimulation with PMA (50ng/ml) and ionomycin (500ng/ml). RNA was isolated using the

RNeasy mini kit (Qiagen) according to the manufacturer’s protocol. Reverse transcription and

qPCR assays were performed as previously described [17]. The relative amount of transcripts

Table 1. Main demographic features of MS patients and healthy control groups.

A n Mean age SD % Female Disease duration (years) MSSS

Relapsing MS 57 35.0 10.3 77.4 5,35 (0,01–37) 2,23 (0,1–7.8)

Stable MS 23 45.9 9.0 77.3 12.67 (2–27) 2.93 (0–7.59)

HC 35 34.9 10.3 71.4 NA NA

B Mean (min-max)

pre-relapse EDSSb 0 (0–2.5)

Relapse EDSSb 2 (1–4)

Relapse duration (days) 13.26 (1–60)

new MRI lesions a, b 2 (0–4)

Gd-enhanced lesionsb 1 (0–10)

(A) Mean age, standard deviation of age (years), % of female, disease duration and MS severity score (MSSS) for each patient subgroups. (B) Clinical

characteristics of relapsing MS patients.

a) Not applicable for Clinically isolated syndrome patients, Not done for 9 Relapsing-Remitting MS patients

b) Median of the group

https://doi.org/10.1371/journal.pone.0173780.t001
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was determined by normalizing to Abelson gene (ABL) using the comparative Ct method (2-

ΔΔCt). ABL mRNA levels were not affected by ivMP treatment. Results are expressed relative to

the mean of the healthy control patients set at 1. Scatter dot plots show relative mRNA expres-

sion levels in PBMCs. Primer sequences are detailed in S1 Table.

ELISA

Cytokine concentrations were determined in duplicate using sandwich enzyme immunoassays

for quantitative measurement in the patient serum and/or the supernatant following manufac-

turer instructions. GM-CSF was measured in serum samples and culture supernatants using a

sandwich DuoSet ELISA (RandD Systems). Culture supernatants were collected after 4h of

stimulation with PMA (50ng/ml) and ionomycin (500ng/ml). Detection range started at

15.6pg/ml. IL-22 concentrations were measured using the Quantikine IL-22 Immunoassay

(R&D Systems) in serum and culture supernatants collected after overnight stimulation with a

polyclonal stimulation reagent CytoStim (Miltenyi Biotec). The minimal detection level was

2.7pg/mL. IL-26 concentration in the serum was determined using an ELISA kit for human

IL-26 (Gentaur). The minimal detectable level of IL-26 was 5.5 pg/mL.

FACS

PBMCs were stimulated with PMA (50ng/ml) and ionomycin (500ng/ml) in the presence of

GolgiStop (BD Biosciences) for 4h. Cells were fixed and permeabilized according to the manu-

facturer’s instructions (BD Cytofix/Cytoperm; BD Biosciences,). Anti-human monoclonal

antibodies used for surface staining were: anti-human CD3, CD4 and CD39 (BioLegend). The

following antibodies were used to perform intracellular cytokine staining: GM-CSF, IL-17

(BioLegend) and IL-22 (eBioscience). Both unstained and unstimulated cells were used as con-

trols. Compensations have been set up using OneComp eBeads (eBioscience). Gating strategy

is detailed in S1 Fig. Data were acquired in duplicate on a LSR Fortessa instrument (BD Biosci-

ences) and analysed using the FlowJo software (Tree Star Inc.).

Statistical analysis

All statistical analyses were performed with GraphPad Prism 5 software. To test for differences

before and after five days of ivMP treatment as well as for in vitro experiments with MP, non-

parametric Wilcoxon’s signed rank tests were performed. Relapsing and stable MS patients

and HC were compared using non-parametric one-way ANOVA (Kruskal-Wallis test) fol-

lowed by a post-test analysis (Dunn’s multiple comparison tests). P-values� 0.05 were consid-

ered statistically significant.

Results

Ex vivo GM-CSF mRNA and GM-CSF-producing cells are similar in

relapsing or stable MS and in HC

Data obtained from EAE studies suggest a role for GM-CSF in autoimmune neuroinflamma-

tion. Therefore, we wanted to analyse the expression of this cytokine in MS patients, according

to clinical disease activity. GM-CSF was not quantifiable by ELISA in the vast majority of the

serum samples analysed (16/18 relapsing MS patients, 17/17 stable patients and 18/19 HC,

data not shown). Ex vivo GM-CSF transcript levels in PBMCs were comparable between MS

patients and HC (Fig 1A, Table 2).

