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Abstract: Interleukin 18 (IL-18) is a proinflammatory and proatherogenic cytokine with pleiotropic
properties, which is involved in T and NK cell maturation and the synthesis of other inflammatory
cytokines and cell adhesion molecules. It plays a significant role in orchestrating the cytokine cascade,
accelerates atherosclerosis and influences plaque vulnerability. To investigate the influence of IL-18
cytokine on atherosclerosis development, a stochastic Petri net model was built and then analyzed.
First, MCT-sets and t-clusters were generated, then knockout and simulation-based analysis was
conducted. The application of systems approach that was used in this research enabled an in-depth
analysis of the studied phenomenon. Our results gave us better insight into the studied phenomenon
and allow revealing that activation of macrophages by the classical pathway and IL-18-MyD88
signaling axis is crucial for the modeled process.

Keywords: atherosclerosis; inflammation; mathematical modeling; Petri net; stochastic Petri net;
t-invariants

1. Introduction

There are many indications that one of the basic features of animate objects is their complexity.
In other words, their nature results from the complicated structure of interactions between their
constituent basic objects and processes. It means that for a real understanding of the structure and
functioning of living organisms, a systems approach is necessary, consisting of the perception and
study of organisms as systems, i.e., sets of independent, but interconnected and cooperating elements.

Systems are definitely more than the sum of their components. It is because a system has
functionality that is not provided by a single subsystem or any of its components. It can be said that
such a system cannot be simplified. To understand it, it is necessary to analyze it as a whole, because
studying only its individual elements will not allow obtaining an accurate picture of such a system.
The systems approach is therefore based on the analysis of the examined object as a whole, paying
particular attention to all interactions taking place inside it, and at the same time not neglecting a
detailed analysis of the basic elements of which it consists.

The dynamic development of systems biology and systems medicine observed in recent years
is undoubtedly a consequence of the emergence of new opportunities both on the side of biological
and medical sciences and technical sciences. On the one hand, they result from the creation of more
and more accurate models of phenomena, resulting from advances on the basis of molecular biology,
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biochemistry and biophysics, on the other hand, they are the result of the increasingly better computing
capabilities of modern computers and the use of more and more sophisticated methods of analyzing
the obtained results. A systems approach to medicine may therefore turn out to be stimulating for
many fields, including, for example, computer science or cybernetics, which so far have not been
intuitively associated with medicine.

To apply a systems approach to the analysis of a given process, its model needs to be created,
which should be as accurate as possible. The precision determines the correctness of the results from
the model analysis. Such a model should be expressed in the language of some branch of mathematics.
One of them is model types based on graph theory and related areas of mathematics. Among them
are the models used in our study expressed in the language of Petri nets theory. These models allow
describing the structure of the analyzed system precisely, hence their analysis may facilitate the
understanding of its behavior. There are many extensions of the Petri net that can take into account
different kinds of data. It is worth mentioning that such an extension usually does not change the
structure of the model. Besides, there are many mathematical methods and software tools for analyzing
and simulating Petri nets to support model analysis.

Atherosclerosis, in the context of the complexity and the knowledge about underlying
pathways, is a process that is very well suited for systems research. This disorder is perceived as a
complex inflammatory-fibroproliferative process taking place in the inner membrane of large and
medium-sized arteries, the dynamics of which is continuously modified by many factors. The main
morphological symptom of atherosclerosis is the appearance of foam cells in the intima of the arteries.
In contrast, much more subtle changes, mainly caused by the influx of inflammatory cells and
immunocompetent cells, and the local release of cytokines and other inflammatory mediators, occur in
the microenvironment of the arterial wall [1]. Our motivation for this research was to investigate
the complex interactions that affect interleukin 18 (IL-18) as well as the effects of the cytokine itself
on related pathways in atherosclerosis. It should be noted here, that IL-18 was originally termed
as IFN-γ-inducing factor derived from anti-CD3-stimulated T-helper cells. It is a unique cytokine
that plays an important role in immune, inflammatory and infectious diseases. Not all of its actions
are dependent on IFN-γ. In addition, IL-18 has been reported to play an important role in the
progression and destabilization of the atherosclerotic plaque. Its unique features in health and disease
in experimental animals and humans have been described in detail in [2]. Moreover, the latest
knowledge about IL-18 and its significance for the human organism has been widely reviewed in [3].
To better understand the analyzed process we presented a flow chart along with an explanation of
the most important subprocesses that we took into account. We created a model, which was merely
presented in [4] to show a new approach to the analysis of this complex phenomenon. Since then,
our analysis capabilities have evolved, which allowed us to conduct more advanced research on
this model. Here, we presented the stochastic Petri net model of the involvement of IL-18 in the
atherosclerosis process. To the best of our knowledge, studies using stochastic Petri nets to model
the participation of IL-18 in the process of atherosclerotic plaque formation have not been conducted
so far.

The organization of this paper is as follows. In Section 2 some basics of Petri nets theory useful
for understanding the next parts of the paper, together with the informal description of the biological
system are provided. In Section 3 the Petri net model is presented. This section contains also the results
of the model analysis. The paper ends with conclusions in Section 4.

2. Methods

2.1. Petri Nets and Stochastic Petri Nets

The proposed model of the analyzed biological process is expressed in the language of Petri
nets theory, hence in this subsection a brief introduction to the basics of this theory is given. Here the
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idea of Petri nets is explained and some notions important for the analysis of the proposed model
are described.

A Petri net is a mathematical object whose structure is a weighted directed bipartite graph.
Graph of this type consists of two disjoint subsets of vertices. In Petri nets these vertices are called
places and transitions. They can be connected by arcs in such a way that only an arc connecting a
place with a transition or a transition with a place is possible (i.e., no two places nor two transitions
can be connected). In the biological context, places represent passive components of a modeled
system such as chemical compounds while transitions correspond to its active components such as
chemical reactions. The arcs, which model causal relationships between active and passive components
of the system, are labeled with positive integer numbers called weights. However, a Petri net is
not simply a graph that determines its structure (which should correspond to the structure of the
modeled system). One of the fundamental properties of Petri nets is their dynamics which is brought to
them by the components of another type, i.e., tokens. They reside in places and represent quantities of
respective passive components of the system. The distribution of tokens over places is called marking
and corresponds to a state of the modeled system [5–7].

More formally, a Petri net is 5-tuple Q = (P, T, F, W, M0), where: P = {p1, p2, . . . , pn} is a finite
set of places, T = {t1, t2, . . . , tm} is a finite set of transitions, F ⊆ (P× T) ∪ (T × P) is a set of arcs,
W : F → Z+ is a weight function, M0 : P→ N is an initial marking, P ∩ T = ∅ ∧ P ∪ T 6= ∅ [5].

Tokens flow from one place to another via transitions what corresponds to a flow of substances,
information etc. through the modeled system. It is governed by the transition firing rule according to
which a transition is enabled if each of its pre-places (i.e., the ones who are its immediate predecessors)
contains several tokens equal to or greater than the weight of an arc connecting this place with the
transition. An enabled transition can fire, meaning that the tokens can flow from its pre-places to its
post-places (i.e., the ones being direct successors of the transition). The number of flowing tokens
between the place and the transition is equal to the weights of an arc connecting these two vertices.

