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Asthma is a chronic inflammatory disorder of the airways characterized by variable
airflow obstruction and bronchial hyperresponsiveness.1,2 The pathogenesis and
etiology of asthma are very complex and not fully understood, although an interac-
tion of multiple genetic loci and a variety of environmental factors have been sug-
gested as important determinants.3-6 Among them, the promising candidate gene is
the cystic fibrosis transmembrane conductance regulator (CFTR) gene that is locat-
ed on chromosome 7q31.2 (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene).

Mutations in the CFTR gene result in abnormal epithelial ion and water
transport and may subsequently incur disturbances in airway mucociliary
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Purpose: Classic cystic fibrosis is now known part of cystic fibrosis transmem-
brane conductance regulator (CFTR)-related disorders. These include a wide
spectrum, from multi-system disorders, such as cystic fibrosis, to mono-symptomatic
conditions, such as chronic pancreatitis or congenital bilateral absence of the vas
deferens. However, respiratory disease is considered typical for the multi system
disorder, cystic fibrosis, and is the major cause of morbidity and mortality. The
purpose of this study was to evaluate the potential effects of CFTR gene mutations in
Korean children with asthma. Materials and Methods: We selected 14 mutations
identified in Korea and each of the 48 children with and without asthma were
genotyped for the case-control study. Results: No significant differences were found
in genotype and allele frequencies of the 9 polymorphisms observed between the
non-asthma and asthma groups. In a haplotype determination based on a Bayesian
algorithm, 8 haplotypes were assembled in the 98 individuals tested. However, we
also did not find any significant differences in haplotype frequencies between the
non-asthma and asthma groups. Conclusion: We have concluded that this study did
not show any evidence in support of providing that CFTR genetic variations
significantly contribute to the susceptibility of asthma in Korean children. 
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clearance.7 There are more than 1600 CFTR sequence
variations registered in the CF mutation database (http://
www.genet.sickkids.on.ca/cftr). However, the majority of
mutations have been identified in Caucasians, and further-
more, the spectrum of mutations and genetic polymor-
phism has not been well described in Asian populations. In
Korea, the presentation of classical classic cystic fibrosis
(CF) is extremely rare and there are a number of reports
regarding this subject.8-10 A few study show that some
polymorphisms and mutations of the CFTR gene are
associated with respiratory and pancreatic diseases in the
Korean population.11,12

The purpose of this study was to evaluate the possible
effect of the CFTR gene on susceptibility to asthma in
Korean children.

Subjects
48 subjects with and without asthma were recruited from
Severance Hospital at Yonsei University for this study,
comprised of fifty-seven boys and thirty-nine girls.

Asthma diagnosis was made in accordance with the
American Thoracic Society (ATS). In short, current asth-
ma was defined as recurrent wheezing or coughing in the
absence of a cold in the preceding 12 months with a phy-
sician’s diagnosis, and bronchial hyperresponsiveness
upon methacholine challenge (PC20 ≤ 16 mg/mL) or at
least 12% reversibility of forced expiratory volume in 1 s
(FEV1) after inhalation of β2 agonist.13,14 Atopy was defin-
ed as a positive skin test to more than one extract of the
common local aeroallergens, and non-atopy was defined as
a negative skin test and serum IgE concentration less than
100 IU/mL. All subjects were enrolled before the admini-
stration of oral or inhaled corticosteroids. Patients treated
with systemic corticosteroids due to asthma exacerbation
in the preceding 6 months were excluded from this study.

Non-asthma subjects were age-matched to healthy child-
ren who visited the hospital for general health workups
who had no history of wheezing, recurrent or chronic dise-
ases, infection during the preceding 2 weeks, or hypersen-
sitivity to methacholine. Non-asthma subjects also had
negative results on the skin prick test for allergens and did
not take any medications.14 All subjects did not have any
other disease history including pancreatic diseases. Written
consent was obtained from all participants before enrollment
in the study, which had been previously approved by the
Severance Hospital Institutional Review Board.