In order to evaluate GM-CSF expression in response to T-cell activation, cellular mRNA

levels and GM-CSF concentration in culture supernatants were determined. Although the
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level of GM-CSF tends to decrease in stable MS patients, the difference was not statistically sig-

nificant (Fig 1B). Of note, we observed that the mRNA and protein levels were correlated

(Spearman’s r = 0.495, p = 0.0085; data not shown) but were not correlated with age (Spear-

man’s r = 0.05, p = 0.78), despite the age difference between the stable and remitting patient

cohorts.

We next aimed to quantify the frequency of GM-CSF-producing T helper cells. To do so,

GM-CSF+CD4+ T cells were analysed by Fluorescence-activated cell sorting (FACS) following

in vitro stimulation by PMA (Phorbol-12-Myristate-13-Acetate) and ionomycin. In agreement

with the previous results, the proportion of GM-CSF+CD4+ T cells was comparable in relaps-

ing and remitting MS as well as in control subjects (Fig 1C, Table 2).

Ex vivo IL-22 mRNA and IL-22-producing T cells are increased in

relapsing compared to remitting MS

The identification of a single-nucleotide polymorphism downstream of the IL22RA2 gene as

an MS risk loci as well as the implication of IL-22 in various immune-mediated diseases led us

to study this cytokine according to MS disease activity. We measured the ex vivo expression of

the IL-22 transcript in total PBMCs from relapsing and remitting MS patients as well as from

HC (Fig 2A, Table 3). IL-22 mRNA was significantly increased in relapsing patients in com-

parison to stable patients (p = 0.0002) and to HC (p = 0.0025). The median mRNA level in

patients experiencing a MS relapse was 7.1 and 2.13 times higher than in stable individuals and

Fig 1. GM-CSF mRNA and GM-CSF-producing cells in PBMCs from relapsing and stable MS patients and from healthy controls (HC).

Quantitative-PCR to measure GM-CSF mRNA expression (A) ex vivo (Relapsing MS: n = 30, Stable MS: n = 16, HC: n = 18) and (B) after 4h of

stimulation by PMA/ionomycin (Relapsing MS: n = 14, Stable MS: n = 10, HC: n = 12). (C) PBMCs were stained for GM-CSF, CD3 and CD4 after 4h

stimulation by PMA/ionomycin in the presence of a protein transport inhibitor and analysed by flow cytometry (Relapsing MS: n = 15, Stable MS:

n = 12, HC: n = 15). Scatter dot plot illustrates the percentage of GM-CSF+CD4+ cells. The horizontal lines of scatter plots represent the median value

in all subgroups.

https://doi.org/10.1371/journal.pone.0173780.g001

Table 2. GM-CSF expression analysis in PBMCs of MS patients and HC.

GM-CSF Relapsing MS Stable MS Healthy controls ANOVA p-value

Median Range Median Range Median Range

Ex vivo PBMCs mRNA levels 1.11 0.23–5.21 0.99 0.35–2.72 1 0–1.69 0.6

In vitro stimulated PBMC mRNA levels 1.11 0.16–5.33 0.47 0.13–7.38 1 0.46–1.92 0.13

GM-CSF+ cells (% CD4+ T cells) 7.51 3.48–16.47 5.52 0.08–14.8 7.77 4.98–16.43 0.11

GM-CSF mRNA was quantified by qPCR either ex vivo or following 4h in vitro stimulation by PMA/ionomycin. Results are expressed relative to the mean of

the healthy control patients set at 1. GM-CSF+CD4+ T cells were quantified by FACS upon stimulation in the presence of a protein transport inhibitor.

