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The prevalence of diabetes mellitus is rising all over the world. Uncontrolled state of hyperglycemia due to defects in insulin
secretion/action leads to a variety of complications including peripheral vascular diseases, nephropathy, neuropathy, retinopathy,
morbidity, and/or mortality. Large body of evidence suggests major role of reactive oxygen species/oxidative stress in development
and progression of diabetic complications. In the present paper, we have discussed the recent researches on the biomarkers of
oxidative stress during type 2 diabetes mellitus.

1. Introduction

Diabetes mellitus is a group of metabolic diseases character-
ized by hyperglycemia resulting from defects in insulin secre-
tion and insulin action or both.The chronic hyperglycemia is
associated with long-term damage, dysfunction, and failure
of normal functioning of various organs, especially the eyes,
kidneys, nerves, heart, and blood vessels [1, 2]. Diabetes-
specific microvascular disease is a leading cause of blindness,
renal failure, and nerve damage [3].

The prevalence of diabetes is rising all over the world due
to population growth, aging, urbanisation, and the increase of
obesity due to physical inactivity. Unlike the West, where the
older aremost affected, diabetes inAsian countries is compar-
atively high in young to middle-aged people. All these com-
plications have long-lasting adverse effects on a nation’s
health and economy, especially for developing countries. As
per estimate of the International Diabetes Federation (IDF),
the total number of people in India with diabetes which was
around 50.8million in 2010 would be 87.0million by 2030 [4].

Hyperglycaemia generates reactive oxygen species (ROS),
which in turn cause damage to the cells in many ways. Dam-
age to the cells ultimately results in secondary complications
in diabetes mellitus [5, 6]. In the present paper, we have dis-
cussed the markers of oxidative stress in diabetes mellitus.

The involvement of ROS in the aetiology and the develop-
ment of late complications have also been addressed. The re-
view further examines the main toxic effects of ROS on lipid,
protein, glutathionemetabolism, catalase, superoxide dismu-
tases, and antioxidant capacity of plasma.

2. Diabetic Complications

Diabetes is a major source of morbidity, mortality, and eco-
nomic cost to the society. People with diabetes showed the
risk of the development of acute metabolic complications
such as diabetic ketoacidosis, hyperglycaemic hyperosmolar
nonketotic coma, and hypoglycaemia [7, 8]. In addition to
this, diabetics are also at risk of experiencing chronic compli-
cations such as coronary heart diseases, retinopathy, neph-
ropathy and neuropathy, and foot ulceration [9]. A variety
of factors influence the development of diabetic pathologies.
Insulin resistance which develops from obesity and physical
inactivity acts as substrate for genetic susceptibility [10]. Since
food intake influences the amount of insulin required tomeet
blood glucose target goals, the food especially carbohydrate
intake could contribute to the pathology of diabetes. Dietary
carbohydrate influences postprandial blood glucose levels the
most and is the major determinant of meal-related insulin
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requirements. The intermediate- or longer-acting insulin
usually covers the effects of protein and fat. It has been shown
that low carbohydrate ketogenic diet is effective in the ame-
lioration of many of the deleterious consequences of diabetes
[11]. It has been observed that insulin secretion declines with
advancing age, and this decline may be accelerated by genetic
factors. Insulin resistance typically precedes the onset of type
2 diabetes and is commonly accompanied by other cardio-
vascular risk factors: dyslipidemia, hypertension, and pro-
thrombotic factors [12].

It has been estimated that expenditure of diabetic persons
on health is about four folds higher than that of general
healthy population. Recent prospective studies have provided
unequivocal evidence on crucial role of prolonged hypergly-
caemia in the development of chronic diabetic complications
[2, 6, 13].

3. Role of Oxidative Stress in Diabetes

Oxidative stress plays a pivotal role in cellular injury from
hyperglycemia. High glucose level can stimulate free radical
production. Weak defence system of the body becomes
unable to counteract the enhanced ROS generation and as a
result condition of imbalance between ROS and their pro-
tection occurs which leads to domination of the condition of
oxidative stress [14, 15]. A certain amount of oxidative stress/
ROS is necessary for the normal metabolic processes since
ROS play various regulatory roles in cells [16]. ROS are pro-
duced by neutrophils and macrophages during the process of
respiratory burst in order to eliminate antigens [17].They also
serve as stimulating signals of several genes which encode
transcription factors, differentiation, and development aswell
as stimulating cell-cell adhesion, cell signalling, involvement
in vasoregulation, fibroblast proliferation, and increased ex-
pression of antioxidant enzymes [16, 18, 19]. However over-
and/or uncontrolled production of ROS is deleterious. Due to
oxidative stress the metabolic abnormalities of diabetes cause
mitochondrial superoxide overproduction in endothelial
cells of both large and small vessels, as well as in the myocar-
dium [2, 20]. Oxidative stress acts as mediator of insulin re-
sistance and its progression to glucose intolerance and install-
ation of diabetesmellitus, subsequently favouring the appear-
ance of atherosclerotic complications, and contributes to rise
in many micro- and macrovascular complications [21].

