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In the past two decades, yeast models have delivered profound insights into basic
mechanisms of protein misfolding and the dysfunction of key cellular pathways
associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins,
such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and
Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology,
including protein aggregation, mislocalization and cellular toxicity. Results from yeast
have consistently been recapitulated in other model systems and even specimens from
human patients, thus providing evidence for the power and validity of ALS yeast models.
Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their
cytotoxic consequences in ALS, we summarize exemplary discoveries that originated
from work in yeast. We also propose previously unexplored experimental strategies to
modernize ALS yeast models, which will help to decipher the basic pathomechanisms
underlying ALS and thus, possibly contribute to finding a cure.
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ALS

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease caused by loss
of the upper motor neurons, i.e., neurons that extend from the cortex to the brain stem and the
spinal cord and lower motor neurons, i.e., neurons that connect the brainstem or spinal cord to
muscle (Hardiman et al., 2017). Progressive loss of these neuron populations can manifest in two
distinct early ALS symptoms: patients diagnosed with spinal-onset display a significant weakness of
the limbs, whereas bulbar-onset leads to difficulty swallowing (dysphagia) and difficulty speaking
(dysarthria; Hardiman et al., 2017). As the disease progresses, symptoms converge and death due
to respiratory failure usually occurs within 3–5 years post diagnosis.

There is a substantial magnitude of heterogeneity of symptoms, variation of the age of onset and
of disease progression in ALS. Comorbidity is observed with non-motor neuropathology in 50%
of cases, with at least 13% of patients presenting concomitant behavioral variant frontotemporal
dementia (FTD), which identifies ALS as a spectrum disorder rather than one single disease
(Strong et al., 2017). ALS can also be grouped into either sporadic ALS (sALS), i.e., there is
no family history, which accounts for ∼90% of all ALS cases, or familial ALS (fALS), i.e., ALS
is inherited within families, which accounts for the remaining ∼10% of all ALS cases (Chen
et al., 2013). The global incidence rate of the disease is approximately 1–2 new cases per
100,000 individuals with an overall prevalence averaging at 4–6 cases per 100,000 individuals
(Chen et al., 2013). Despite considerable research efforts, the molecular mechanisms underpinning
ALS remain mostly unknown and there is no cure. The substantial heterogeneity of ALS poses a
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significant problem in deciphering unifying ALS
pathomechanisms. Yet basic cellular pathways, such as
dysregulated ribonucleic acid (RNA) metabolism and protein
misfolding and the associated toxicity appear to be highly
common and key contributing factors to ALS pathogenesis.

IMPAIRED RNA METABOLISM IN ALS

RNA metabolism is a broad term encompassing the entire life
cycle of all cellular RNAs, such as messenger RNA (mRNA),
micro RNA (miRNA) and transfer RNA (tRNA). This includes
RNA synthesis, modifications, folding and unfolding, processing
and degradation, all of which are tightly regulated by multiple
cellular pathways. RNA is synthesized from a DNA template
by the process of transcription. Transcription is carried out in
three steps of initiation, elongation and termination in a tightly
controlled manner. Following termination, the synthesized
RNA strand (hnRNA) must undergo post-transcriptional
modifications before it can be translated at the ribosome in
the case of mRNAs or processed into functional miRNAs
or tRNAs. Finally, intervening introns are excised from the
transcript to generate mature mRNAs (Krishnamurthy and
Hampsey, 2009; Sainsbury et al., 2015). Modified mRNAs are
then transported out of the nucleus and into the cytoplasm by a
set of protein factors (Rodriguez et al., 2004). These messenger
ribonucleoproteins diffuse through the nuclear pore complex
and the protein factors are gradually removed to prepare the
transcript for translation into protein by the ribosome. All RNAs
can be degraded at any stage of their life cycle, allowing for
dynamic regulation in the cell.

Perturbed RNA metabolism, particularly mRNA
metabolism, plays a crucial role in the development of many
neurodegenerative disorders, including ALS. Defects at all
stages of the mRNA life cycle are prevalent in ALS and are
mainly driven by disease-specific mutations in RNA binding
proteins (RBPs). There are 10 RBPs with known ALS mutations
in their encoding genes: ANG, EWSR1, Fused in sarcoma
(FUS), hnRNPA1, hnRNPA2B1, RGNEF, SETX, TAF15,
TIA-1 and TAR DNA binding protein 43 (TDP-43; Table 1).
These mutations lead to a broad range of deficits in RNA
metabolism, including impaired transcription of both mRNAs
and miRNAs, post-transcriptional modifications and RNA
editing. Many of the RBPs affected in ALS participate in the
formation of stress granules (SGs) under cellular stress to halt
non-essential translation and to sequester and preserve specific
mRNAs.