Relapsing and stable MS patients and HC were compared using non-parametric one-way ANOVA (Kruskal-Wallis test).

https://doi.org/10.1371/journal.pone.0173780.t002
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in control subjects respectively. There was no correlation between the mRNA expression level

of IL-22 and clinical characteristics such as age, duration of relapse, localization of relapse,

EDSS at the time of relapse, Multiple Sclerosis Severity Score, lesion load on MRI assessed by

the Barkhof criteria, presence or absence of spinal cord lesion on MRI, presence or absence of

gadolinium enhancement on MRI, presence or absence of oligoclonal bands in the CSF, clini-

cal status (Clinically isolated syndrome, patients fulfilling the 2010 McDonald criteria for MS

or patients with clinically definite MS) and disease duration. IL-22 was undetectable by

Enzyme-linked immunosorbent assay (ELISA) (<15.6pg/ml) both in the serum and in the

CSF of MS patients (data not shown).

Upon polyclonal stimulation, PBMCs from MS patients and HC produced IL-22 mRNA at

comparable levels although there was a tendency for decrease in IL-22 messenger in stable MS

patients (Fig 2B). In order to investigate IL-22 secretion by PBMCs from relapsing patients,

IL-22 concentration was measured in culture supernatants. PBMCs from patients and controls

secreted IL-22 in the same range (90–1300 pg/ml) following activation (data not shown). We

Fig 2. IL-22 mRNA and IL-22-producing cells in PBMCs from relapsing and stable MS patients and from healthy controls (HC). Quantitative-

PCR to measure IL-22 mRNA expression (A) ex vivo (Relapsing MS: n = 56, Stable MS: n = 16, HC: n = 37) and (B) after 4h of stimulation by PMA/

ionomycin (Relapsing MS: n = 14, Stable MS: n = 10, HC: n = 12). (C) PBMCs were stained for IL-22, CD3 and CD4 after 4h stimulation by PMA/

ionomycin in the presence of a protein transport inhibitor and analysed by flow cytometry (Relapsing MS: n = 15, Stable MS: n = 12, HC: n = 14).

Scatter dot plot shows the percentage of IL-22+CD4+ T cells. The horizontal lines of scatter plots represent the median value in all subgroups. * and

*** indicate respectively p-values� 0.05 and� 0.001.

https://doi.org/10.1371/journal.pone.0173780.g002

Table 3. IL-22 expression analysis in PBMCs of MS patients and HC.

IL-22 Relapsing MS Stable MS Healthy controls ANOVA p-

value

Dunn’s Multiple Comparison Test

Median Range Median Range Median Range Relapsing MS

vs HC

Relapsing MS vs

Stable MS

HC vs

Stable MS

ex vivo PBMC mRNA

levels

2 0–42.27 0.29 0–2.59 0.96 0–5.84 < 0.0001 * *** ns

in vitro stimulated

PBMC mRNA levels

1.71 0.13–

4.99

0.59 0.02–

4.36

1.2 0.06–

6.7

0.15 NA NA NA

IL-22+ cells (% CD4+ T

cells)

0.14 0–0.81 0.05 0–0.16 0.25 0.85 0.03 ns * ns

IL-22 mRNA was quantified by qPCR either ex vivo or in vitro after 4h stimulation by PMA/ionomycin. Results are expressed relative to the mean of the

healthy control patients set at 1. IL-22+CD4+ T cells were quantified by FACS upon PMA/ionomycin stimulation in the presence of a protein transport

inhibitor. Relapsing and stable MS patients and HC were compared using non-parametric one-way ANOVA (Kruskal-Wallis test). In case of a significant

ANOVA, post-test analysis was performed (Dunn’s multiple comparison tests). In the figures

* and *** indicate p-values of�0.05 and�0.001 respectively. NA not applicable, ns non significant.

https://doi.org/10.1371/journal.pone.0173780.t003
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then evaluated the proportion of IL-22-producing T helper within the circulating cells. Using

flow cytometry, we found that the percentage of IL-22+CD4+ T cells was significantly increased

during MS relapses in comparison to the stable phase of the disease (Fig 2C, Table 3).

Ex vivo IL-24 and IL-26 mRNA are comparable in relapsing or stable MS,

and in HC

IL-24 and IL-26 are members of the IL-10 family of cytokines just as IL-22. IL-22 and IL-24

have been shown to play redundant functions because they share the same cytokine receptor

subunit IL-22R1. In addition, human Th17 have been shown to produce IL-26 after differenti-

ation from naïve CD4+ T cells. Therefore, ex vivo IL-24 and IL-26 mRNA were analysed but

no difference in PBMCs transcript levels was found between MS patients and HC (S2A and

S2B Fig). Similarly, following PBMC stimulation, mRNA levels were similar between relapsing,

stable patients and HC (S2C and S2D Fig).