Petri nets have a very intuitive graphical representation, which is helpful in understanding the
structure and behavior of the modeled system. In this representation places are depicted as circles,
transitions as rectangles, arcs as arrows, tokens as dots or positive integer numbers residing in places
and weights as positive integer numbers associated with arcs (if a weight of an arc is equal to 1, then it
is not shown).

A stochastic Petri net (SPN) is an extension of a classical Petri net already described. An SPN
description preserves the discrete numbers of tokens on its places, but in addition associates a
probabilistically distributed firing rate (firing delay) with each transition. All actions which occur in a
classical Petri net can still occur in an SPN, but their likelihood depends on the probability distribution
of the associated firing rates. Formally, a stochastic Petri net is 6-tuple QS = ( P, T, F, W, M0, v),
where ( P, T, F, W, M0) is a marked classical Petri net underlying an SPN [8]. The list of marking
dependent firing rates associated with transitions is denoted by v = {λ1, λ2, ..., λm}. The firing
rates are typically transition-specific and state-dependent. Transition firing time is exponentially
distributed and the distribution of random variable χj of the firing time of transition tj is given by
fχj( τ) = 1− e−λjτ , τ ≥ 0 [9].

We assume that firing time is state-dependent, i.e., the number of tokens in pre-places of a
transition influence that time as stated by mass action law. Such functions are taken into account and
supported by popular tools, such as Snoopy [10]. If there is more than one enabled transition, a race
for the next firing will take place and in averaged case, the transition with the smallest waiting time
will fire next. Hence, in the case of an SPN the system behavior is described by the same discrete state
space as in the case of a classical Petri net, and all the different sequences of events of a classical Petri
net can still take place. Therefore, it allows to use the same analysis techniques for a stochastic Petri
net as for a classical one [11].

It should be mentioned that there is more types of nets considered to be stochastic ones. The type
of a stochastic Petri net described above is also called in the literature as a continuous-time SPN [9].
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Another type of a stochastic net is for example a generalized SPN, where an additional, second type of
transition is introduced. The so-called an immediate transition fires immediately when it is enabled.
There is also possibility of adding some constraints to firing time resulting in other subtypes of an SPN,
or using additional rules governing the flow of tokens, such as in a queueing Petri nets (also described
in [9]). It is worth mentioning that there exist many other variants of Petri nets which can be useful in
various applications (see, e.g., [6,7,12–14]). In our study the standard stochastic Petri net described in
this section proved to be best suited for the analysis and simulation of the proposed model.

2.1.1. t-Invariants

Despite that the graphical representation of a Petri net is intuitive and useful, it is not very well
suited for an analysis of its mathematical properties. For this purpose a different representation,
called incidence matrix, is used. In this matrix, A = [aij]n×m, where n is the number of places and
m is the number of transitions, rows correspond to places while columns correspond to transitions.
Every entry aij, is an integer number equal to a difference between the numbers of tokens in place pi
after and before firing transition tj.

When a Petri net is a model of a biological system often especially important is an analysis of its
invariants. There are two types of them, i.e., place invariants (p-invariants) and transition invariants
(t-invariants). A p-invariant is a vector y ∈ Nn being a solution of equation AT · y = 0. A t-invariant is
a vector x ∈ Nm satisfying equation A · x = 0.

In this work we will focus on the analysis of t-invariants. With each such an invariant x there is
associated its support, denoted by supp(x). A support supp(x) of t-invariant x is a set of transitions
which correspond to positive entries of x, i.e., supp(x) = {tj : xj > 0, j = 1, 2, . . . , m}. t-invariant x is
minimal if its support does not properly contain a support of any other t-invariant, i.e., if there is no
t-invariant x′ such that supp(x′) ⊂ supp(x). A Petri net is covered by t-invariants if every transition
belongs to support of at least one t-invariant. An important property of t-invariants is that they
correspond to subprocesses which do not change the state of a modeled system.

2.1.2. t-Clusters and MCT Sets

In the analysis based on t-invariants often important are similarities among them. When the
number of such invariants is large, they can be grouped into structures called t-clusters using standard
clustrering algorithms. In general, clustering of t-invariants is neither a simple nor an automatic
process since there are plenty of clustering algorithms and similarity measures. To determine the best
joining algorithm, an appropriate number of clusters and a suitable similarity measure we conducted a
computational experiment in which various clusterings (i.e., the sets of clusters) have been generated.
To evaluate them and select the best one with the optimal number of t-clusters, we used Mean
Split Silhouette (MSS) [15] and Calinski-Harabasz (C-H) [16] evaluation indexes. After comparing
multiple clusterings, similarly as in [17], we decided to base our analysis on the clusters obtained
using Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm and the correlated
Pearson similarity measure, which seem to provide usually the best t-clusters in case of a Petri net
analysis [18]. Every t-cluster corresponds to some functional block of the analyzed biological system,
so we determined biological meanings of all the obtained clusters.

Similarly like t-invariants, which are grouped into t-clusters, also transitions can be grouped into
the so-called MCT sets (Maximal Common Transition sets) [19,20]. A set of this type consists of transitions
which belong to supports of exactly the same t-invariants. MCT sets partition the set of transitions into
disjoint subsets corresponding to functional modules of a biological system. t-invariants and MCT
sets are basis for conducting detailed analysis of the system [21]. It is easy to see that a support of
every t-invariant is a collection of some MCT sets (some of them may contain only one element and
are called trivial MCT sets).

The relations between MCT sets can also be studied. Many non-trivial MCT sets are close to each
other within the net that they share places which either provide or store tokens produced by transitions
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belonging to the specific sets. A simple example of such relation can be one place which store tokens
necessary for two distinct sets (i.e., transitions belonging to two MCT sets). This is an example of a
conflict between two sets. One can also imagine a situation, when a transition from one set produce
tokens necessary to activate a transition of a different set. Such relations have been studied and are
given in a Table S1.

2.1.3. Knockout Analysis

Another type of analysis of Petri net models of biological systems is based on knockout approach,
which has been previously presented in [17,22]. It allows to investigate which subprocesses will be
influenced if some selected elementary functional unit is disabled.

In general, knockout analysis can be based on t-invariants (a so-called t-invariant-based knockout)
or on the net simulation (simulation knockout) [17]. In the case of the t-invariant-based knockout
some chosen transitions are excluded from the system and the remaining t-invariants, which then
may not fully cover the net, are examined. What follows, the transitions that are not covered are
considered disabled, because they are dependent on the ones that have been initially knocked out.
It is worth noting that it is very interesting from the biological point of view to identify which parts of
the net will be affected by the knockout of the selected transitions and also which transitions should
be knocked out to achieve a desired behavior of the model. The second type of such an analysis is a
simulation knockout which involves the net simulation and an analysis of tokens distribution in places
in a situation when some selected transitions have been knocked out in the model. For this purpose
stochastic Petri nets are especially well suited, especially when mass action law can be considered
during such a simulation. By disabling a transition we mean that it never fires during a simulation.
Then, a series of simulations are performed, all starting from the same initial marking and ending after
achieving the same number of steps. In such a way an influence of a knockout of some important
reactions (transitions) on the rest of the model can be studied.