For example, TAF15 is a component of the TFIID complex
that is essential for RNA polymerase II transcription (Bertolotti
et al., 1996; Kwon et al., 2013). Mutations in the gene encoding
TAF15 have been uncovered in ALS patients but are not
present in unaffected controls (Couthouis et al., 2011; Ticozzi
et al., 2011). An overarching theme amongst ALS RBPs is
their structural similarities. TAF15 shares sequence and domain
homology with both TDP-43 and FUS and all three proteins may
at least partially overlap in function. Both FUS and TAF15 belong
to the FET family of heterogeneous nuclear ribonucleoproteins
(hnRNPs) and like TDP-43 and FUS, TAF15 functions in

alternative splicing and transcription. Furthermore, the majority
of TAF15 ALS mutations are located within the glycine-rich
region or prion-like-domain at the C-terminus of the protein,
with similar ALS-associated mutations found in TDP-43 and
FUS. Finally, TAF15 also mislocalizes from the nucleus into the
cytoplasm and is found in cytoplasmic inclusions, a common
pathological hallmark in ALS proteinopathy, which is also
well-established for TDP-43 and FUS.

PROTEIN MISFOLDING IN ALS

Protein misfolding describes the conversion of proteins
from their normal, mostly soluble and functional three-
dimensional conformations into aberrant, often insoluble,
non-functional conformations (Soto, 2003; Soto and Estrada,
2008; Sweeney et al., 2017). This can result in a toxic gain-
of-function or loss-of-function of the disease gene or protein,
or a combination of both, which cause neurodegeneration.
Most neurodegenerative diseases, such as Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease and ALS are protein
misfolding diseases. Genetic mutations can cause a protein to
misfold, e.g., the misfolded huntingtin protein in Huntington’s
disease. However, in Parkinson’s, Alzheimer’s and ALS,
most cases cannot be associated with any known mutations.
Environmental insults, such as changes in pH and exposure
to toxic chemicals or oxidative stress, can lead to protein
misfolding that may contribute to neurodegeneration. Finally,
the highest risk factor for most neurodegenerative diseases
is advanced age, indicating that the physiological changes
associated with aging contribute to disease-related protein
misfolding.

Like most neurodegenerative diseases, ALS is characterized by
protein misfolding and protein aggregation in affected neurons
(Sweeney et al., 2017). These misfolded proteins and aggregates,
containing proteins, such as TDP-43, FUS, C9orf72, superoxide
dismutase (SOD1) and many others, are well-established
pathological hallmarks of ALS (Okamoto et al., 1991; Watanabe
et al., 2001; Arai et al., 2006; Neumann et al., 2006; Mackenzie
et al., 2007; Kwiatkowski et al., 2009; Vance et al., 2009; Al-
Sarraj et al., 2011). Yet it remains unclear how these misfolded
and aggregated proteins execute neurotoxic functions and
contribute to the ALS-specific pattern of neurodegeneration. Like
many other neurodegenerative diseases, ALS is characterized
by the highly selective demise of specific neurons, mostly
motor neurons, while other neurons remain unaffected (Saxena
and Caroni, 2011). This implies that the affected neurons are
unable to avert the toxic consequences of ALS-specific protein
misfolding and aggregation and that the defensive mechanisms
that normally combat protein misfolding are ineffective. By
contrast, unaffected neurons seem to be able to avert the toxic
consequences of protein misfolding or even protein misfolding
itself.

The newly discovered liquid-to-solid phase transition of the
ALS protein FUS has added an additional layer of complexity to
the well-known aspects of protein misfolding (Murakami et al.,
2015; Patel et al., 2015; Monahan et al., 2017; Qamar et al.,
2018). Phase transition begins with the single monomer of an
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TABLE 1 | A list of the most common genes implicated in amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Known biological functions of each
protein are listed.

Protein RNA binding
protein

Normal function Disease Reference

TDP-43 Yes RNA metabolism ALS (FTLD/ALS) Sreedharan et al. (2008) and Kirby et al. (2010)
FUS Yes RNA metabolism ALS (FTLD/ALS) Kwiatkowski et al. (2009) and Vance et al. (2009)
SOD1 No Oxidative stress ALS Rosen et al. (1993) and Andersen (2006)
C9orf72 Yes RNA metabolism/RNA

processing, nucleocytoplasmic
transport

ALS, FTLD/ALS, FTD DeJesus-Hernandez et al. (2011)
and Renton et al. (2011)

Ataxin-2 No Caspase activation, TDP-43
modification

ALS, PD, Ataxias Elden et al. (2010)

Tau No Microtubule homeostasis FTD, AD, Tauopathy Lin et al. (2017)
OPTN No Autophagy ALS Maruyama et al. (2010)
PFN1 No Cytoskeleton, actin

polymerization
ALS Wu et al. (2012)

hnRNPA1, hnRNPA2B1 Yes RNA metabolism and transport ALS, FTLD/ALS, FTD Kim et al. (2013)
VAPB No Vesicle trafficking ALS Nishimura et al. (2004, 2005)
VCP No Protein degradation ALS, FTLD/ALS, FTD, MJD, HD, PD Johnson et al. (2010)
SETX Yes DNA/RNA Helicase, RNA

Metabolism
ALS Chen et al. (2004)

DCTN1 No Axonal transport ALS, FTLD/ALS Münch et al. (2004, 2005)
NEFH No Neurofilament component ALS Figlewicz et al. (1994)
ALS2 No Rho GEF, Vesicle transport Juvenile ALS Hadano et al. (2001) and Yang et al. (2001)
CHMP2B No Vesicle transport ALS, FTD Parkinson et al. (2006) and Cox et al. (2010)
ANG Yes RNA metabolism ALS, FTLD/ALS Greenway et al. (2004, 2006)
UBQLN2 No Targeting misfolded proteins to

proteasome, autophagy
ALS, FTLD/ALS Deng et al. (2011)

