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Abstract 

The interpretation of multi-omics datasets obtained from high-throughput approaches is important to understand disease-related ph y siological 
changes and to predict biomarkers in body fluids. We present a new metabolite-centred genome-scale metabolic modelling algorithm, the Gene 
Expression-based Met abolite Centralit y Analysis Tool (GEMCA T). GEMCA T enables integration of transcriptomics or proteomics data to predict 
changes in metabolite concentrations, which can be verified by targeted metabolomics. In addition, GEMCAT allows to trace measured and 
predicted metabolic changes back to the underlying alterations in gene expression or proteomics and thus enables functional interpretation and 
integration of multi-omics data. We demonstrate the predictive capacity of GEMCAT on three datasets and genome-scale metabolic networks 
from two different organisms: (i) we integrated transcriptomics and met abolomics dat a from an engineered human cell line with a functional 
deletion of the mitochondrial NAD transporter; (ii) we used a large multi-tissue multi-omics dataset from rats for transcriptome- and proteome- 
based prediction and verification of training-induced metabolic changes and achie v ed an a v erage prediction accuracy of 70%; and (iii) w e used 
proteomics measurements from patients with inflammatory bo w el disease and verified the predicted changes using metabolomics data from 

the same patients. For this dataset, the prediction accuracy achie v ed b y GEMCAT w as 79%. 
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he amount of transcriptome data available has increased ex-
onentially over the past decade. Statistical analyses and func-
ional classification approaches such as Gene Ontology term
nalyses [ 1 , 2 ] are useful to generate hypotheses, but their
unctional interpretation is often challenging. Thus, new ap-
roaches are required that allow a better integration of ex-
ression data to predict physiologically relevant and measur-
ble changes such as metabolic alterations. As linked tran-
criptomics, proteomics, and metabolomics data have become
ncreasingly available, another challenge is to effectively com-
ine these multi-omics datasets to gain new insights into bio-
ogical pathways and their regulation. 

The most promising strategies for multi-omics data inte-
ration to date are based on the molecular mechanism con-
ecting the different layers. These approaches are rooted in
he understanding of gene functions and network topology
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[ 3–5 ]. Among these approaches, genome-scale metabolic
modelling is one of the most common approaches, with
flux balance analysis (FBA) being the pre-eminent formal-
ism. FBA is a constraint-based optimization approach and
has been used extensively for biotechnological applications
[ 5–9 ]. There are different approaches to integrate gene ex-
pression data to predict metabolic flux alterations. How-
ever, FBA always requires the definition of an optimiza-
tion target, such as growth or ATP production, which are
not always clear and easy to define, especially in mam-
malian systems. Although attempts have been made to in-
terpret results from FBA to infer metabolite concentration
changes [ 10 ], the primary output of conventional FBA ap-
proaches is predictions of metabolic fluxes [ 9 , 11 , 12 ]. Ex-
perimental verification of metabolic fluxes in complex bio-
logical systems such as mammalian cells and whole organ-
isms is difficult and cost-intensive, whereas direct prediction
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of metabolite concentration changes can be verified using
targeted metabolomics and provide the basis for the predic-
tion of metabolic biomarkers. This has been done successfully
using ordinary differential equations resembling the kinetics
of individual biochemical reactions [ 13–16 ]. However, due to
the scarcity of kinetic data and the time required to construct
these models, they are limited to a small, targeted set of reac-
tions (up to 100) that are relevant for a specific research ques-
tion [ 17–20 ]. In 2005, Patil and Nielsen presented a network-
based approach that enables the prediction of the likelihood
of changes in metabolite concentrations at genome scale [ 21 ]
without the necessity to define optimization targets and path-
way constraints. This approach, however, cannot predict the
direction of change, which would be important for the inter-
pretation in terms of physiological consequences. 

In this study, we present a novel metabolic modelling ap-
proach that enables genome-scale integration and analysis of
both transcriptomics and proteomics data. In our algorithm,
the genome-scale metabolic network is represented as a di-
rected graph, with metabolites as nodes and reactions as edges.
Prediction of changes in metabolite concentrations is derived
through the comparison of enzyme abundances between two
conditions. For instance, the metabolite concentration will re-
main unchanged if the abundance of enzymes producing or
consuming a metabolite is unchanged or all change with the
same magnitude. However, if the measured abundance of en-
zymes that produce a metabolite increases while the abun-
dance of the ones consuming it decreases or remains constant,
the concentration of this metabolite is predicted to increase.
Importantly, we not only take into account local changes in
reactions directly connected to the metabolite, but also con-
sider changes both upstream and downstream in the network.
The weights of the edges are scaled based on the changes in
the inferred (transcriptomics) or measured (proteomics) en-
zyme abundances. Through the development of an algorithm
that combines gene expression or proteomics data integration
with the calculation of the PageRank (PR) centrality [ 22 ] of
nodes, we can predict changes in the centrality (ranking) of
the nodes within a given network. 