The above mentioned consecutive stages of the process of creating and analysis of a stochastic
Petri net model are shown in Figure 1.

Figure 1. The general flow chart comprising the steps starting from building a stochastic Petri net-based
model, through various methods of its analysis to obtaining results.
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2.2. The Involvement of Interleukin 18 in Atherosclerosis Related Phenomena that Was Taken into Account for
Building the Model

This subsection presents the modeled disorder, divided into thematic blocks together with their
detailed description and features, along with the corresponding place and transition symbols that are
included in the model. Both places and transitions are denoted by the notation pa and tb, where a and
b correspond to their respective numbers from Tables 1 and 2.

Table 1. The list of places of the model.

Place Biological Meaning References Place Biological Meaning References

p0
active IL-18-IL-18Rs
(α and β) complex [3,23] p28 MyD88 [24]

p1
INF-γ synthesized
by T and NK cells [3,23,25] p29 Receptors MyD88 complex [24]

p2 IL-18R [3,23] p30 TLR-MyD88-IRAK4 complex [24]

p3 activated macrophages [3,23,26] p31 TLR-MyD88-IRAK4 -IRAK1P complex [24]

p4 pro IL-18 [3] p32 TLR-MyD88-IRAK4-IRAK1P-TRAF6 complex [24]

p5 TNF [3,26–29] p33
IRAK1P-TRAF6-TAB2-TAB1-TAK1
complex at plasma membrane [24]

p6 ICE [3] p34 IRAK1 degraded [24]

p7 IL-18 [3] p35 UBC13-UEV1A-TRAF6-TAK1P-TAB2P-TAB1 complex [24]

p8 iNOS activated [28,30] p36 TAK1 activated [24]

p9 NO [30] p37 MAP kinase phosphorylation activation [28]

p10 contractility failure [30] p38 IKK complex phosphorylated activated [24,28]

p11 foamy cells [26,30] p39 RIP1 ubiquitinated [29]

p12 high shear stress [30,31] p40 TRAF2 autoubiquitinated [29]

p13 IFR1 [25] p41 FLIP [28,29]

p14
JAK-STAT
pathway activated [23,25] p42 TRAF2-TRADD-RIP1-TRAF5-TNFR complex [29]

p15 INF-γ-IFNRs complex [23,25] p43 active TNFR1 signalling complex [29]

p16 peroxynitrite [30,31] p44 SODD [27]

p17 modified oxidized LDL [26,30] p45 TNFR1 stable with SODD [27]

p18 FASL and FAS [3,29] p46 TNFR1 endocytosed [29]

p19 VCAM1 [3,26,28,30] p47 FADD recruited [29]

p20 ICAM1 [3,26,28,30] p48 pro caspase 8 recruited [29]

p21 MCP1 [26,28] p49 DISC [29]

p22 monocytes [26] p50 IκB phosphorylated [28]

p23 macrophages [26] p51 p50–p65-IκB phosporylated complex [28]

p24 LPS binding protein LBP [32] p52 p50–p65 dimer-NFκB (early phase) [28]

p25 microbial infection LPS [32] p53 p50–p65 dimer in the nucleus [28]

p26 LPS-LPB complex [32] p54 caspase 8 active [29]

p27 TL4 activated [32] p55 caspase 3 active [29,31]
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Table 2. The list of transitions of the model.

Transition Biological Meaning References Transition Biological Meaning References

t0 induction cell-mediated immunity [23] t35 IRAK4 recruitment [24]

t1 INF-γ synthesis influencing [23] t36
connection with IRAK1
and its phosphorylation [24]

t2 infection modulation [23] t37
TRAF6 recruitment and
binding to IRAK1 [24]

t3
classical macrophages
activation by INF-γ [3,23] t38 IRAK1P-TRAF6 dissociation [24]

t4 pro IL-18 synthesis [3] t39 TAK1-TAB2 phosphorylation [24]

t5 modulation by TNF [3] t40
TRAF6-TAK1P-TAB2P-TAB1
complex translocation to cytosol [24]

t6 modulation by INF-γ [3,23] t41 TRAF6 ubiquitination [24]

t7
pro IL-18 activation by caspase
1 enzymatic cleavage [3] t42 IKK complex phosphorylation [24,28,33]

t8 IL-18 and IL-18Rs binding [3] t43
p38 and MAPK
signalling pathway [28]

t9 nitric oxide synthesis [30] t44 RIP1 recruites TAK1 via TAB2 [29]

t10 cardiac contractile dysfunction [30] t45 RIP1 ubiquitination [29]

t11 cardiovascular disease (CVD) [30] t46 TRAF2 ubiquitination [29]

t12 IFR1 synthesis [25] t47
forming TRAF2-TRADD-
RIP1-TRAF5 complex [29]

t13 JAK and STAT pathway activation [23,25] t48 TNFR1 trimerization [27,29]

t14 INF-γ-IFNRs interaction [23,25] t49 usage [27]

t15 reaction catalysed by NADPH oxydase [26,30] t50 TNFR1 stabilization [27]

t16 lipids peroxydation [26,30] t51 SODD expression [27]

t17 neighboring endothelial cells stimulation [3,26] t52 TNFR1 endocytosis [29]

t18 neovascularization inhibition [3] t53 FADD recruitment [29]

t19 FasL expression on inflammatory cells [3] t54 pro caspase 8 recruitment [29]

t20 ICAM1 and VCAM1 up regulation [3] t55 connection through DDs [29]

t21 ICAM1 increasing [30] t56 ubiquitylation and degradation [28,33]

t22 VCAM1 decreasing [30] t57 phosphorylation cascade initiation [28,33]

t23 hemodialysis (HD) [31] t58
IκB dissociation
from the complex [28,33]

t24 attracting monocytes [26] t59
p50–p65 translocation
to the nucleus [28,33]

t25 transformation into macrophages [26] t60 MCP1 gene transcription [28]

t26 activation [26] t61 VCAM1 transcription [26,28]

t27 transformation into foamy cells [26,30] t62 ICAM1 transcription [28]

t28 atherosclerotic plaque [26] t63 TNF gene transcription [28,29]

t29 severe inflammation [3,32] t64 iNOS gene transcription [28,30]

t30 LPS and LBP binding [32] t65 proinflammatory response [28–30]

t31 LPS presentation to TLR4 and CD14 [32] t66 no apoptosis [28,29]

t32 TLR4 and MyD88 connection [24] t67
caspase 8 autocleavage
and activation [29]

t33 MyD88 recruitment [24] t68 caspase 3 activation [29,31]

t34
active IL-18-IL-18Rs (α and β)
and MyD88 connection [3] t69 apoptosis enhancement [29,31]

To better understand the modeled issue, the most important dependencies of the modeled process
have been presented in Figure 2.

1. (yellow box in Figure 2) Classical macrophage activation occurs in response to the action of:
(1) IFN-γ (originally called macrophage-activating factor) and (2) lipopolysaccharide (LPS)
(enhanced (severe) local inflammation-LPS-LPB complex-IKK complex phosphorylated and
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initiation cascade of phosphorylation leading finally to the translocation of p50–p65 to the nucleus
and gene transcription of many inflammatory cytokines that activate inflammatory cascade).