SQSTM1 No Autophagy, NFkB activator ALS, FTLD/ALS Fecto et al. (2011)
TUBA4A No Microtubule component ALS Smith et al. (2014)
7TBK1 No NFkB activator, vesicle

transport, autophagy
ALS Cirulli et al. (2015) and Freischmidt et al. (2015)

C21orf2 No Cilia formation, DNA repair ALS van Rheenen et al. (2016)
NEK1 No Cilia formation, DNA repair ALS Kenna et al. (2016)
CHCHD10 No Oxidative Phosphorylation ALS, FTLD/ALS, FTD Bannwarth et al. (2014) and Johnson et al. (2014)
TAF 15 Yes RNA Metabolism ALS Couthouis et al. (2011)

intrinsically disordered protein harboring a prion-like domain
(PrLD; St. George-Hyslop et al., 2018). The monomers exist in
liquid-liquid phase separation under physiological conditions as
spherical droplet structures. These structures are an example of
a non-membrane bound compartment distinguished from the
cytoplasm or the nucleoplasm by their condensed liquid state.
When multiple FUS droplets come into contact, they quickly
fuse and arrange into a larger droplet. This is governed by
relatively weak, transient and homotypic interactions between
the aggregation-prone domains of the protein. Patel et al.
(2015) have shown that larger droplet formations of multiple
droplets carry the potential to undergo aberrant liquid-solid
phase transition which results in the formation of solid, fibrous
aggregates. ALS-associated mutations in FUS can expedite this
process (Patel et al., 2015).

Neurodegeneration is closely linked to prion-like conversion
of properly folded to misfolded proteins and the spreading of
neuropathology from cell to cell (Scheckel and Aguzzi, 2018).
The concept of prion and prion-like-behavior is rooted in
earlier work on the mammalian prion PrP and yeast prions.
Domains of low-sequence complexity form compartments
unbound by membranes, similar to the liquid-solid phase
transition of FUS (Brangwynne et al., 2009; Kato et al.,
2012; Patel et al., 2015). Yeast prions contain low complexity

domains that readily transition into solid, aggregate fibers
rather than a liquid state (Liebman and Chernoff, 2012).
Thus, comparable domains in proteins were coined ‘‘prion-
like.’’ Low complexity PrLDs are common in RNA/DNA
binding proteins, such as FUS and TAR DNA binding protein
43 (TDP-43), and many other known ALS proteins (Gitler
and Shorter, 2011). It is plausible that prion-like conversion
and seeding mechanisms of protein misfolding is central
to the spreading of ALS pathology, e.g., from neuron to
neuron.

CELL STRESS RESPONSES—FROM
HUMANS TO YEAST

There are three major cellular stress response programs
regulating protein quality control that protect cells from the
toxic effects of protein misfolding: (1) the heat shock response
(HSR); (2) the antioxidant response (AR) both of which act in the
cytoplasm; and (3) the unfolded protein response (UPR) which
acts in the endoplasmic reticulum and secretory pathway.

The HSR is a highly conserved pathway activated to prevent
or repair the damages caused by heat and other stressors
(Richter et al., 2010). In humans and yeast the HSR is
regulated primarily by the transcription factor heat shock
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factor 1 (Hsf1), which is responsible for transient induction
of the expression of heat shock stress proteins (Hsps) and
molecular chaperones (Wu, 1984; Wu et al., 1986; Richter
et al., 2010). Oxidative stress contributes to the pathogenesis of
neurodegenerative diseases (Kim et al., 2015). Oxidative stress
is defined as the imbalance between reactive oxygen species
(ROS) and reactive nitrogen species (NOS) and the defensive
cellular AR (Camhi et al., 1995). Prolonged damage to the
cell can be inflicted by ROS on nucleic acids, proteins and
membrane lipids. Oxidative stress is a major contributor to
many neurodegenerative diseases. The UPR collectively describes
multiple pathways dedicated to maintaining proteostasis in
the ER and secretory pathway (Hetz and Papa, 2018). These
processes are constitutively active at basal levels, however, in
the presence of accumulated misfolded proteins in the ER,
quality control mechanisms become overwhelmed leading to
ER stress. This leads to rapid activation of the UPR, via three
central signal proteins, the protein kinase-like ER kinase (PERK),
activating transcription factor 6 (ATF6) and inositol-requiring
enzyme-1 (Ire1a), which results in strong induction of the
expression of proteins involved in protein folding, ER-associated
degradation (ERAD), vesicular trafficking, ER redox control,
amino acid metabolism, lipid synthesis and autophagy. Only the
Ire1 UPR signaling pathway is conserved from yeast to human
cells.

Previous work in cultured cells and transgenic mice,
strongly indicates that all three stress response pathways are
malfunctioning and contribute to ALS pathogenesis (Atkin et al.,
2008; Wang et al., 2011). Yet what role the dysregulation of
these stress response pathways plays in human ALS neurons,
particularly in those neurons strongly affected in ALS, has not
yet been examined in a systematic manner.