Hyperglycaemia causes tissue damage through multiple
mechanisms including increased flux of glucose and other
sugars through the polyol pathway, increased intracellular
formation of advanced glycation end products (AGEs), in-
creased expression of the receptor for AGEs and its activat-
ing ligands, activation of protein kinase C isoforms, and over-
activity of the hexosamine pathway [22]. Atherosclerosis and
cardiomyopathy in type 2 diabetes are caused in part by path-
way-selective insulin resistance, which increases mitochon-
drial ROS production from free fatty acids, and by inactiva-
tion of antiatherosclerosis enzymes by ROS. Diabetics differ
significantly in their sensitivity to ROS. Inflammatory dam-
age that characterizes type 1 diabetes is mediated at least in
part through islet ROS, and in type 2 diabetes, the high nutri-
ent flux and consequent ROS production appear to medi-
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Figure 1: Schematic representation of the status of oxidative stress
markers during diabetes.MDA:malondialdehyde, AOPP:Advanced
oxidation protein products, PCO: protein carbonyls, GSH: reduced
glutathione, and SOD: superoxide dismutase.

ate loss of 𝛽-cell function. In insulin-sensitive tissues includ-
ingmuscle, liver, and heart, high fatty-acid flux leads to oxida-
tive damage, whereas noninsulin-sensitive tissues including
the eye, kidney, and nervous system are exposed to both high
circulating glucose and fatty acid levels and, consequently,
ROS-induced diabetic complications [23].

4. Oxidative Stress-Induced
Alterations in Diabetes

Oxidative stress in diabetes mellitus causes several adverse
effects on the cellular physiology.This is particularly relevant
and dangerous for the islet, which is among those tissues that
have the lowest levels of intrinsic antioxidant defences. Mul-
tiple biochemical pathways and mechanisms of action have
been implicated in the deleterious effects of chronic hyper-
glycemia and oxidative stress on the function of vascular,
retinal, and renal tissues [24–26]. Here we have described the
oxidative stress-induced alterations in major biomolecules in
the cell and status of plasma antioxidant potential during type
2 diabetes (Figure 1).

4.1. Lipid Peroxidation. Lipids are reported as one of the pri-
mary targets of ROS. Hydroperoxides have toxic effects on
cells both directly and through degradation to highly toxic
hydroxyl radicals. They may also react with transition met-
als like iron or copper to form stable aldehydes, such as
malondialdehyde (MDA), that damage cell membranes [27].
Peroxidation of lipids produces highly reactive aldehydes,
including MDA, acrolein, 4-hydroxynonenal (HNE), 4-
oxononenal (ONE), and isolevuglandins (IsoLGs) [28]. It has
been reported that peroxyl radicals can remove hydrogen
from lipids, producing hydroperoxides that further propagate
the free-radical pathway [29]. MDA has been documented as
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a primary biomarker of free radical mediated lipid damage
and oxidative stress [30].

Significant changes in lipid metabolism and structure
have been reported in diabetes, particularly in patients with
vascular complications [31]. Increased level of MDA in dia-
betics suggests that peroxidative injurymay be involved in the
development of diabetic complications. The increase in lipid
peroxidation is also an indication of decline in defencemech-
anisms of enzymatic and nonenzymatic antioxidants [32].
Oxidized lipids are able to produce MDA as a decomposition
product and the mechanism is thought to involve formation
of prostaglandins, like endoperoxides, from polyunsaturated
fatty acid (PUFA) with two or more double bonds [33]. In-
creasedMDA level in plasma, serum, andmany others tissues
has been reported in diabetic patients [34, 35]. In 1991,
Baynes, followed by Ramesh et al. in 2012 [36, 37], reported
that lipid peroxidation in diabetes induced many secondary
chronic complications including atherosclerosis and neural
disorders. Yang et al. (2009) observed greater serum lipid per-
oxidation evaluated in terms of MDA in hyperglycemic mice
and proposed that the increase in lipid peroxidation exac-
erbated the occurrence of myocardial infraction through
NADPH oxidase activation [38].