2. (black boxes in Figure 2) IL-18 is a proinflammatory cytokine, expressed mainly by activated
macrophages. This cytokine facilitates IFN-γ production mainly by Th1 cells and NK (natural
killers) cells. Induction of cellular immunity modulates acute phase reaction, in the model by
affecting IL-18 receptors (α and β) action. It should be noted that IL-18 is synthesized as an
inactive precursor (pro IL-18) requiring processing by caspase 1 into an active form of cytokine
(pro IL-18 signalling pathway with the activation by caspase 1 enzymatic cleavage). Caspase 1 is
activated within inflammasomes. Finally, activated IL-18 acts by binding to its receptors (α and β).
Different types of macrophages (M1 and M2) are involved in its regulation [2].

3. (blue boxes in Figure 2) Activated macrophages, influenced locally by enhanced oxidative stress,
inflammatory process and shear stress, increase the atherosclerotic plaque formation,
leading along with local changes of nitric oxide (NO), to the atherosclerosis-based
clinical consequences.

4. (green boxes in Figure 2) IFN-γ induces transcription of several proinflammatory genes,
for example, inducible NO synthase (iNOS). IFN-γ signal transduction pathway starts with
the recruitment of Janus kinases (JAK1 and JAK2), to the IFN-γ receptor inducing their
phosphorylation in tyrosine. As a consequence, the transcription factor STAT1α is recruited
to the IFN-γR and phosphorylated by JAKs. Phosphorylated Stat1α dimerizes and translocates
to the nucleus. Here it induces transcriptional activation of several genes by binding to the
proper sites of their promoters. Among the genes induced, IFN regulatory factor (IRF) 1, is also
transcription factor which mediates the transcriptional regulation induced by IFN-γ [34].

5. (orange boxes in Figure 2) The cytoplasmic TIR domains of the IL-18R complex interact with
myeloid differentiation factor 88 (MyD88). IL-18 together with MyD88 mediates apoptosis via
extrinsic and intrinsic pathways. It up-regulates Fas, FasL, TNFR1 and induces TNF synthesis.
The extrinsic pathways evolves the recruitment of FADD to Fas/FasL and TRADD to TNF/TNFR1,
which activates caspase 8 and caspase 3 action [35].

6. (gray boxes in Figure 2) TNFR pathway. TLR and TNFR superfamily members can cooperate to
regulate cell death and inflammation generated by pathogen ligands [3].
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system  leading to 
contractility failure
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Figure 2. Dependencies in the modeled system
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3. Results and Discussion

3.1. Building a Stochastic Petri Net Based Model

Here, a stochastic Petri net-based model of the involvement of the IL-18 cytokine in the formation
of the atherosclerotic plaque in patients suffering from CKD is presented. The model is based on a
classical Petri net introduced in [4] and extended in [2] to investigate the dependencies between Il-18
and different types of macrophages and the different pathways of IL-18 synthesis. In both cases the
analysis was based on t-invariants.

The considered stochastic model consists of 56 places and 70 transitions, which names and
biological meaning is described in Tables 1 and 2, respectively. The graphical representation of the net,
together with initial marking and names of places and transitions, is presented in Figure 3. The initial
marking specifying the number of tokens in each place is presented in Table 3 and was assigned
basing on [36–38]. Some places in the model are shown as two concentric circles. They graphically
represent the same place in the net and are called logical places (e.g., place p18 has 3 different locations).
Their role is to simplify the visualization of connections between the nodes in the net and to improve
its readability.

Figure 3. The Petri net-based model with initial marking and MCT sets marked by accordingly labeled
rectangles. The transitions within a given MCT set are encoded in the same color. Logical places are
depicted as two concentric circles. Places and transitions are represented by their numbers.

The net presented in [4] is qualitative what means that it does not contain any information
about time dependencies between various components of the system and it describes only its
structure. Such time dependencies are present in real processes and are often crucial for understanding
their nature. Although they are not known precisely, they can be estimated by durations of biochemical
reactions in the system and their reaction rates. Such extension makes the studied system more realistic
and is included in the extended model shown in this paper. All stochastic transitions in the model
follow mass-action kinetics and the kinetic parameters (rate constants) were calculated according to
the simple heuristic developed in [38]. Since it is more biologically intuitive, we first assigned six
different time constants (i.e., durations) to the reactions (i.e., transitions), which are listed in Table 4.
To determine those values, first, we identified the processes in the model that have the shortest and
the longest time duration. Next, based on the literature and expert knowledge, we elaborated a time
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scale with values ranging from 1 to 1000 (see Table 4). Finally, we calculated the rate constants of
the stochastic transitions as a reciprocal of those values. The obtained rate constants are presented in
Table 5.

Table 3. List of places and the initial numbers of tokens. We specified and assigned to places
three different values approximating the actual concentration of the molecules, complexes and
receptors in the model [36–38]. Those values reflect the following relationships: 1000—high
concentration, 100—medium concentration, 100—low concentration, 0—very low concentration or
absence. The concentrations are given in units of pM = 10−12 M.

Place Initial Number
of Tokens Place Initial Number

of Tokens Place Initial Number
of Tokens Place Initial Number

of Tokens

p0 0 p14 0 p28 100 p42 0

p1 100 p15 0 p29 0 p43 0

p2 100 p16 0 p30 0 p44 1000

p3 0 p17 0 p31 0 p45 0

p4 100 p18 1000 p32 0 p46 100

p5 100 p19 100 p33 0 p47 10

p6 1000 p20 100 p34 0 p48 10

p7 10 p21 100 p35 0 p49 100

p8 1000 p22 100 p36 0 p50 0

p9 10 p23 0 p37 10 p51 0

p10 0 p24 10 p38 0 p52 0

p11 0 p25 10 p39 10 p53 100

p12 0 p26 0 p40 0 p54 100

p13 100 p27 100 p41 100 p55 100

Table 4. The specification of the durations and time intervals assigned to the components of the model.
Unfortunately, in the case of the modeled processes (see column ’Process’) only approximate time values
can be found in the literature (see columns ’Time Information Coming from the Available Literature’
and ’Time Interval’). Thus, we recalculated those values using the scale of 1 to 1000 (see column
’Duration’) to model the time dependencies between them.

Process Duration Time Information Coming
from the Available Literature Time Interval

binding of ligands and proteins,
influence of molecules,
activation of enzymes,
proteins and processes

1 seconds [39] Very Short

recruitment, connection, phosphorylation,
stabilization of molecules,
modulation of the activation of
proteins and processes, ubiquitination

40 seconds to a minute [40] Short

decrease in molecules availability,
dissociation of protein complexes 100

about twice shorter than
synthesis and expression [41] Medium

synthesis of biomolecules (e.g., INF-γ, pro IL-18),
increase in molecules availability/production,
TNFR1 endocytosis, translocation of protein
complexes from cytosol to nucleus and
from nucleus to cytosol, lipids peroxidation

200 >minutes [40] Long

severe inflammation, differentiation of
monocytes into macrophages 500 >hours [37] Very Long

atherosclerotic plaque development, CVD 1000 >days [37,41] Very, Very Long
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Table 5. The list of the rate functions for the analyzed model. MA(c) denotes the mass action
function [42] and c is a kinetic parameter (rate constant), which is presented in the units of sec−1. MA is
a predefined function, available in Snoopy [10] that creates the rate function for a given transition out
of its input places and takes a kinetic parameter as argument.