The hypothesis that IL-26 levels could vary in the serum of MS patients has recently

emerged. Therefore, we measured IL-26 in serum samples from patients and controls.

Although no difference between groups was detected, IL-26 concentrations ranged from 0.75

to 70.73 pg/ml (S2E Fig).

GM-CSF, IL-22 and CD39 expression by Th17 cells during MS relapses

We aimed to further characterise the expression of GM-CSF, IL-22 and CD39 by Th17 lym-

phocytes. The proportion of Th17 lymphocytes expressing GM-CSF, IL-22 and CD39 were

comparable between relapsing and stable MS patients (S3 Fig and S2 Table). In humans,

GM-CSF producing-cells could represent a Th17-independent subtype of T cells. To explore

whether Th17 cells express GM-CSF, we assessed the co-expression of those cytokines. On

average, 8.14% of CD4+ T cells expressed GM-CSF (Fig 3A, Table 4). 7.96% of the CD4+ T

cells produced GM-CSF alone while 0.18% of CD4+ T cells were GM-CSF+IL-17+, forming a

distinct cell subpopulation. Thus, 38.99% of the IL-17+CD4+ T cells were positive for GM-

CSF.

Fig 3. FACS analysis of GM-CSF, IL-22 and CD39 coexpression with IL-17 in CD4+ T cells. PBMCs were fixed and stained after 4h stimulation by

PMA/ionomycin in the presence of a protein transport inhibitor. CD4+ cells were gated among the CD3+ population. Representative dot plots of (A)

GM-CSF, (B) IL-22 and (C) CD39 costaining with IL-17. Numbers in each quadrant represent the average percentage of positive CD4+ T cells in relapsing

MS patients.

https://doi.org/10.1371/journal.pone.0173780.g003

IL-22, GM-CSF and IL-17 in T cells during MS relapses and remission

PLOS ONE | https://doi.org/10.1371/journal.pone.0173780 March 16, 2017 7 / 16

https://doi.org/10.1371/journal.pone.0173780.g003
https://doi.org/10.1371/journal.pone.0173780


IL-22 could be part of the Th17 cytokine signature or alternatively be produced by an inde-

pendent subset of T cells (Th22). Furthermore, under certain conditions, the proinflammatory

properties of IL-22 could depend on its coproduction with IL-17. Therefore, we intended to

characterize IL-17 and IL-22 coproduction. PBMCs were isolated from MS patients and stimu-

lated with PMA and ionomycin. On average, 0.36% of CD4+ cells were positive for IL-22. 0.3%

of CD4+ T cells expressed IL-22 without IL-17 while only 0.06% coexpressed the two cytokines

(Fig 3B, Table 4). Based on these figures, double positive cells represented 12.94% of IL-17+

CD4+ T cells. On average, 9.27% of Th17 lymphocytes simultaneously expressed IL-22 and

GM-CSF.

In contrast to pathogenic Th17, Th17 with suppressive activity have been described. These

suppressive Th17 express high levels of the ectonucleotidase CD39. Therefore, we intended to

investigate whether IL-17+CD4+ T cells expressed CD39 during MS relapses. As illustrated in

Fig 3C, 3.03% of the CD4+ T cells expressed CD39 on their cellular membrane following stim-

ulation. CD39+ cells represented 12.36% of Th17 lymphocytes (Table 4).

Impact of ivMP on GM-CSF and IL-22

IvMP is a potent anti-inflammatory agent that exerts multiple effects on the immune system.

Here, we intended to further investigate the impact of ivMP on IL-22 and GM-CSF. First, we

measured the ex vivo mRNA expression levels in total PBMCs from relapsing MS patients

before and after 5 days of ivMP treatment (Fig 4, S3 Table). We then quantified mRNA expres-

sion and the frequency of IL-22 and GM-CSF-producing CD4+ T cells in response to poly-

clonal stimulation by FACS.

GM-CSF mRNA was decreased by 80% 5 days after ivMP treatment in circulating cells of

MS patients (Fig 4A). However, following in vitro polyclonal stimulation, GM-CSF mRNA

was expressed at similar levels independently of previous exposure to ivMP (Fig 4B).