Lipid peroxidation of cellular structures is thought to play
a key role in atherosclerosis. Significantly higher values of
thiobarbituric acid-reactive substances (TBARS) in the red
blood cells aswell as in serumanddecreased erythrocyte anti-
oxidant enzyme activities have been reported in diabetic con-
dition [39, 40]. Increased lipid peroxidation presents a close
relationship with the high glycemic levels and oxidative stress
in diabetes mellitus [35, 41]. Recently, a clinical study per-
formed by Bandeira and coworkers (2012) aimed at character-
izing blood oxidative stress in diabetic patients reported a sig-
nificant higher lipid peroxidation which showed a close rel-
ationship with high glucose levels as observed by the fasting
glucose and HbA1c levels [35].

4.2. Protein Oxidation. Proteins are the important vital bio-
molecules of the cell.They are involved inmany physiological
functions including cell signalling and transport across the
cells. Proteins are another potential target of ROS, whose
structure and function can be affected bymodification.There
are many side chain targets for protein oxidation including
cysteine, methionine, and tyrosine. Carbonyls are the oxida-
tion product of proteins and are reported as the potent bio-
marker of oxidative stress [42]. They represent the stable end
product generated upon formation of transient radical spe-
cies, such as chloramines and nitrogen/carbon radicals,
which are induced by oxidant stimuli. Glycation has been
reported to induce the formation of protein carbonyls, such as
ketoamine derivatives, thus generating reactive radicals and
perpetuating a vicious cycle [43].

Increased protein carbonyl content has been reported in
different cells and plasma of the diabetic patients [15, 42].
Damage of proteins followed by accumulation of their oxida-
tion products affects cellular physiology adversely. Increased
glycol- and lipooxidation are reported as one of themajor fac-
tors in the accumulation of nonfunctional damaged proteins
[44].

Gradinaru et al. (2013) have reported the significance of
the oxidative and glycoxidative protein damage in subjects
with prediabetes and type 2 diabetes mellitus. AGEs, low-
density lipoprotein susceptibility to oxidation (oxLDL) and
nitric oxide metabolic pathway products (NOx), are docu-
mented as important biomarkers for evaluating the associa-
tion between diabetes and protein status in diabetic patients
[45]. AGEs are formed through nonenzymatic amino-car-
bonyl interactions between reducing sugars or oxidised lipids
and proteins, amino phospholipids, or nucleic acids [46].The
generation of AGEsmay lead to intracellularmodifications of
proteins, including those involved in the regulation of gene
expression [47]. Many studies on animals as well as on hu-
mans have frequently reported the relationship between hy-
perglycaemia, oxidative stress, and formation of AGEs [47–
49]. AGEs are capable of modifying the circulating proteins
in the blood that have receptors forAGEs, activating them fol-
lowed by inducing the production of inflammatory cytokines
and growth factors in endothelial cells [50].

Advanced oxidation protein products (AOPPs) are the
recently investigated marker of protein oxidation during oxi-
dative stress which represents the overall status of the protein
in the cell/tissue [51, 52]. In chronic oxidative stress, AOPPs
are formed by reactions between plasma proteins and chlo-
rinated oxidants. Their increased levels are reported during
type 2 diabetes. Significant positive association between
plasma levels of AOPPs and TBARS during diabetes indicates
that proteins are equally targeted by ROS as the lipids [53].

Oxidation of proteins in diabetics affects many physio-
logical functions [54, 55]. Increased protein carbonyls as well
as AOPPs level in diabetic patients underlie the importance
of the protein conformational changes in the pathogenesis of
diabetic nephropathy [56]. AOPPs known as proinflamma-
tory and prooxidative compounds that accumulate in aging
patients with diabetesmay play amajor role in increasing pre-
valence of endothelial dysfunction and subsequent cardiovas-
cular diseases. AOPPs contain abundant dityrosines which
allow crosslinking, disulfide bridges, and carbonyl groups
and are mainly formed by chlorinated oxidants, hypochloric
acid and chloramines resulting from myeloperoxidase activ-
ity [57]. Several studies have pointed out that AOPPs and oxi-
dative stress markers increase in adult subjects with type 2
diabetes with and without micro-/macrovascular complica-
tions [45, 54].