Genotyping
Whole blood was obtained from each subject and genomic

DNA was extracted by using the QIAmp DNA blood Mini
kit (QIAGEN, Hilden, Germany) as decribed.15 The geno-
typing was analyzed by a single base primer extension assay
using a SNaPShot assay kit according to the manufacturer’s
protocols (ABI, Foster City, CA, USA), and polymorphisms
in the IVS8 TGn and Tn microsatellites were analyzed by
bi-directional nucleotide sequencing. Briefly, the genomic
DNA region containing both of the single nucleotide
polymorphism (SNP) was amplified with PCR reaction.
Each PCR reaction contained: 10.0 ng of DNA, 1X PCR
Buffer, 0.125 units of AmpliTaq Gold DNA polymerase
(ABI), 3.0 mM MgCl2, 0.25 mM of each dNTP, and 0.5
pmole of each primer in 10 µL reaction volume. Reactions
were incubated at 95˚C for 10 min, then cycled 30 times at
(95˚C for 30 s, 60˚C for 1 min, 72˚C, for 1 min) followed
by 72˚C for 5 min. 

After amplification, the PCR products were treated with
1 unit each of shrimp alkaline phosphatase (SAP) (Roche)
and exonuclease I (USB Corporation) at 37˚C for 60 min
and 72˚C for 15 min to purify the amplified products. One
microliter of the purified amplification products was added
to a SNaPshot Multiplex Ready reaction mixture contain-
ing 0.15 pmoles of genotyping primer. The primer exten-
sion reaction was carried out for 25 cycles of 96˚C for 10
s, 50˚C for 5 s, and 60˚C for 30 s. The reaction products
were treated with 1 unit of SAP at 37˚C for 1 h and 72˚C
for 15 min to remove excess fluorescent dye terminators.
One microliter of the final reaction samples containing the
extension products was added to 9 microliters of Hi-Di
formamide (ABI). The mixture was incubated at 95˚C for
5 min, followed by 5 min on ice and then analyzed by
electrophoresis in ABI Prism 3730 DNA analyzer. Results
were analyzed using Gene Mapper software (ABI). 

Statistical analysis
Statistical analyses were performed using SPSS 11.5 (SPSS
Inc., Chicago, IL, USA). Genotype frequency comparisons
between asthma and non-asthma groups were performed
by chi-square test. Fisher’s exact test was used if expected
cell frequencies were lower than 5. Genotype frequencies
at each SNP were tested for Hardy-Weinberg equilibrium.
Haplotypes were assembled by using the software based
on the Bayesian algorithm (Haplotyper2). All p values
were based on two-sided comparisons and p values of less
than 0.05 were considered to indicate statistical significance.

Subjects
The clinical characteristics of the 48 asthma and 48 non-
asthma subjects are presented in Table 1. There were no
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statistical differences in demographic data such as age and
sex between the two groups. However, subjects with asth-
ma were significantly associated with lower lung function
(p < 0.05). In addition, there were significant differences in
total eosinophil counts, total IgE, and serum eosinophil
cationic protein (ECP) with atopy-related parameters bet-
ween the asthma and non-asthma group (p < 0.01).

Genotype frequencies in asthma and non-asthma 
groups
To investigate the association between CFTR genetic

variations and asthma, a case-control study was performed
using samples from 98 subjects as detailed in Materials
and Methods. We genotyped the 14 mutations identified in
Korea as summarized in Table 2.9-11 Diallelic loci were
analyzed by automated DNA screening (SNaPshot; Appli-
ed Biosystems Inc.), and the TGn, Tn numbers were iden-
tified by bi-directional nucleotide sequencing. Among the
14 mutations, there are no mutant variants in Q98R, I125T,
A309, Q220X, and Q1291X loci in our sample and the
genotype frequencies of the remaining variants are listed in
Table 3. There were no significant differences in genotype