Transition Kinetic Parameter c Rate Function Transition Kinetic Parameter c Rate Function

t0 1.0 MA(1.0) t35 0.025 MA(0.025)

t1 1.0 MA(1.0) t36 0.025 MA(0.025)

t2 0.01 MA(0.01) t37 0.025 MA(0.025)

t3 1.0 MA(1.0) t38 0.01 MA(0.01)

t4 0.005 MA(0.005) t39 0.025 MA(0.025)

t5 1.0 MA(1.0) t40 0.005 MA(0.005)

t6 1.0 MA(1.0) t41 0.025 MA(0.025)

t7 1.0 MA(1.0) t42 0.025 MA(0.025)

t8 1.0 MA(1.0) t43 0.005 MA(0.005)

t9 0.005 MA(0.005) t44 0.025 MA(0.025)

t10 0.002 MA(0.002) t45 0.025 MA(0.025)

t11 0.002 MA(0.002) t46 0.025 MA(0.025)

t12 0.005 MA(0.005) t47 0.005 MA(0.005)

t13 1.0 MA(1.0) t48 0.005 MA(0.005)

t14 0.005 MA(0.005) t49 0.002 MA(0.002)

t15 0.01 MA(0.01) t50 0.025 MA(0.025)

t16 0.005 MA(0.005) t51 0.005 MA(0.005)

t17 0.005 MA(0.005) t52 0.005 MA(0.005)

t18 0.005 MA(0.005) t53 0.025 MA(0.025)

t19 0.005 MA(0.005) t54 0.025 MA(0.025)

t20 0.025 MA(0.025) t55 0.025 MA(0.025)

t21 0.005 MA(0.005) t56 0.005 MA(0.005)

t22 0.01 MA(0.01) t57 1.0 MA(1.0)

t23 0.005 MA(0.005) t58 0.01 MA(0.01)

t24 0.025 MA(0.025) t59 0.005 MA(0.005)

t25 0.005 MA(0.005) t60 0.005 MA(0.005)

t26 1.0 MA(1.0) t61 0.005 MA(0.005)

t27 0.005 MA(0.005) t62 0.005 MA(0.005)

t28 0.002 MA(0.002) t63 0.005 MA(0.005)

t29 0.005 MA(0.005) t64 0.005 MA(0.005)

t30 1.0 MA(1.0) t65 0.025 MA(0.025)

t31 0.025 MA(0.025) t66 0.005 MA(0.005)

t32 0.025 MA(0.025) t67 0.025 MA(0.025)

t33 0.025 MA(0.025) t68 1.0 MA(1.0)

t34 0.025 MA(0.025) t69 0.002 MA(0.002)
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3.2. The Analysis Based on T-Invariants

The analysis of clusters, MCT sets and the formal properties of the model has been done using our
recently published tool Holmes [43]. First, let us mention some basic structural properties of the net.
The net is pure (there are no loops, i.e., read arcs), not ordinary (there are four arcs weighted with two)
and connected, but not in the strong sense. Moreover, it is also not structurally conflict-free (there
are transitions with common pre-places) and is unbounded, since there is no upper bound on the
number of tokens. The model contains neither input nor output places, but there are several input and
output transitions.

3.2.1. The Analysis and Biological Interpretation of MCT Sets

The model contains 223 minimal t-invariants and the net is covered by them. Based on them,
MCT sets have been generated. There are 11 non-trivial MCT sets (i.e., sets containing more than
one transition) and they are listed in Table 6 together with their biological interpretation. All of them
represent connected subnetworks and they divide the structure of the net into disjoint regions.

Table 6. The list of non-trivial MCT sets.

MCT-Set Contained Transitions Biological Interpretation

m1
t19, t33, t35, t36, t37, t38, t39, t40,
t41, t42, t43, t56, t57, t58, t59

MyD88-dependent signaling pathway

m2 t52, t53, t54, t55, t67, t68, t69
induction of apoptosis influenced by caspases 3 and 8
that are situated at pivotal junctions in apoptosis pathways

m3 t12, t13, t14, t64
JAK-STAT signaling pathway stimulated by INF-γ and
its impact on the regulation of iNOS expression

m4 t29, t30, t31, t32
activation of the innate immune system through TLR signaling
pathways regulated by TIR domain-containing adaptors, such as MyD88

m5 t9, t10, t11 influence of nitric oxide on cardiovascular system

m6 t24, t25, t26 transformation of monocytes into activated macrophages

m7 t44, t45, t46 activation of a silencer of TNFR1 signaling pathway

m8 t47, t48, t50 formation of an active TNFR1 signaling complex

m9 t0, t3 activation of macrophages by the classical pathway

m10 t4, t7 pro IL-18 signaling pathway

m11 t49, t51 SODD signaling pathway

3.2.2. The Analysis and Biological Interpretation of T-Clusters

Next, we grouped t-invariants into t-clusters. To obtain biologically relevant ones, we used
UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering algorithm and correlated
Pearson as a similarity measure. The resultant clusters are listed and described in Table 7. One of
these clusters is very large, while the others are rather small. From this, it follows that process of
atherosclerotic plaque formation is very complex. There are many independent signaling pathways
modeled within the analyzed system, but they are all essential to the creation and development
of atherosclerosis.
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Table 7. The 223 minimal t-invariants of the model clustered by UPGMA algorithm. The second and
third column of the table give the total number of t-invariants in the cluster, together with its biological
interpretation. The last column lists the processes contained in the clusters.

Cluster No. Biological Interpretation No. of
t-Invariants

Contained Processes

MCT-Sets Single Transitions

c1 SODD signaling pathway 1 m11

c2

The involvement of the IL-18 cytokine
in the formation of the atherosclerotic
plaque in patients suffering from
CKD without influence of
SODD signaling pathway

216
m1, m2, m3,
m4, m5, m6,
m7, m8, m9, m10

t1, t2, t5, t6, t8,
t15, t16, t17, t18,
t20, t21, t22, t23,
t27, t28, t34, t60,
t61, t62, t63, t65, t66

c3

pro IL-18 signaling pathway and
activation of macrophages by the
classical pathway

1 m9, m10 t6, t18

c4
IL-18 synthesis and IL-18-
mediated INF-γ induction 1 m9, m10 t1, t2, t6, t8

c5

activation of macrophages by INF-γ
leading to lipids peroxidation and
atherosclerotic plaque development

1 m9 t15, t16, t27, t28

c6

influence of NO on cardiovascular system
and activation of the innate immune system
through TLR together with pro IL-18 signaling
pathway leading to atherosclerosis development

3
m1, m3, m4,
m5, m9, m10

t1, t2, t6, t8, t16,
t23, t27, t28, t34

3.2.3. The Analysis of t-Invariants Based Knockout Results

Next, in order to get a deeper insight into the system behavior we decided to conduct a t-invariants
based knockout analysis. First, we decided to investigate the importance of each MCT set (both
trivial i.e., single transitions and non-trivial ones) within the analyzed model. To achieve this,
an in silico knockout analysis with the use of MonaLisa software [44] and our newly published
tool Holmes [43], based on t-invariants has been performed [22,45]. Here, in case of each transition
knocked out, other transitions that are affected by such a knockout have been computed (transitions
belonging to the same non-trivial MCT set operate together thus their knockout impact is the same).
The affected transitions are those, that are present in the support of affected t-invariants. The results
are shown in Table 8 and they indicate that the most critical to the tested system are the following
pathways: activation of macrophages, formation of the IL-18-IL-18Rs complex together with pro IL-18
signaling pathway, MyD88-dependent signaling, formation of the TNFR1 signaling complex and
JAK/STAT pathway stimulated by INF-γ. All of them are associated with atherosclerosis development
and progression.