YEAST MODELS—OPPORTUNITIES AND
LIMITATIONS

The contributions from studies in yeast to our understanding of
basic mechanisms underlying ALS and identifying key proteins
has been substantial. Saccharomyces cerevisiae (yeast) is a single-
celled organism and was the first eukaryote to have its genome
fully sequenced (Goffeau et al., 1996). Nearly a third of yeast
genes have a direct human ortholog and more than two thirds
have significant homology with human genes (Laurent et al.,
2016). Approximately 500 genes implicated in human disease
have a direct ortholog in yeast, implicating the tractability of
yeast as a model to study human disease (Kryndushkin and
Shewmaker, 2011). The strengths of the yeast model arise from
our considerable understanding of basic cell biology, genetics and
biochemistry.

A multitude of genetic, microscopic and biochemical tools
have been developed, such as high-throughput screens, which
are not yet possible to this the same extent in any other
model eukaryotic organism. These screens are highly versatile
and allow the detection of novel genetic and protein-protein
interactions. Over-expression and deletion libraries of the entire
yeast genome allow identifying and characterizing modifiers of a
target misfolded protein. Such studies have elucidated previously

unexplored mechanisms in many neurodegenerative disorders,
including ALS (Yeger-Lotem et al., 2009; Elden et al., 2010;
Khurana and Lindquist, 2010; Treusch et al., 2011; Kim et al.,
2014).

The cellular processes that involve protein misfolding and
in turn the cellular response to protein misfolding, i.e., cellular
stress response pathways, are highly conserved between humans
and yeast (Winderickx et al., 2008). As a consequence, many
yeast models of protein misfolding diseases recapitulate the
general patterns of mislocalization, aggregation and cellular
quality control mechanisms (Figure 1; Winderickx et al., 2008).
Additionally, cellular quality control mechanisms, including the
HSR and the UPR, are heavily conserved. While the focus
of this review article is on impaired RNA metabolism and
protein misfolding, yeast models also recapitulate many other
essential mechanisms of eukaryotic biology. Cell cycle regulation,
organelle function, and DNA metabolism are all examples of
highly tractable process that can be aptly studied in yeast
(Figure 2).

Using yeast as a living test-tube undoubtedly has a firm place
in our experimental repertoire to explore neurodegenerative
diseases, yet some caveats should be considered when assessing
the suitability of yeast models. For instance, certain cellular
mechanisms, such as cytoskeletal regulation and certain aspects
of RNA metabolism, are not highly conserved between yeast
and human neurons (Lemmens et al., 2010; Kevenaar and
Hoogenraad, 2015). The simplification of such systems can
therefore be problematic if not properly considered. For example,
yeast do not contain neurofilaments, which are heteropolymers
that form the neuronal cytoskeleton along with microfilaments
and tubulin. While neurofilaments seem to contribute to ALS
pathogenesis (Mendonça et al., 2005; Petzold, 2005; Gnanapavan
et al., 2013), it might thus be problematic to study neurofilament-
associated aspects of cytoskeleton disorganization in ALS yeast
models. Similarly, certain aspects of RNA metabolism, i.e., RNA
transport, degradation and translation, differ in yeast and
mammalian cells (Lemmens et al., 2010). Only a small number
of yeast genes possess introns and there are notable differences
in the intron region of pre-mRNA that are essential for splicing
between yeast and human cells. Also, yeast does not possess
the miRNA processing machinery characteristic of human
cells. Considering the substantial amount of RNA metabolism
regulators implicated in ALS (Tables 1, 2), it is important to
understand these limitations when using yeast models. Yet, many
of the core aspects of RNA metabolism, particularly mRNA
processing, are similar between yeast and humans and, thus,
some ALS-related RNA mechanisms can most likely be evaluated
in yeast models.

Clearly, the suitability of the yeast model depends on what
research question is explored (Figure 2). It seems obvious that
there are certain questions that cannot be answered within
this single-celled organism, e.g., macro-physiological or tissue-
specific processes, such as inflammation and prion-like cell
to cell spreading from cell to cell. Also, exploring highly
specialized neuronal functions, such as synaptic communication
and axonal transport in ALS make effective studies difficult in
yeast models.
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FIGURE 1 | Protein misfolding in amyotrophic lateral sclerosis (ALS). (A) A normal cell depicting natively folded proteins in their proper location compared to ALS
cells where proteins are found mislocalized and aggregated. (B) TAR DNA binding protein 43 (TDP-43) is mislocalized from the nucleus and aggregated within the
cytosol (top left). Yeast models of ALS recapitulate these features of TDP-43 proteinopathy (top right). GFP-tagged TDP-43 wild-type expressed in yeast is found in
cytoplasmic inclusions throughout the cell. Fused in sarcoma (FUS) proteinopathy is similar to that of TDP-43 (bottom left and right). (C) Superoxide dismutase
(SOD1) is localized to the mitochondria and throughout the cytosol. In ALS, misfolded SOD1 is found aggregated at these locations.

FIGURE 2 | Suitability of the yeast model system to study various aspects of ALS. Highly conserved biological processes, such as protein misfolding and protein
quality control, are better suited for studies in yeast. Here, examples of conserved and non-conserved processes are listed for candidate ALS proteins already
studied in yeast. These ALS proteins are grouped in gray-colored boxes.
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TABLE 2 | Published ALS yeast models and their characteristics.