Table 4. Characterisation of GM-CSF, IL-22 and CD39 expression by Th17 lymphocytes during MS

relapses.

(A) % of CD4+ T cells

IL-17+ 0.47

GM-CSF+ 8.14

GM-CSF+IL-17- 7.96

GM-CSF+IL-17+ 0.18

IL-22+ 0.36

IL-22+IL-17- 0.3

IL-22+IL-17+ 0.06

CD39+ 3.03

CD39+IL-17- 2.97

CD39+IL-17+ 0.06

(B) % of IL-17+CD4+ T cells

GM-CSF+ IL-17+ 38.99

IL-22+ IL-17+ 12.94

IL-22+ GM-CSF+ IL-17+ 9.27

CD39+ IL-17+ 12.36

PBMCs were stimulated during 4h with PMA/ionomycin in the presence of a protein transport inhibitor. (A)

The mean percentages of CD4+ T cells expressing GM-CSF, IL-22 and CD39 alone or in combination with

IL-17 are presented. (B) Mean percentage of IL-17+CD4+ T cells expressing GM-CSF, IL-22 and CD39.

https://doi.org/10.1371/journal.pone.0173780.t004
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Paradoxically, the treatment significantly increased the frequency of GM-CSF-producing

CD4+ T cells by approximatively 10% (Fig 4C).

Surprisingly, the mRNA expression of IL-22 was not influenced by 5 days of ivMP therapy

both ex vivo and following in vitro stimulation (Fig 4D and 4E). Similarly, the proportion of

IL-22+CD4+ T cells did not change after in vivo exposure to MP (Fig 4F). These results suggest

that in vitro activated PBMCs respond to the stimulation independently of previous in vivo
exposure to MP.

Fig 4. GM-CSF and IL-22 before and after intravenous methylprednisolone (ivMP) treatment in paired samples of relapsing MS patients.

Quantitative-PCR to measure GM-CSF and IL-22 mRNA expression ex vivo (A, n = 13 and D, n = 17) and (B, n = 8 and E, n = 8) after 4h stimulation

by PMA/ionomycin. Results are expressed relative to the mean of the relapsing patients set at 1. PBMCs were stained for GM-CSF (C, n = 8) or IL-22

(F, n = 15), CD3 and CD4 after 4h stimulation by PMA/ionomycin in the presence of a protein transport inhibitor and analysed by flow cytometry. The

horizontal lines of scatter plots represent the median value in all subgroups. (G) PBMCs of HC (n = 5) were treated with methylprednisolone (MP) for

24h and stimulated 2h with PHA. Error bars represent the standard error of the mean. * and *** indicate respectively p-values� 0.05 and� 0.001.

https://doi.org/10.1371/journal.pone.0173780.g004
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To analyse further the effects of MP on IL-22 and GM-CSF, PBMCs were cultured in the

presence of 1μM of MP during 24h. Cells were then stimulated during 2h. These experiments

clearly indicated that in vitro treatment of PBMCs with MP decreased the expression of both

IL-22 and GM-CSF mRNA (Fig 4G). Similar results were obtained for IL-26 (data not shown).

Discussion

Since their discovery, Th17 cells and their signature cytokine IL-17 have been largely incrimi-

nated in the development of EAE and MS [22, 23]. However, the pathogenicity of IL-17-pro-

ducing T helper cells cannot be attributed to this single cytokine. For instance, IL-17-deficient

mice are not protected against EAE induction but show delayed disease onset and decreased

EAE severity [1]. On the contrary, GM-CSF -/- mice are completely resistant to EAE induction

[6]. Therefore, GM-CSF has emerged as a possible mediator of Th17 pathogenicity, notably

through the recruitment of myeloid cells and the induction of a pro-inflammatory phenotype

in CCR2+ monocytes [8]. Consequently, GM-CSF neutralizing antibodies have been devel-

oped and are evaluated as a novel therapeutic approach for MS [24]. In this study, we evaluated

the expression level of GM-CSF from relapsing and stable MS patients. GM-CSF mRNA and

protein levels are comparable between MS patients and healthy controls. Considering these

results, GM-CSF alone cannot serve as a biomarker of disease activity. Some authors have sug-

gested that GM-CSF levels are increased in the CSF of MS patients in comparison to neuro-

myelitis optica and healthy subjects [25]. However, in our experiments, we could not detect

measurable levels of this cytokine in CSF samples.