As it has been stated before, t-invariant is a specific subprocess, while its support defines the basic
reactions (transitions). If at least one reaction is disabled, then the whole process cannot accomplish
its task. One can be particularly interested in knowing what influences two specific transitions
in the net: t28 (atherosclerotic plaque) and t11 (cardiovascular disease). Firing any one of them
depends on tokens in p11 (foamy cells), while t11 additionally requires tokens in p12 (high shear stress).
Production of tokens in p11 depends on the following pathway (arrows denote production of tokens
in a given place by a specific transition): p11 ← t27 (transformation into foamy cells) ← p17

(modified oxidized LDL)← t16 (lipids peroxydation). It should be noted that t27 also requires tokens
from p3 (activated macrophages), however stopping the production in this place results in disabling
all t-invariants except for one (222 out of 223 total).
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Table 8. The most important activities in the model according to their combinatorial knockout impact
calculated based on the approach described in [17,22].

MCT Set Activity Knockout Impact
(Transitions)

Knockout Impact
(t-Invariants)

m9
activation of macrophages by
the classical pathway 95.71% 99.55%

m10 pro-IL-18 signaling pathway 85.71% 99.10%

t8 IL-18 and IL-18Rs binding 80.00% 98.65%

m1 MyD88-dependent signaling pathway 75.71% 98.21%

t63 TNF gene transcription 24.29% 90.13%

t6 modulation by INF-γ 0% 73.54%

t23 hemodialysis (HD) 7.14% 73.54%

m4

activation of the innate immune system through
TLR signaling pathways regulated by TIR
domain-containing adaptors, such as MyD88

4.29% 73.54%

t34 active IL-18-IL-18Rs (α and β) and MyD88 connection 0% 73.54%

t16 lipids peroxydation 8.57% 68.61%

m3
JAK-STAT signaling pathway stimulated by INF-γ and
its impact on the regulation of iNOS expression 14.29% 68.16%

t65 proinflammatory response 5.71% 60.99%

m8 formation of an active TNFR1 signaling complex 17.14% 48.43%

t17 neighboring endothelial cells stimulation 0% 48.43%

t21 ICAM1 increasing 0% 43.05%

t22 VCAM1 decreasing 0% 43.05%

t60 MCP1 gene transcription 0% 43.05%

t27 transformation into foamy cells 5.71% 36.32%

t61 VCAM1 transcription 0% 32.29%

t62 ICAM1 transcription 0% 32.29%

m7 activation of a silencer of TNFR1 signaling pathway 2.86% 30.49%

m6 transformation of monocytes into activated macrophages 2.86% 30.49%

t66 no apoptosis 0% 30.49%

t5 modulation by TNF 0% 25.56%

m2
induction of apoptosis influenced by caspases 3 and 8
that are situated at pivotal junctions in apoptosis pathways 8.57% 25.11%

t2 infection modulation 0% 25.11%

t1 INF-γ synthesis influencing 0% 25.11%

t28 atherosclerotic plaque 0% 23.77%

t20 ICAM1 and VCAM1 up regulation 0% 21.52%

m5 influence of NO on cardiovascular system 2.86% 14.35%

t15 reaction catalysed by NADPH oxydase 0% 13.00%

t18 neovascularization inhibition 0% 0.90%

m11 SODD signaling pathway 1.43% 0.45%

If t16 is disabled by any reason, only 70 t-invariants remain, none of which contain neither t11

nor t28. As a result 7 transitions are not covered by the remaining t-invariants:

• pathway t9 (NO synthesis)→ t10 (cardiac contractile dysfunction)→ t11 (cardiovascular disease),
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• pathway t16 (lipids peroxydation)→ t27 (transformation into foamy cells)→ t28 (atherosclerotic
plaque),

• t17 (neighboring endothelial cells stimulation) required for tokens in p21 (MCP1) which is not
a serious problem because for production of tokens in p21 is also responsible transition t60

(MCP1 gene transcription).

To disable t16 one needs to disable its source of tokens in p16 (peroxynitrite). Two transitions
produce tokens there: t15 (reaction catalysed by NADPH oxydase) and t23 (hemodialysis). Disabling
only t15 has only light consequences: 194 t-invariants remain and the net is still fully covered.
Unfortunately, only one t-invariant with t28 in the support is also disabled, while all t-invariants with
t11 still remain. However, if t23 is also disabled, only 30 t-invariants remain and apart from disabling
7 aforementioned transitions we eliminate whole MCT set number 2 (responsible for induction of
apoptosis influenced by caspases 3 and 8, that are situated at pivotal junctions in apoptosis pathways).

One can now ask a question if it is at least possible to reduce the number of processes (t-invariants)
responsible for activation t11 and t28, when disabling them completely, as describe above, bears too
serious consequences for the net processes. The normal state of the net when nothing is disabled
is as follows: 223 t-invariants, 32 with t11 (cardiovascular disease) in their supports and 53 with t28

(atherosclerotic plaque). Four t-invariants contain both studied transitions in their supports. Several
scenarios have been tested and analysed.

• Disabling of t60 (MCP1 gene transcription) results in a net covered (completely) by only
127 t-invariants, t11 : 32 \ 32 and t28 : 17 \ 53, which means that none t-invariant with t11 is
disabled in the process (32 out of 32 remain) while only 17 t-invariants—32% with t28 remain as
a result.

• Disabling of t61 (VCAM1 transcription): 151 t-invariants remain, net is fully covered, t11 : 20 \ 32
and t28 : 41 \ 53.

• Disabling of t62 (ICAM1 transcription): same as for t61.
• Disabling of t64 (iNOS gene transcription): 71 t-invariants remain, net is not covered, t11 : 0 \ 32

and t28 : 17 \ 53. As a result this scenario disables: MCT3, MCT7 and single transitions t65

(colorredproinflammatory response), t66 (no apoptosis) and the already mentioned path t9 →
t10 → t11.

• Disabling of t63 (TNF gene transcription): 22 t-invariants remain, net is not covered, t11 : 3 \ 32
and t28 : 13 \ 53. As a result this scenario disables: MCT2, MCT7, MCT8 and single transitions
t5 (modulation by TNF), t17 (neighboring endothelial cells stimulation), t65 (proinflammatory
response) and t66 (no apoptosis).