Human ALS protein (wild-type and
mutants)

Toxicity Aggregation Reference

TDP-43 G294A, Q331K, M337V,
Q343R, N345K, R361S, N390D

Yes Yes Johnson et al. (2009), Armakola et al. (2011), Braun et al. (2011), Kryndushkin and
Shewmaker (2011), Sun et al. (2011), Jackrel et al. (2014), Liu et al. (2017) and
Leibiger et al. (2018)

FUS R524S, P525L Yes Yes Fushimi et al. (2011), Ju et al. (2011), Kryndushkin and Shewmaker (2011),
Kryndushkin et al. (2011), Sun et al. (2011), Daigle et al. (2013) and Jackrel et al.
(2014)

SOD1 A3V, G36R, H47Q, G92A,
S133N

No No Nishida et al. (1994), Rabizadeh et al. (1995), Corson et al. (1998), Gunther et al.
(2004), Bastow et al. (2011) and Bastow et al. (2016)

C9orf72 (GA)50, (GR)100, (PA)50,
(PR)50

Yes Not assessed Jovičić et al. (2015) and Chai and Gitler (2018)

Ataxin-2 Q22, Q79 No Not assessed Ralser et al. (2005), Nonhoff et al. (2007), Elden et al. (2010) and Bonini and Gitler
(2011)

OPTN E50K, E478G Yes Yes Kryndushkin et al. (2012)
PFN1 C71G, T109M, M114T, E117G,
G118V, R136W, H120E

No No assessed Figley et al. (2014)

hnRNPA1, hnRNPA2B1
hnRNPA1 D262V, hnRNPA1 D262N,
hnRNPA2B1 D290V

Yes Yes Kim et al. (2013)

VAPB P56S Wild-
type—Yes
P56S—not
assessed

Yes Suzuki et al. (2009), Nakamichi et al. (2011)

VCP R155C, A232E, T761E, K524A No Wild-type,
T761E,
K524A—No
R155C and
A232E—Yes

Takata et al. (2012)

SETX No No Richard et al. (2013), Bennett and La Spada (2018)
ANG Yes Yes Jo et al. (2017)
TAF 15 Yes Yes Couthouis et al. (2011)
UBQLN2 (essential domain only) No Not assessed Gilpin et al. (2015)

Wild-type and ALS-associated mutant proteins that have been expressed in yeast are listed and categorized based on toxicity and aggregation phenotypes. Toxicity refers
to growth defects of yeast cells expressing ALS proteins. Aggregation refers to fluorescent microscopically assessed inclusions or foci. Note, that even though there is a
strong correlated between aggregation and toxicity of ALS proteins in yeast, this does not equate with a causative relation.

YEAST MODELS OF ALS

We count more than 13 published ALS yeast models, i.e., yeast
expressing different ALS-associated protein (Table 2, Van
Damme et al., 2017). Many of these are not yet developed to
the extent of the TDP-43 and FUS models, however, important
commonalities between these models are emerging. Figure 1
illustrates the aggregation and mislocalization of ALS proteins,
a hallmark of pathology that is consistently recapitulated in
yeast. It is noteworthy that even though in all listed examples
in Tables 1, 2 lists all of these ALS yeast models, the associated
proteins, and major findings. A major similarity between all these
proteins, regardless of their diverse biological function, is protein
misfolding and many of them have RNA binding function.

Of the 10 known RBPs involved in ALS, nine of them have
been successfully modeled in yeast. ANG is involved in the
processing of ribosomal RNA and has been shown to act as
stress-activated RNase that promotes SG assembly by cleaving
tRNA and inhibiting translation (Shapiro et al., 1986; Harper and
Vallee, 1989). The yeast proteome does not contain any ANG
homolog and ANG expression is highly toxic in yeast, both of
which are common features of many ALS yeast models (e.g.,
TDP-43 and FUS but not SOD1, which has a yeast homolog).
Yeast high-throughput screens using human libraries identified

genetic modifiers of ANG toxicity (Jo et al., 2017), i.e., potent
suppressors of ANG toxicity. Deletion of a subset of these
suppressor genes also attenuated protein aggregation in these
models. Four of the suppressors uncovered novel interactions
between ANG and the ALS protein OPTN.

Another RBP that has been studied in yeast is SETX, an
RNA/DNA helicase. SETX has been shown to function as
an RNA Polymerase II transcription terminator by resolving
R-loops and allowing the 5′-3′exoribonuclease Xrn2 to degrade
the RNA transcript following extended pausing at G-rich sites
(Skourti-Stathaki et al., 2011). Interactor screens in the yeast-
2-hybrid system revealed an interaction between SETX and
Rpr45, a component of the exosome complex important for
RNA turnover and quality control (Richard et al., 2013). This
interaction depends upon sumoylation of SETX. ALS mutants
of SETX were also examined, however, it was found that
ALS-associated mutations did not disrupt interaction with
Rpr45. Following up on these findings, the authors demonstrated
co-localization of SETX and Rpr45 in the nucleus in mammalian
cell lines. This occurred as a response to induced DNA
damage, suggesting a new role for the exosome is DNA
repair that may have implications in ALS (Richard et al.,
2013).
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The most prominent ALS yeast model is the TDP-43. TDP-43
is a DNA/RBP involved in RNA metabolism and one of the
most common genetic causes of ALS (Chen et al., 2013). Over
40 ALS mutations have been discovered in TDP-43 which
accounts for 4%–5% of fALS and 2% of sALS. Notably, almost all
identified mutations are missense mutations in the glycine-rich
C-terminal region, also known as a PrLD. This region is
important for protein-protein interactions and likely a central
contributor to TDP-43 misfolding (Gitler and Shorter, 2011).
TDP-43 is the most common component of hallmark ALS
cytoplasmic inclusions independent of mutated forms of the
protein (Mackenzie and Rademakers, 2008). Approximately 97%
of ALS patients demonstrate TDP-43 proteinopathy, where the
protein is found mislocalized, i.e., expelled from the nucleus
and misfolded into aggregates in the cytoplasm, a phenomenon
coined TDP-43 proteinopathy.