4.3. Glutathione Level. Glutathione (GSH), a tripeptide, 𝛾-L-
glutamyl-L-cysteinylglycine, is present in all mammalian tis-
sues at 1–10mM concentrations (highest concentration in
liver) as the most abundant nonprotein thiol that defends
against oxidative stress [58]. GSH can maintain SH groups of
proteins in a reduced state, participate in amino acid trans-
port, detoxify foreign radicals, act as coenzyme in several
enzymatic reactions, and also prevent tissue damage [59]. It is
an efficient antioxidant present in almost all living cells and is
also considered as a biomarker of redox imbalance at cellular
level [60]. There are several reports that claim reduced level
of GSH in diabetes [61, 62]. Decreased GSH level may be one
of the factors in the oxidativeDNAdamage in type 2 diabetics
[63].
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As a consequence of increased oxidative status, GSH
showed the frequent alteration in its concentration. Plasma
GSH/GSSG showed a significant decrease in type 2 diabetes
as compared to normal [62]. Hyperlipidemia, inflammation,
and altered antioxidant profiles are the usual complications in
diabetes mellitus as results decreased GSH/GSSG ratio [64].
Abnormal GSH status is involved in 𝛽-cell dysfunction and
in the pathogenesis of long-term complications of diabetes.
The dysregulation is widely implicated in disease states [65].
Glutathione reductase (GSR) plays an important role through
the reduction of GSSG to GSH and oxidation of NADPH to
NAD+. GSSG is unable to perform antioxidant functions;
however, GSH can be reclaimed from GSSG through the use
of glutathione reductase (GSR) by the use of NADPH as a
cofactor. Unfortunately, this GSH system can be over-
whelmed if ROS are produced in excess [66]. Uncontrolled
type 2 diabetes has severely deficient synthesis of GSH attri-
buted to limited precursor availability. Dietary supplementa-
tion with GSH precursor amino acids can restore GSH syn-
thesis and lower oxidative stress and oxidant damage in the
face of persistent hyperglycemia [67]. It has been observed
that GSH deficiency in diabetics increased their susceptibility
to melioidosis. It is hypothesized that maintenance of GSH
redox state may be a new therapeutic avenue to protect dia-
betic patients against some intracellular bacterial pathogens
[68].

4.4. Catalase. Catalase is an antioxidative enzyme present
nearly in all living organisms. It plays an important role
against oxidative stress-generated complications such as dia-
betes and cardiovascular diseases [69]. Catalase acts as main
regulator of hydrogen peroxide metabolism. Hydrogen per-
oxide is a highly reactive small molecule formed as natural
by-product of energymetabolism. Excessive concentration of
hydrogen peroxide may cause significant damages to pro-
teins,DNA,RNA, and lipids [70]. Catalase enzymatically pro-
cesses hydrogen peroxide into oxygen and water and thus
neutralizes it. Increased risk of diabetes has been documented
in patients with catalase deficiency. The deficiency of this
enzyme leads, in the 𝛽-cell, to an increase in oxidative stress
and ultimately to a failure of this cell type. 𝛽-cells are rich in
mitochondria, and thus this organelle might be a source of
ROS [71].

Catalase protects pancreatic 𝛽-cells from damage by
hydrogen peroxide [72]. Low catalase activities, which have
been reported in patients with schizophrenia and atheroscle-
rosis [73], are consistent with the hypothesis that long-term
oxidative stress may contribute to the development of a vari-
ety of late-onset disorders, such as type 2 diabetes [74]. Defici-
ency of catalase increasesmitochondrial ROS and fibronectin
expression in response to free fatty acids, which were effec-
tively restored by catalase overexpression orN-acetyl cysteine
[75]. Low catalase activities can cause methemoglobinaemia
and hemolytic anemia which may be attributed either to
deficiency of glucose-6-phosphate dehydrogenase or to other
unknown circumstances and also may damage heme pro-
teins, cause cell death, and, together with redox active metal
ions, produce highly toxic hydroxyl radicals [76, 77].

Patel and coworkers [78], during investigation of hyper-
glycemia-induced functional changes: superoxide, hydrogen
peroxide production, mitochondrial membrane polarization,
and gene expression fingerprints of related enzymes in endo-
thelial cells, have reported that hyperglycemia increased hy-
drogen peroxide production, hyperpolarized mitochondrial
membrane, and downregulated CAT gene expression.