Two last combined scenarios aimed to minimize the number of active processes containing t11

and t28 are given below.

• Disabling t64 with t61 or t62 (or both of them): 51 t-invariants remain, the net is still fully covered,
t11 : 0 \ 32 and t28 : 13 \ 53. Disabled transitions and MCT sets are the same as described in scenario
for disabling t64 alone.

• Disabling t60 (MCP1 gene transcription) and t64 (iNOS gene transcription): 39 t-invariants remain,
the net is not covered, t11 : 0 \ 32 and t28 : 5 \ 53, so only 5 processed resulting in atherosclerotic
plaque remain.

3.3. Stochastic Simulation and Knockout Based Analysis

To be able to answer some important biological questions, we carried out a simulation based
analysis of the system using Gillespie stochastic simulation algorithm (SSA) [46] available in
Snoopy [10]. In each simulation experiment, the algorithm has been run 50,000 times, where each
run consisted of 1,000,000 steps. Additionally, we conducted simulation knockout of the model.
Here, selected transitions were excluded from the model, in our case by assigning to them a firing rate
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equal to 0 and the behavior of the system was examined. In stochastic simulation, we observed the
selected places: p9 (NO), p10 (foamy cells), p53 (p50–p65 dimer in the nucleus).

Scenario 1. The influence of the IL-18 and IFN-γ on the atherosclerosis development and progression

Scenario 1A. The influence of the IL-18 cytokine on the atherosclerosis development

In this simulation experiment, we decided to inspect the role of IL-18 in the development
of cardiovascular disease and atherosclerosis progression. Evidence shows, that IL-18 is a
proinflammatory and proatherogenic cytokine with pleotropic properties, involved in T and NK
cells maturation, production of other inflammatory cytokines and cell adhesion molecules. It plays
a significant role in orchestrating the cytokine cascade and accelerates atherosclerosis and plaque
vulnerability [47]. It was also demonstrated that IL-18 cytokine is as a good diagnostic marker of
the acute inflammatory process, an index of myocardial necrosis and in the pathophysiology of
atherosclerosis [4].

To observe the influence of IL-18 on the analyzed system, we excluded from the model the
following transitions: t7 (pro IL-18 activation by caspase 1 enzymatic cleavage) and t0 (induction cell
mediated immunity). Firstly, we decided to observe the place p9 (nitric oxide (NO)), since it reflects
the risk of atherosclerosis related cardiovascular events, which are connected with higher risk of death.
As it can be seen in Figure 4B, if IL-18 is inhibited, cardiovascular disease does not develop.

Figure 4. The results of in silico knockout analysis for place p9 (nitric oxide NO). (A) The simulation of
the model without knockout. (B) The impact of knocking out transitions t7 (pro IL-18 activation by
caspase 1 enzymatic cleavage) and t0 (induction cell mediated immunity) (C) The impact of knocking
out transitions t0 (induction cell mediated immunity) and t1 (INF-γ synthesis influencing) (D) The
impact of knocking out transitions t20 (ICAM1 and VCAM1 up regulation), t23 (hemodialysis (HD)),
t61 (VCAM1 transcription) and t62 (ICAM1 transcription) and t0 (induction cell-mediated immunity).
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Additionally, we also observed place p10 (foamy cells) as it represents the changes connected with
atherosclerosis development. The results are presented in Figure 5 (line B) and it can be easily noticed,
that the inhibition of IL-18 synergistically causes the inhibition of foamy cells formation and thereby
halt atherosclerotic progression.

Figure 5. The results of in silico knockout analysis for place p10 (foamy cells). (A) The simulation of
the model without knockout. (B) The impact of knocking out transitions t7 (pro IL-18 activation by
caspase 1 enzymatic cleavage) and t0 (induction cell mediated immunity) (C) The impact of knocking
out transitions t0 (induction cell-mediated immunity) and t1 (INF-γ synthesis influencing) (D) The
impact of knocking out transition t42 (IKK complex phosphorylation) (E) The impact of knocking
out transitions t20 (ICAM1 and VCAM1 up regulation), t23 (HD), t61 (VCAM1 transcription) and
t62 (ICAM1 transcription) (F) The impact of knocking out transitions t20 (ICAM1 and VCAM1 up
regulation), t23 (HD), t61 (VCAM1 transcription) and t62 (ICAM1 transcription) and t0 (induction cell
mediated immunity).

Another place, that we decided to observe was p53 (p50–p65 dimer in the nucleus), because
the translocation of activated NF-κB complexes from the cytoplasm to the nucleus is required
to promote transcription of pro-inflammatory and pro-atherogenic genes. As it can be seen in
Figure 6 (line B), NF-κB is not transported to the nucleus, hence the NF-κB-dependent transcription is
strongly attenuated.

These findings are consistent with the existing literature [4,47].

Scenario 1B. The influence of the INF-γ on the atherosclerosis development

INF-γ is a pro-inflammatory cytokine, which is secreted by T lymphocytes and macrophages. It is
involved in the initiation and modulation of a variety of immune responses and is expressed at high
levels in atherosclerotic lesions. It is also capable of influencing several key steps during atherosclerosis
development. This includes pro-inflammatory gene expression, the recruitment of monocytes from the
blood to the activated endothelium and plaque stability [47,48].

To analyze the influence of the INF-γ on the system, we excluded from the net the following
transitions: t0 (induction cell mediated immunity) and t1 (INF-γ synthesis influencing). We have
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decided to observe the following places: p9 (NO), p10 (foamy cells) and p53 (p50–p65 dimer in the
nucleus) for the same reasons set out in Scenario 1A above. As a consequence, similarly as in case of
Scenario 1A, inhibition of INF-γ resulted in a strong decrease in atherosclerotic plaque formation (see
Figure 5 (line C)) and blockade of NF-κB transcription factor activation (see Figure 6 (line C)).

These findings are consistent with the existing literature [47,48].

Scenario 2. The influence of the inhibition of NF-κB activation on the atherosclerosis development

Figure 6. The results of in silico knockout analysis for place p53 (p50–p65 dimer in the nucleus). (A) The
simulation of the model without knockout. (B) The impact of knocking out transitions t7 (pro IL-18
activation by caspase 1 enzymatic cleavage) and t0 (induction cell mediated immunity) (C) The impact
of knocking out transitions t0 (induction cell mediated immunity) and t1 (INF-γ synthesis influencing)
(D) The impact of knocking out transitions t20 (ICAM1 and VCAM1 up regulation), t23 (HD), t61

(VCAM1 transcription) and t62 (ICAM1 transcription) (E) The impact of knocking out transitions t20

(ICAM1 and VCAM1 up regulation), t23 (HD), t61 (VCAM1 transcription) and t62 (ICAM1 transcription)
and t0 (induction cell-mediated immunity).

Atherosclerosis and inflammatory diseases involve activation of NF-κB, which is now considered
to be a one of the key transcription factor and also a critical regulator of immune homeostasis.
However, the molecular mechanisms by which NF-κB activation exerts beneficial or pathogenic
signaling remain largely elusive [33,49].