Yeast as a model of TDP-43 proteinopathy has proven
quite useful, recapitulating the major characteristics of the
misfolded protein in the disease (Johnson et al., 2009; Armakola
et al., 2011; Kryndushkin and Shewmaker, 2011; Sun et al.,
2011). When expressed in yeast, TDP-43 is found outside the
nucleus in soluble aggregates in the cytosol (Figure 1B). Many
of the ALS-associated mutants have also been modeled in
yeast and compared to the wild-type TDP-43 protein. These
studies revealed that ALS mutations increased the propensity
of TDP-43 to aggregate and increased toxicity (Johnson et al.,
2009; Armakola et al., 2011; Kryndushkin and Shewmaker,
2011; Sun et al., 2011). Additionally, TDP-43 is toxic in yeast
in a dose-dependent manner, making it a highly suitable
candidate for high-throughput screens to identify genes and
proteins that modulate its toxicity. From these screens many
previously undescribed genetic interactions of TDP-43 have
been identified, the most significant being the modulation of
TDP-43 toxicity by ATAXIN-2 (ATXN2), the polyQ protein
mutated in spinocerebellar ataxia type 2 (SCA2). A study by
Gitler and co-workers revealed that PBP1, the yeast homolog
of ATXN2, is a potent enhancer of TDP-43 toxicity when
overexpressed simultaneously in yeast (Elden et al., 2010).
Concurrently, when expressed in strains genetically deleted for
gene encoding Pbp1, TDP-43 toxicity was reduced. Also, the
upregulation of Pbp1 increased the number of fluorescent foci
of fluorescent protein-tagged TDP-43 in yeast. These critical
findings established the importance of ATXN2 as a common
contributor to ALS and provided yet another example of
proteins misfolding across multiple neurodegenerative disorders,
as ATXN2 can also contribute to Parkinson’s disease and
mutations in ATXN2 cause SCA2 (Imbert et al., 1996; Pulst
et al., 1996; Sanpei et al., 1996; Lorenzetti et al., 1997; Infante
et al., 2004; Nanetti et al., 2009; Fischbeck and Pulst, 2011).
Importantly, subsequent studies in human cell culture, fly and
mouse models have confirmed these results from yeast (Bonini
and Gitler, 2011).

Similarly, wild-type and ALS mutants of FUS, another
misfolded RBP in ALS, have also been successfully studied in
yeast. As with TDP-43, FUS is mislocalized from the nucleus and
found aggregated in the cytoplasm in ALS post-mortem tissues
(FUS proteinopathy) and mammalian cell models (Mackenzie

et al., 2011; Shang and Huang, 2016; Sharma et al., 2016). This
holds true in yeast, as FUS is found outside of the nucleus
and sequestered into aggregates in the cytosol (Figure 1B;
Fushimi et al., 2011; Ju et al., 2011; Kryndushkin and Shewmaker,
2011; Kryndushkin et al., 2011; Sun et al., 2011). Like TDP-43,
FUS also contains a glycine-rich region and NLS where most
ALS-associated mutations occur. Studies in yeast have helped
delineate which domains contribute to protein misfolding,
aggregation, and the formation of aberrant protein-protein
interactions (Sun et al., 2011). In addition, studies in yeast
revealed that FUS induces the formation of RNA granules and
localizes there along with other components such as Pbp1.
Furthermore, deletion of the RNA recognition motif in FUS
did not alter aggregation, however, rescued toxicity in yeast,
demonstrating that the ability of FUS to bind RNA is required for
FUS toxicity, providing an fascinating example of the interplay
between protein misfolding and RNA metabolism in ALS (Sun
et al., 2011).

hnRNPs, A2B1 and A1, are additional examples of an RBPs
with a PrLDs implicated in ALS (Kim et al., 2013). These proteins
function in partnership with TDP-43 in pre-mRNA splicing,
mRNA transport, transcript stability and translation regulation
(Martinez et al., 2016). As with TDP-43 and FUS, the disease-
causing mutations fall within the PrLD of each protein and
are predicted to enhance aggregation propensity. As a result,
they are recruited to SGs and cytoplasmic inclusions similar
to other ALS RBPs (Martinez et al., 2016). Kim et al. (2013)
characterized a yeast model expressing A2B1 wild-type and the
D290V mutant and found that both variants are highly toxic
and form fluorescent foci in yeast. HnRNPA1 wild-type and
two mutants, D262V and D262N, were also characterized in
yeast with similar phenotypes. They found that both hnRNPs
demonstrated greater toxicity in yeast than either TDP-43 or FUS
and their mutants. Unlike ALS mutants of TDP-43 and FUS,
hnRNP toxicity was not increased in the mutants. Considering
the prevalence of RBPs with PrLDs and the role these domains
play in driving the development of ALS, there is a strong basis to
conclude that both RNA metabolism and protein misfolding are
strongly linked (Kim et al., 2013).