Among the various centrality measures available, PR stands
out as it assesses the quality of connections within a network,
making it highly effective for identifying influential nodes. Fur-
thermore, it evaluates the global importance of nodes, pro-
viding a comprehensive network-wide perspective. Designed
to handle large networks efficiently, PR is scalable. The itera-
tive refinement process ensures stable and accurate rankings.
Given these strengths, PR is particularly well suited for our
approach. 

We consider the changes in the ranking equal to qualitative
alterations in metabolite concentrations. An overview of our
approach is shown in Fig. 1 . We named the approach GEM-
CAT (Gene Expression-based Metabolite Centrality Analysis
Tool) and demonstrate its efficacy using three test cases: (i)
the analysis of a transcriptome dataset from an engineered hu-
man cell line with a functional deletion of the mitochondrial
NAD transporter SLC25A51 [ 23 ]; (ii) the analyses of tissue-
specific transcriptome and proteome datasets from a longitu-
dinal study of training-induced metabolic changes in rats [ 24 ];
and (iii) the integration of a proteomics dataset from patients
with inflammatory bowel disease (IBD) [ 25–27 ]. The predic-
tions were compared to the corresponding metabolomics data.

Furthermore, to identify the expression changes that lead
to certain metabolic alterations, we developed a method to
calculate centrality control coefficients that links expression 

changes to metabolic changes and enables sensitivity analy- 
sis in genome-scale metabolic networks. This method allows 
us to integrate different types of omics data and to perform 

a sensitivity analysis that can reveal the causes of metabolic 
alterations. 

Materials and methods 

Genome-scale metabolic model 

For the analysis of the cell line data and the data from 

IBD patients, we used Recon3D as a genome-scale human 

metabolic reconstruction that represents a comprehensive hu- 
man metabolic network model, accounting for 3288 open 

reading frames that encode 3695 enzymes and 13 543 re- 
actions on 8399 metabolites localized across seven subcel- 
lular locations [ 28 ]. For the analysis of the data from rats,
we used RatGEM as a genome-scale metabolic model of rat 
( Rattus norvegicus ). It represents 2804 enzymes and 12 995 

reactions involving 8458 metabolites across nine subcellular 
compartments [ 29 ]. 

A graph theoretical representation of a 

genome-scale metabolic network 

A graph is composed of nodes linked by edges. A graph is 
called a directed graph if the direction of the edges link- 
ing the nodes is defined. A genome-scale metabolic network 

can be represented as a directed graph G ( M, R, �) , where 
M is a finite set of metabolites and R is a finite set of in- 
teractions, which are ordered pairs of distinct interactions 
( R ⊆ { ( x, y ) | ( x, y ) ∈ M 

2 ; x � = y } ) contained in the metabolic 
network. A metabolic reaction is then represented by several 
edges, which is less intuitive, but makes the graph easier to 

process as the nodes represent the same kind of entities [ 30 ].
This approach allows the integration of information about the 
metabolites’ transition on edges. Several ways of representing 
a metabolic network as a graph exist [ 30 , 31 ]. A stoichiomet- 
ric matrix S := ( s i, j ) , where rows represent metabolites and 

columns denote reactions, can be used to derive a metabolic 
graph. s i, j takes negative integers for metabolites that are sub- 
strates and positive integers for products of a reaction [ 19 ].
The elements are zero otherwise. S can be transformed to yield 

an adjacency matrix A := ( a i, j ) , where a i, j becomes 1 when a re- 
action exists between metabolites m i ∈ M and m j ∈ M ( i � = j).
The entries are zero otherwise. The edges are characterized 

by the weighted adjacency matrix � := ( φi, j ) , where φi, j is the 
sum of weights of the edges between metabolites m i and m j .
We derived �� from the differential abundance of enzymes 
by comparing two different strains or conditions. 

Integration of the differential gene expression or 
proteomics data 

The integration of differential measured (proteomics) or in- 
ferred (transcriptomics) protein abundance starts with the 
mapping of the corresponding genes or proteins onto the 
metabolic network. This is done by processing the gene–
protein reaction (GPR) relations described by Fang et al. [ 32 ],
according to which the following scenarios are possible: (i) 
if only one protein is associated with a metabolic reaction,
the abundance of this protein is assigned to the reaction; (ii) 
if several proteins are jointly required for a reaction to take 
place, the geometric mean of the abundance is assigned to the 
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Figure 1. An o v ervie w of GEMCAT, our PR-assisted method to integrate transcriptomics or proteomics data to predict metabolic alterations in 
genome-scale metabolic models (human metabolic model, HMM). A stoichiometric matrix S and an adjacency matrix A can be derived from the 
reactions in a metabolic network. Thus, the metabolic network is represented as a directed graph composed of nodes (metabolites) linked by edges 
(enzymatic reactions). Upon integration of the gene expression data into the graph, PR centrality of e v ery metabolite in the HMM is calculated. The 
differential PR centrality of metabolites is used to predict changes in their concentrations. The predicted metabolic alterations can be validated using the 
experimentally measured changes in the metabolomics data. 
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other metabolites in the network. Their PR scores are there- 
eaction; (iii) if any one of several proteins is sufficient for a
eaction to occur, the arithmetic mean of the abundance is as-
igned to the reaction; and (iv) any GPR containing combina-
ions of both scenarios (ii) and (iii) is parsed according to their
ogical relation. The processing of GPRs results in an abun-
ance vector, where each element denotes the net abundance
f a protein catalysing a particular reaction. 