Similarly to GM-CSF, IL-22 is also considered as a Th17-related cytokine. Although the

understanding of the cellular source and molecular regulation of IL-22 has significantly pro-

gressed in recent years, its role in MS remains to be clarified. In 2011, Almolda and colleagues

investigated the kinetics of IL-22 levels in acute EAE model. They showed that the level of IL-

22 was high during the induction phase of EAE while it was markedly decreased during recov-

ery [26]. However, IL-22 knockout mice immunized with MOG peptides developed EAE simi-

lar to wild type controls [27]. This result suggests that IL-22 is not directly involved in disease

pathogenesis in the murine model of MS. In humans, a study conducted on a small cohort of

five patients suggested an increased number of IL-22-producing cells in active MS [5]. Further

investigations revealed an elevated number of Th22 cells, particularly in relapsing MS [28]. In

addition, a single-nucleotide polymorphism downstream of the IL22RA2 gene was associated

with an increased MS risk [11]. Here, we show an increase in ex vivo IL-22 mRNA expression

from PBMCs of relapsing MS patients. However, in agreement with Rolla et al., we did not

find any correlation between IL-22 expression and any disease characteristics [28]. We could

also observe a decrease of IL-22 producing CD4+ T cells in stable compared to relapsing

patients. IL-22 is elevated in the serum of patients with psoriasis, Crohn‘s disease and Guillain-

Barré syndrome [29–31]. In our hands, it was undetectable both in the serum and CSF samples

of MS patients.

IL-22 is a member of the IL-10 family of cytokines, also including IL-24 and IL-26. IL-22

and IL-24 share the cytokine receptor subunit IL-22R1 and these cytokines have been shown

to play redundant functions [32]. To our knowledge, IL-24 has never been studied in the con-

text of MS but this cytokine is likely involved in other chronic inflammatory-mediated dis-

eases. For instance, studies on psoriasis and inflammatory bowel disease suggest a role of IL-24

in disease pathogenesis [33, 34]. Similarly to GM-CSF, IL-26 can be secreted by human Th17

cells. Of note, intriguingly, the IL-26 gene is absent in mice. Only a few studies have analysed

IL-26 in MS but it has been suggested that the level of this cytokine is higher in the serum of

MS patients [35]. However, we did not find any statistically significant difference in neither
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IL-24 nor IL-26 expression at the mRNA level between MS patients and HC. Therefore, the

observed increase in IL-22 mRNA during MS relapses is unique among members of this cyto-

kine family.

As previously mentioned, IL-22 and GM-CSF can be secreted by Th17 cells and influence

their pathogenicity. Here, we aimed to further characterize Th17 cells in the context of MS.

Therefore, we isolated PBMCs from MS patients and analysed the coexpression of IL-17 with

IL-22, GM-CSF and CD39 by CD4+ T cells. We report that nearly 40% of the IL-17+CD4+ T

cells also produce GM-CSF in our experimental conditions. In mice, GM-CSF is usually

described as a Th17-related cytokine [36]. However, it has recently been suggested that naïve

murine CD4+ T cells could be differentiated in a GM-CSF+ cellular subset distinct from Th1

and Th17 cells [37]. In humans, experimental data have suggested that GM-CSF rather associ-

ates with the Th1 profile [38]. According to our results, most GM-CSF-positive CD4+ T cells

do not express IL-17. However, in 2011, Hirota and co-workers showed that murine Th17 cells

could shut down IL-17 expression and progressively deviate to IL-17- T cells that produce

other inflammatory cytokines [39]. Thus, GM-CSF+ IL-17- T cells could still potentially origi-

nate from Th17 cells.

IL-22 has a dual role in inflammation, mediating proinflammatory properties in psoriasis but

protective functions in hepatitis and inflammatory bowel disease [40–42]. These different func-

tions for IL-22 are likely dependent on the inflammatory context. The presence of IL-17 could

direct the pathogenic versus protective role of IL-22 [43, 44]. IL-22 could synergize with IL-17 to

promote inflammation but divergent conclusions have been reported [43, 45]. Therefore, we

investigated IL-17 and IL-22 coproduction in relapsing MS patients. In our FACS study, immu-

nostaining of IL-22 in IL-17-producing CD4+ T cells was low. Indeed, less than one out of a

thousand CD4+ T cells coproduce these cytokines. Consequently, IL-22 seems to be mainly pro-

duced by other cell subsets (Th22) rather than Th17. In line with this result, in an acute EAE

model using Lewis rats immunized with MBP, Th17 cells did not produce IL-22 [26].