To examine the influence of the NF-κB on the model, we excluded from the net the transition t42

(IKK complex phosphorylation). In the similar way operates known NF-κB inhibitor i.e., pyrrolidine
dithiocarbamate (PDTC) [50]. Next, we decided to look at the place p10 (foamy cells) for the same
reasons set out in Scenario 1 above. As a result, we could observe that the level of foamy cells has
increased (see Figure 5 (line D)) as compared to the model without the above mentioned transition
being knocked out (see Figure 5 (line A)). These results are consistent with the existing literature [49,51]
and suggest that a certain level of NF-κB is necessary to modulate and counteract pro-atherogenic and
inflammatory responses. Before one will be able to design safe and effective therapeutic approaches
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using NF-κB inhibitors, it is first necessary to sufficiently understand complex and often opposing
functions of this transcription factor both on the molecular and cellular level [49].

Scenario 3. The influence of blocking agents targeting cell adhesion molecules on the atherosclerosis development
and progression

Scenario 3A. Influence of the inhibition of endothelial adhesion molecules VCAM1 and ICAM1 activation on
the atherosclerosis development

An early phase of atherosclerosis involves the recruitment of leukocytes, which is mainly mediated
by cellular adhesion molecules (i.e., VCAM1, ICAM1) that are expressed on the vascular endothelium.
The information obtained from human and animals models study suggests that those molecules are
important players in the atherogenic process and play a crucial role in the atherosclerosis development
and plaque instability. It has also been shown that independently of other inflammatory markers
VCAM1 and ICAM1 were identified as a strong predictors of future cardiovascular events [52].
Unfortunately, relatively little attention has been paid so far to the therapeutic potential of vascular
cell adhesion molecules involved in the development or progression of atherosclerosis although they
seem to be a promising inflammatory disease targets [53].

To analyze the influence of the endothelial adhesion molecules VCAM1 and ICAM1 on the
system, we excluded from the net the following transitions: t20 (ICAM1 and VCAM1 up regulation),
t23 (HD), t61 (VCAM1 transcription) and t62 (ICAM1 transcription). We decided to observe
two places: p10 (foamy cells) and p53 (p50–p65 dimer in the nucleus) for the same reasons set
out in Scenario 1A above. As it can be seen, the level of p50–p65 dimer translocated to the
nucleus has increased, which suggests that a NF-κB-dependent inflammation is up-regulated
(see Figure 6 (line D) in comparison to model without knockout presented in Figure 6 (line
A)). Nevertheless, the level of foamy cells has significantly decreased (see Figure 5 (line E)) as
compared with the results shown in Figure 5 (line A) (the model without knockout). This result
is consistent with the findings in the existing literature, where it was demonstrated that blocking
adhesion molecules such as VCAM1 ameliorates atherosclerosis in apolipoprotein E-deficient mice [53].

Scenario 3B. Influence of the inhibition of early inflammation process and endothelial adhesion molecules
VCAM1 and ICAM1 activation on the atherosclerosis development.

If in addition to transitions knocked out in Scenario 3A, transition t0 (induction cell
mediated immunity) is deactivated, the NF-κB complexes are not transported to the nucleus
and the expression of inflammatory genes dependent on it, is inhibited (see Figure 6 (line E)).
Furthermore, foamy cells formation is strongly inhibited and what follows atherosclerosis progression
is attenuated (see Figure 5 (line F)) and also the cardiovascular disease does not develop (see Figure 4
(line D)).

It is worth noting that the same effect can be achieved by the knockout of the following transitions:
t0 (induction cell mediated immunity), t20 (ICAM1 and VCAM1 up regulation), t23 (HD) and t42

(IKK complex phosphorylation).

4. Conclusions

The results of our research show beyond any doubt that in atherosclerosis,
being immuno-inflammatory disorder, IL-18 and INF-γ play a key role. Moreover, deactivation of the
NF-κB pathway in the model increases the development of inflammation underlying atherosclerosis
and its clinical consequences. In addition, the inhibition of the participation of (1) adhesive molecules
(ICAM1 and VCAM1), (2) cell-mediated immunity, (3) the effect of dialysis treatment (HD) and
(4) IKK complex phosphorylation significantly reduces the development of atherosclerotic plaque.
The formation of atherosclerotic plaque still takes place but to a lesser extent. Our results show how
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harmful could be dialysis in the context of the studied phenomenon. In addition, we showed that
in order for the modeled process to occur, an activation of macrophages by the classical pathway
and IL-18-MyD88 signaling axis is required. Moreover, concerning the modulation by IFN-γ,
we have shown that although blocking this elementary process itself does not affect other elementary
processes (transitions), it has an impact on almost three-fourths of subprocesses (t-invariants) in
the modeled atherosclerosis phenomenon. This is important because it should be noted that IFN-γ
in the human body acts by modulating the immune response to infection. So, it seems that in the
case of atherosclerosis, the body’s response to damaging factors, including, for example, bacterial
infections, is crucial. Hence, it is an additional confirmation of the inflammatory basis underlying the
development of atherosclerotic plaque. Additionally, we proved that IL-18, together with the directly
dependent signaling pathways is crucial for atherosclerosis, and can be considered a good candidate
for a biomarker of atherosclerosis.
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Abbreviations

The following abbreviations are used in this manuscript:

CD cluster of differentiation
CKD chronic kidney disease
DDs Death Domains
DISC death-inducing signaling complex
Fas type I membrane protein that belongs to the tumor necrosis factor-nerve growth factor receptor family
FasL Fas ligand (tumour necrosis factor superfamily)
FADD Fas-associated protein with Death Domain
FLIPP FADD-like-interleukin β converting enzyme-like inhibitory protein
HD haemodialysis
ICAM intercellular adhesion molecule
ICE caspase1-protease
IFR interferon-related protein
IKK IκB kinase
IL-18 interleukin 18
IL-18Rs Interleukin 18 receptors
INF-γ interferon gamma
iNOS inducible isoform nitric oxide synthase
IRAK interleukin 1 receptor-associated kinase
IRAKP interleukin 1 receptor-associated kinase phosphorylated
JAK/STAT Janus kinase/signal transducers and activators of transcription
LBP lipopolysaccharide binding protein
LPS lipopolysaccharide
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MAPK mitogen-activated protein kinases
MCP1 monocyte chemoattractant protein 1
MCT sets Maximal Common Transition sets
MPS mononuclear phagocyte system
MSS Mean Split Silhouette
MyD88 myeloid differentiation primary response 88
NADPH oxidase nicotinamide adenine dinucleotide phosphate-oxidase
NK natural killers
NO nitric oxide
PN Petri net
p38-MAPK p38 mitogen-activated protein kinases
p50 nuclear factor kappa-B p50 subunit
p65 nuclear factor-kappa-B p65 subunit
RIP receptor-interacting protein
SODD silencer of death domains
SPN stochastic Petri net
TAB transforming growth factor β activated kinase
TAK transforming growth factor β activated kinase-associated binding protein
TLR Toll-like receptor
TNFR1 tumor necrosis factor receptor 1
TRADD tumor necrosis factor receptor type 1—associated DEATH domain protein
TRAF tumor necrosis factor receptor-associated factor
Uev1A-Ubc13 ubiquitin-conjugating enzyme complex
VCAM vascular cell adhesion molecule
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