Table 1. Clinical Characteristics of the Study Subjects

Characteristics
Asthma Non-asthma

p value*
(n = 48) (n = 48)

Age (yrs; mean ± SD) 9.48 ± 2.04 9.63 ± 2.44 0.753

Sex [Male; n (%)] 33 (71.7) 24 (50.0) 0.037

Lung Function

FVC (% predicted; mean ± SD) 83.50 ± 10.11 89.18 ± 9.88 0.016

FEV1 (% predicted; mean ± SD) 77.47 ± 18.98 86.54 ± 10.54 0.010

FEV1_FVC (% predicted; mean ± SD) 97.91 ± 8.26 105.74 ± 5.87 < 0.001

FEF25-75 (% predicted; mean ± SD) 70.34 ± 20.89 89.45 ± 24.76 0.001

PEF (% predicted; mean ± SD) 78.92 ± 21.49 91.56 ± 27.93 0.028

Methacholine PC20 [mg/mL; n (%)]   < 16 48 (100) 0 (0) < 0.001

≥ 16 0 (0) 48 (100)

Total serum IgE levels (ln IU/mL; mean ± SD) 5.63 ± 1.84 3.26 ± 1.23 < 0.001

Total Eosinophil count (ln µL-1; mean ± SD) 6.27 ± 0.67 4.92 ± 0.91 < 0.001

Eosinophil cation protein (ln µg/L; mean ± SD) 3.73 ± 1.75 2.44 ± 1.22 < 0.001

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; FEF, forced expiratory flow; FEF25-75, forced expiratory flow between 
25% and 75% of the FVC; PEF, peak expiratory flow.
*χ2 test or t-test were used where appropriate. 

Table 2. CFTR Genetic Variations Analyzed in This Study
Name Nucleotide change Exon Consequence Reference

- 8G / C G to C at 125 5’ UTR sequence variation 9

Q98R A to G at 425 Exon 4 Gln to Arg at 98 8

I125T T to C at 506 Exon 4 Ile to Thr at 125 9

E217G A to G at 782 Exon 6a Glu to Gly at 217 9

Q220X C to T at 790 Exon 6a Gln to Stop at 220 7, 8

A309A C or G at 1059 Exon 7 Sequence variation 9

TG repeat TG10-13 IVS 8 Splicing 9

T repeat T5-9 IVS 8 Splicing 9

M470V A or G at 1540 Exon 10 Met to Val at 470 9

I556V A to G at 1798 Exon 11 Ile to Val at 556 9

T854T T to G at 2694 Exon 14a Sequence variation 9

Q1291X C to T at 4003 Exon 20 Gln to Stop at 1291 9

Q1352H G to C at 4188 Exon 22 Gln to His at 1352 9

R1453W C to T at 4489 Exon 24 Arg to Trp at 1453 9

CFTR, cystic fibrosis transmembrane conductance regulator. 
Mutation names and nucleotide numbers are presented according to the Cystic Fibrosis Genetic Analysis Consortium (CFGAC) 
(http://www.genet.sickkids.on.ca/).



and allele frequencies of the 9 polymorphisms observed
between the non-asthma and asthma groups. 

Haplotype patterns and their disease associations
Since multiple alleles were analyzed in our study, a haplo-
type-based approach was applied to find the disease-asso-
ciated CFTR variations. The Haplotype program based on
the Bayesian algorithm was used and Haplotypes were
assembled using the genotype data obtained from the 98
tested samples.16 Nine loci consisting of 7 diallelic variants
and two microsatellites of IVS8 TGn and Tn were analyzed.
Since the program accepts only diallelic data, IVS8 TGn,
TG10, and TG11 were considered as wild-type (WT), and
TG12 or TG13 were regarded as mutant. For IVS8 Tn, T5 was
considered mutant and other alleles were applied as WT.