VAPB is involved with vesicular trafficking, a process known
to be involved in ALS and many other neurodegenerative
disorders (Suzuki et al., 2009; Nakamichi et al., 2011).
Importantly, several proteins involved in autophagy and protein
degradation, such as OPTN and VCP, have also been previously
studied in yeast (Kryndushkin et al., 2012; Takata et al., 2012).

Mutations in the gene encoding Copper, Zink SOD1, a
conserved cytosolic ROS scavenger, were the first identified
genetic causes of fALS, and until the discovery of TDP-43 and
FUS in 2006, SOD1 was the only known ALS gene. There is
an extensive body of literature dedicated to the study of SOD1
wild-type and over 160 known ALS mutations (Rosen et al.,
1993; Bunton-Stasyshyn et al., 2015). Unlike TDP-43 and FUS,
SOD1 mutations are scattered throughout the entire protein and
likely affect more than one of its biochemical properties and
biological functions (Cleveland and Rothstein, 2001). SOD1 and
a subset of ALS-linked mutations have been introduced into yeast
(Tables 1, 2, Nishida et al., 1994; Gunther et al., 2004; Bastow
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et al., 2016). Intriguingly, neither the wild-type protein or any
of the currently modeled ALS mutations in yeast demonstrate
any severe growth defect (Nishida et al., 1994; Rabizadeh et al.,
1995; Corson et al., 1998; Gunther et al., 2004; Bastow et al., 2011,
2016). Deletion of the yeast SOD1 homolog revealed that human
SOD1 could fully complement the biological function of yeast
SOD1 (Martins and English, 2014). This lead to the discovery that
many of the mutated SOD1 proteins in ALS retain full enzymatic
function (Bastow et al., 2016). There is, however, a marked
propensity for the wild-type SOD1 protein and even more so
for ALS-associated SOD1 mutants to selectively aggregate close
to mitochondria where the protein may confer a toxic function
that is not yet fully understood (Figure 1C; Vijayvergiya et al.,
2005). The relationship between the ALS mutations and the
apparent toxicity remains enigmatic and seems quite distinct
from other ALS proteins studied in yeast. Also, experiments
in yeast and other model systems demonstrated interference
by mutant SOD1 with ER-Golgi transport. Unlike TDP-43
and FUS, where aggregation propensity correlates with growth
defects, yeast models of SOD1 do not reveal toxicity in the
presence of mitochondrial inclusions (Figure 1C; Nishida et al.,
1994; Gunther et al., 2004; Bastow et al., 2011, 2016). All
these results challenge a simple correlation between protein
misfolding or aggregation and toxicity for SOD1 and its
ALS-associated mutants. Traditionally, aggregation has been
considered detrimental to the cell. Yet increasing evidence
suggests that sequestering misfolded proteins can also be
protective and facilitated by cellular protein quality control
mechanisms, e.g., molecular chaperones (Chen et al., 2011;
Takalo et al., 2013). It is also known that SOD1 localizes
to intermembrane compartment of the mitochondria and
exerts a protective function against ROS, thus cautioning the
proper distinction between normal localization and aberrant
aggregation (Chen et al., 2011; Fischer et al., 2011). Continued
work in yeast and other model systems will further delineate
the intricate relationships between SOD1 and its ALS-associated
mutations and their toxicity, localization, misfolding and
aggregation.

In 2011, the discovery of intronic, hexanucleotide repeats
of the C9Orf72 gene revealed the most common cause of
fALS-FTD (Renton et al., 2011; Freibaum and Taylor, 2017).
The GGGGCC repeats lower expression of the C9Orf72 protein
product and accumulation of repeat-containing RNA may
sequester RBPs to confer a toxic gain of function. Importantly,
unconventional translation of RNA containing the GGGGCC
repeats produces aberrant dipeptide repeat (DPR) proteins that
accumulate in motor neurons and may seed the early stages of the
disease (Figure 1A; Freibaum and Taylor, 2017). There are five
different DPRs: glycine–alanine (GA), glycine–arginine (GR),
proline–alanine (PA), proline–arginine (PR) and glycine–proline
(GP). All five DPRs have been modeled in yeast and other
model systems. As in human cells and Drosophila, the GR
and PR DPRs are toxic in yeast (Jovičić et al., 2015; Chai
and Gitler, 2018). This phenotype was exploited by Gitler and
colleagues to investigate the specific causes of toxicity in high
throughput-enhancer and suppressor screens in yeast. These
studies revealed 133 gene deletions that supressed the toxicity

phenotype associated with the expression of GR100, a construct
with 100 DPRs. Many of these modifiers are related to ribosome
biogenesis. These deletions had not been identified in previous
screens for genetic modifiers of other ALS proteins (e.g., FUS
or TDP-43), suggesting a DPR-specific mechanism of toxicity
(Jovičić et al., 2015; Chai and Gitler, 2018).