We have previously demonstrated an increase in the proportion of CD39+ Tregs in relaps-

ing patients [20]. An upregulation of CD39 mRNA level was also observed at the peak of EAE

[46]. In addition, Th17 cells expressing CD39 could play immunoregulatory roles by convert-

ing extracellular ATP to AMP. To our knowledge, these CD39+IL-17+ cells have not been stud-

ied in MS patients. Therefore, we attempted to quantify this cell population in circulating

PBMCs of patients. We found that CD39+ cells represented only a minor fraction (11.8%) of

Th17 lymphocytes.

Finally, we studied the impact of corticosteroid treatment administered during MS relapses

on GM-CSF and IL-22. We have shown previously that inflammatory cytokines such as IL-23,

IL-6 and IFN-γ were down-regulated following ivMP [17]. In contrast, IL-10 and CD39 were

increased after the treatment [17, 20]. Our results demonstrate that IL-22 mRNA as well as IL-

22-producing CD4+ cells are likely not influenced by in vivo exposure to MP. This is, to our

knowledge, the first report regarding the effect of ivMP on IL-22 in MS patients. Disparate

observations have been made concerning the effect of GC treatment on IL-22 in other human

diseases. These discrepancies are likely caused by variability in dosing, exposure duration,

route of administration or type of GC used [47]. In addition, several mechanisms of GC resis-

tance have been described, among which the expression of the P-glycoprotein/multi-drug

resistance type 1 in Th17 cells [48, 49].

Regarding the effect of GC on GM-CSF, we have shown that this treatment decreased ex vivo
GM-CSF mRNA levels in PBMCs but not in response to cellular activation. Surprisingly, the

proportion of GM-CSF+CD4+ T cells noticeably increased following ivMP. A higher resistance

of GM-CSF+ CD4+ T cells to GC-induced apoptosis could potentially explain this observation.

These conflicting results led us to analyse the influence of MP on cell cultures. The addition of
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MP in the culture medium clearly shut down both GM-CSF and IL-22 mRNA levels. Therefore,

based on the results of in vitro exposure to MP, the direct effect of this drug on the transcription

of these two cytokines is likely to be inhibitory. However, our results suggests that glucocorti-

coid resistance mechanisms are induced following in vivo exposure of IL-22-expressing CD4+ T

cells to ivMP, that are not present when cells are primed in vitro with MP.

In conclusion, the diagnosis of MS and more specifically of disease activity is still hampered

by the lack of specific immunological biomarkers. Identification of such markers would be a

useful tool to guide therapeutic decisions in MS. In addition, these biomarkers could serve in

disease monitoring and assessment of therapeutic efficacy. Our results indicate that the IL-22

transcript is increased in relapsing MS patients. It could also be produced by other cell types

such as innate lymphoid cells, as recently suggested by Gross et al [50]. Currently, we do not

know the physiological meaning of this increase. Further analyses are conceivable but appear

challenging. In fact, as IL-22R is not expressed on immune cells, the downstream targets of IL-

22 cannot be investigated from human blood samples. Potential targets could rather be located

within the CNS such as astrocytes [51].

In summary, although IL-22 and GM-CSF are classically described as Th17-associated cyto-

kines, we have shown that they are mainly not co-expressed with IL-17 in CD4+ T cells from

MS patients. The proportion of GM-CSF+ CD4+ T cells is comparable between relapsing and

stable MS patients, whereas Th22 cells and IL-22 mRNA are increased during MS relapses.

Regarding the effects of corticosteroids, discrepant in vivo versus in vitro effects were found for

both IL-22- and GM-CSF-expressing cells, hinting towards the presence of GC resistance

mechanisms in these cells. These results warrant further investigation into the functionality

and targets of the complex T helper cell response in the setting of MS, to allow the develop-

ment of more specific and targeted therapeutic strategies.
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