After 100 rounds of interactions, 8 haplotypes were
assembled and their identification (ID) numbers were assi-
gned according to the total sample frequencies (Table 4).
Major haplotypes showing over 1% frequency in both

groups are presented in this table. Differences between
non-asthma and asthma groups were analyzed by the chi-
square analysis. However, no significant differences were
found in haplotype frequencies between the two groups.

This is the first study to investigate the association between
CFTR mutations and asthma in Korean children, and no
significant association was found in our pilot study.
However, the association between CFTR mutations and
asthma is controversial. Mennie, et al.17 did not find any
association between the CFTR gene mutations and asthma
in a British population. The lack of significant association
between CF heterozygosity and asthma found in the pre-
sent study is also supported by studies from the French,18

Italian,19 Singaporean Chinese,20 and Norwegian7 popula-
tions. Furthermore, Hakonarson, et al.21 demonstrated that
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DISCUSSION

Table 3. Frequency of CFTR Genetic Variations in Non-Asthma and Asthma Group
Variants Non-asthma (n) Asthma (n) p value*

- 8G / C G / G 39 37 0.466

G / C 8 11

C / C 1 0

E217G A / A 48 46 0.247

A / G 0 2

M470V A / A 8 10 0.858

A / G 25 23

G / G 15 15

I556V A / A 42 45 0.276

A / G 4 3

T854T T / T 15 16 0.639

T / G 26 22

G / G 7 10

Q1352H G / G 46 46 0.383

G / C 2 2

R1453W C / C 47 46 0.500

C / T 0 1

Microsatellite

TG repeat (IVS 8)� W / W� 10 12 0.119

W / M 27 18

M / M 10 18

T repeat (IVS 8) 5 / 7 2 1 0.141

6 / 7 0 1

7 / 7 44 42

7 / 9 1 4

CFTR, cystic fibrosis transmembrane conductance regulator. 
*p values were obtained by using the χ2 test or Fisher’s exact test (expected cell value < 5) and the Q98R, I125T, A309, Q220X, and Q1291X 
variants were excluded from the table because of no frequency.
�TG10 and TG11 were regarded as wild-type (W) and TG12 and TG13 were regarded as mutant-type (M).



a study from Iceland failed to show evidence of a linkage
between asthma and chromosome 7q31.2.

In contrast, Dahl, et al.22 found that ∆F508 heterozygo-
sity was associated with an increased susceptibility to
asthma in a Danish population. Additionally, studies from
Greek23,24 and Spanish25 populations reported a positive asso-
ciation between asthma and CF heterozygosity.24 Schroe-
der, et al.26 suggested that obligate ∆F508 carriers are
protected from asthma. However the background haplotype
for ∆F508,27 which accounts for 66% of worldwide cystic
fibrosis, is very rare in the Korean population.11

Besides, genetic variants at Q1352H or E217G were
found to be associated with bronchiectasis and/or chronic
pancreatitis in the Korean population.11 In particular, non-
synonymous Q1352H and E217G mutations in the M470
background caused a 60-80% reduction in CFTR-depen-
dent Cl- currents and HCO3- transport activities. However,
we could not find any significant association at those sites
in this study. In addition, Q220X and Q1291X mutations
that give rise to premature stop codon can lead to aberrant
function. However, there are no mutant variants in those
loci in our study sample.

Several reports suggested that ∆F508 carriers have
lower values of pulmonary function such as FEV1 or FVC
compared to non-carriers, although no difference in the
annual decline in lung function was observed between the
two groups.24,28 However, Byard and Davis29 showed that
there are no significant differences in spirometric values
between CFTR gene mutation carriers and non-carriers. In
this study, we did not have any significant correlation
between spirometric values and CFTR gene mutations in
the 14 mutations (Table 2, data not shown).

It is worth considering some limitations of our study.
The sample size was too small and we did not investigate
the full sequence of the CFTR gene. Further study is
recommended to verify the results based on our pilot study.

We conclude that this study has failed to produce evid-
ence in support of the notion that CFTR genetic variations
identified in the Korean population significantly influences
the expression of the asthmatic phenotype. 
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