THE FUTURE OF ALS STUDIES IN YEAST

Despite the considerable body of ALS yeast literature, we
argue that there remains a largely untapped potential of this
model system. Many of the complex mechanisms underlying
ALS onset might be rooted in protein-protein interactions.
Yeast is an excellent platform for the discovery of novel
interactors but also for the characterization of such relationships.
The Split-ubiquitin assay is one effective alternative to the
classical yeast-two-hybrid system that can detect protein
interactions without translocation to the nucleus and proteins
bound to the cell membrane (Johnsson and Varshavsky,
1994; Müller and Johnsson, 2008). Many methods such as
pull-down assays that detect protein-protein interactions are
also highly suitable for studies in yeast with its well-described
proteome (Xing et al., 2016). In addition, the interplay between
different ALS-associated proteins and mutations remains poorly
understood. Future protein-protein interaction and genetic
studies in yeast present the ideal scenario to retrieve novel
information of the basic biology of these interactions. For
instance, it will be important to explore how the misfolding
of one ALS protein, modulates the misfolding of another, for
example, how TDP-43 misfolding modulates SOD1 misfolding
and toxicity.

Studies on yeast prions have been tremendously successful
in deciphering basic mechanisms underlying prion propagation
and prion maintenance (Liebman and Chernoff, 2012). Yeast
prions are self-perpetuating protein aggregates or conformers
that confer a transmissible and heritable phenotype in a
non-Mendelian inheritance pattern (Liebman and Chernoff,
2012). Considering what is already known about ALS proteins
containing PrLDs (e.g., TDP-43 and FUS), and the newly
proposed mechanism of phase transition of the FUS protein,
similar investigations in yeast can probably enhance our
understanding of protein misfolding in ALS. For example, very
little is known about the events that precede the formation of
hallmark inclusions in ALS that contain both FUS and TDP-43.
Future studies in yeast could delineate the nature of recruitment
of these proteins to inclusions.

Additionally, as we recently reviewed in detail, yeast is also
a very suitable model to study the aspects of aging, which play
an important role in most neurodegeneration, including ALS
(Di Gregorio and Duennwald, 2018). In brief, there are two
distinguished paradigms of yeast aging models: chronological
and replicative aging. Chronological aging describes the length of
time a yeast cell can remain viable and replicative aging describes
the number of cellular divisions a mother cell can undergo
before senescence. Yeast growth follows the classical ‘‘S’’-curve
stages of divisions, beginning with the lag phase, transitioning
into the log phase, and finally the stationary phase (cells cease

Frontiers in Molecular Neuroscience | www.frontiersin.org 8 October 2018 | Volume 11 | Article 394

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Di Gregorio and Duennwald ALS Yeast Models

dividing). Yeast cells are ‘‘aged’’ following the diauxic shift that
occurs toward the end of the log phase. Thus, ‘‘young’’ cells
are still in lag and early log phase. These wild-type phases are
defined by different metabolic profiles and rates of division.
Importantly, aged yeast cells recapitulate many of the important
aspects of mammalian cell counterparts and specifically, aged
yeast more closely resemble neurons: older yeast cells undergo
G1 cell cycle arrest, show increased ROS and autophagy, and
metabolically switch to oxidative phosphorylation. All these are
commonalities between aged yeast and neuronal cells. Thus,
studying ALS-associated protein misfolding in aged yeast model
may reveal how aging contributes to protein misfolding and the
associated toxicity.

Yeast models can also serve to study the impact of different
metabolic states, e.g., energy production by glycolysis compared
to oxidative phosphorylation. Different yeast metabolic states
can be induced by simply altering the carbon source in their
media. Glucose is the primary carbon source preferred by yeast
and induces glycolysis and anerobic fermentation (Otterstedt
et al., 2004). In contrast, providing a non-fermentable carbon
source, such as glycerol, will switch yeast cells to a respiratory
metabolism with oxidative phosphorylation carried out by
mitochondria as the major source of ATP (Otterstedt et al.,
2004). This metabolic switch also increases ROS levels and arrest
or significantly slow down cell division (Otterstedt et al., 2004).

All these changes create many untapped opportunities to study
the impact on oxidative stress and respiratory metabolism
and mitochondrial dysfunction in ALS by simply expressing
ALS proteins in cells grown in glycerol (Braun et al.,
2011).

A surprisingly understudied area of ALS research is that
of cellular stress responses. It seems plausible that at some
point the cells’ quality control arsenal fails in ALS-affected
neurons and this ultimately gives way to cell death. As we
have previously outlined, there are three distinguished, yet
interconnected responses that become activated upon cell stress:
the HSR, the antioxidative stress response, and the UPR. Yeast
present an excellent platform to study cellular stress responses
in a quick and effective manner. In fact, the tools to do so
have already been optimized and used with great success in
yeast (Jonikas et al., 2009; Brandman et al., 2012). Reporter
constructs for each response have been developed and expressed
in yeast that rely simply on the stress response sequence target of
each response’s respective transcriptional activator (Jonikas et al.,
2009; Brandman et al., 2012).
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