4.5. Superoxide Dismutase. Superoxide dismutase (SOD) is
the antioxidant enzyme that catalyses the dismutation of
superoxide anion (O

2

−) into hydrogen peroxide and molec-
ular oxygen [79, 80]. SOD plays important protective roles
against cellular and histological damages that are produced by
ROS. It facilitates the conversion of superoxide radicals into
hydrogen peroxide, and in the presence of other enzymes it
converted into oxygen and water [81]. All mammalian tissues
contain three forms of SOD: Cu-Zn-SOD, Mn-SOD, and ex-
tracellular EC-SOD, and each of them is a product of a
distinct gene [82, 83]. Cu-Zn-SOD or SOD 1 (EC 1.15.1.1) is
localized in cytosol, Mn-SOD or SOD 2 (EC 1.15.1.1) in mito-
chondria, and EC-SOD or SOD 3 (EC 1.15.1.1) in extracellular
space [84, 85]. Superoxide reacts rapidly with nitric oxide
(NO), reducing NO bioactivity and producing the oxidative
peroxynitrite radical [86]. SOD, a major defender against
superoxide, in the kidneys during the development ofmurine
diabetic nephropathy and downregulation of renal SOD
(SOD 1 and SOD 3) may play a key role in the pathogenesis of
diabetic nephropathy [87]. Overexpression of SOD or the
supplements of antioxidants including SOD mimetics, tar-
geted to overcome oxidative stress, reduce ROS, and increase
antioxidant enzymes, has been shown to prevent diabetes
mellitus [88].

EC-SOD is found in the extracellular matrix of various
tissues including pancreas, skeletal muscle, and blood vessels,
and is themajor extracellular scavenger of superoxide radicals
[89].The higher level of EC-SOD resulted in a 6-fold increase
in the total superoxide dismutase activity of the islets; there-
fore, superoxide radicals secreted to the extracellular space
does not contribute to the 𝛽-cell destruction [90]. The ele-
vated level of SOD is shown to reduce oxidative stress;
decrease mitochondrial release of cytochrome C and apop-
tosis in neurons; and, in mice, prevent diabetes-induced
glomerular injury, thus suggesting a major role of SOD in the
regulation of apoptosis [91]. Decline in the level of SOD in
diabetic tissue and blood has been reported in many studies
[92–94]. Recently Kim (2013) reported that diabetic skin tis-
sues express a relatively small amount of extracellular protein
and concluded that extracellular SOD is related to the altered
metabolic state in diabetic skin, which elevates ROS produc-
tion [95]. Study performed by Lucchesi and colleagues [96] to
observe the oxidative balance of diabetic rats reported dimin-
ished activity of SOD and other antioxidative enzymes in in
the liver tissue.

5. Antioxidant Potential of Plasma

Antioxidant capacity of plasma is the primary measure and
marker to evaluate the status and potential of oxidative stress
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in the body. Plasma contains many compounds which func-
tion against the oxidative stressors in the body thus protecting
the cell and cellular biomolecules from being damaged. The
combined action of all the antioxidant molecules in the
plasma represents the antioxidant capacity of the plasma. Pre-
valence of oxidative stress is reported in all processes where
reduced/depleted plasma antioxidant potential is reported
including aging and hypertension [97, 98].

Increased oxidative damage as well as reduction in anti-
oxidant capacity could be related to the complications in pa-
tients with type 2 diabetes.The plasma antioxidant level is sig-
nificantly lower in diabetic subjects with poor glycaemic con-
trol than healthy subjects, while patients with good glycaemic
control had plasma antioxidative values similar to controls
[99, 100]. Catanzaroa et al. (2013) has reported markedly re-
duced biological antioxidant potential in sciatic nerve homo-
genates of diabetic animals. Diabetic oxidative stress coexists
with a decrease in the antioxidant status, which can further
increase the deleterious effects of free radicals [101].

Study conducted by Korkmaz et al. (2013) on 22 diabetic
patients to investigate the status of markers of oxidative stress
reported a significant reduced level of antioxidant power,
measured in terms of ferric reducing antioxidant potential of
plasma in diabetic patients. On the basis of result obtained
from their study they concluded that the increase in glucose
concentrations can lead to tissue damage by increasing oxi-
dative stress [102].

Increased oxidative stress as well as reduction in antioxi-
dant capacity could be related to the complications in patients
with diabetes such as oxidative DNA damage and insulin
resistance [99]. Due to decrease in antioxidant potential of
plasma, complications of diabetes increase which include
cardiovascular disease, nerve damage, blindness, and neph-
ropathy. Thus, the increasing incidence of diabetes is a sig-
nificant health concern beyond the disease itself [103].

6. Conclusion

Diabetes is a major source of morbidity, mortality, and eco-
nomic cost to society. The prevalence of diabetes is rising
worldwide due to population growth, aging, urbanisation,
and the increase of obesity due to physical inactivity. Oxida-
tive stress plays pivotal role in progression and development
of diabetes and its complications. Therapies, consumable or
behavioural having capacity to reduces the impact of oxida-
tive stress, may be beneficial to deplete diabetic associates
interventions.
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