alculation of the weighted adjacency from a 

toichiometric matrix 

et E be the protein abundance vector calculated by process-
ng the corresponding GPRs and S be the stoichiometric ma-
rix of the given metabolic network with rows and columns
epresenting metabolites and reactions, respectively. All re-
ersible reactions contained in S were split into their unidi-
ectional component reactions, and the corresponding entry
n E was duplicated accordingly. A weighted stoichiometric
atrix is created as 

S ′ = E · S. (1)

We split this matrix into its components for products and
ubstrates, respectively, as 

S + 

i, j = 

{
S ′ i, j , 

0 , 

if x > 0 , 

otherwise (2a)

nd 

S −i, j = 

{ 

∣∣∣S ′ i, j 

∣∣∣, 
0 , 

if x < 0 , 

otherwise . (2b)
These matrices are used to calculate the weighted adjacency
matrix as 

� = S − · S + T , (3)

which is a square matrix used to represent a finite graph,
which in our case is the human metabolic network from the
Recon3D model. The elements of the matrix indicate the
weight shared by the adjacent pairs of metabolites in the
metabolic network. 

Calculation of the differential centrality to predict 
metabolic alterations 

The PR centrality of metabolites M can be calculated as 

PR = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

PR m 1 

PR m 2 

. . . 
PR m n 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (4)

The PR centrality provides a ranking that identifies the im-
portance of a node in a network. In its original form, the al-
gorithm calculates a probability distribution to represent the
likelihood of a person randomly clicking on links and arriving
at a particular page on the internet [ 22 , 33 ]. This probability is
expressed as a numeric value between 0 and 1 . In the context
of a metabolic network, the PR value for any metabolite m i

is dependent on the PR values for each metabolite m j ( i � = j)
contained in the set M ( m i ) containing all metabolites linking
to metabolite m i divided by the total number of links from
metabolite m j . Further, metabolites with no outbound edges,
i.e. metabolites that are sinks, are assumed to link out to all
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fore divided evenly among all other metabolites. There is a
residual probability d, also known as a damping factor, that
is added to each node as a likelihood of a transition to any
other node in the network [ 22 ]. The PR value of a metabolite
m i can be calculated as 

PR m i = 

1 − d 

n 

+ d 

∑ 

m j ∈ M ( m i ) 

PR m j 

L m j 

, (5)

where L m j is the number of outbound links on m j and n is the
total number of metabolites in the metabolic network. The PR
values correspond to the elements of the dominant right eigen-
vector of the weighted adjacency matrix, which has been nor-
malized to ensure that each column adds up to 1. The eigen-
vector is given in Equation ( 4 ). The PR centralities are itera-
tively calculated for each metabolite until the convergence is
achieved [ 34 ]. A differential PR centrality ( dPR ) can be calcu-
lated by comparing the relative change in the PR centralities
of M for the perturbed and baseline conditions. We used dPR
to predict changes in the abundance of M (Equation 6 ): 

dPR = 

PR perturbed 

PR baseline 
≈

[
M perturbed 

]
[ M baseline ] 

. (6)

Calculation of centrality control coefficients 

To study the effect of perturbation in the network, we devised
a metric that we have referred to as centrality control coeffi-
cient. It relates the fractional change in the PR centrality of
metabolite M m 

to the fractional change in the abundance of
enzyme E e as 

C 

PR m 
E e 

= 

(
E e 

PR m 

�PR m 

�E e 

)
�E e → 0 

. (7)

These coefficients are characteristic for a given network and
are not dependent on the expression data. Please see Equa-
tions ( 1 )–( 3 ) describing how E relates to the PR centrality of
metabolites M . 

Gene expression and metabolomics measurements

Cells (293- SLC25A51 -ko [ 35 ] and parental HEK293) were
cultivated in Dulbecco’s modified Eagle medium, high glu-
cose (Merck / Sigma, D5671) supplemented with 10% (v / v)
fetal bovine serum (FBS), 2 mM l -glutamine, 1 mM sodium
pyruvate, and penicillin / streptomycin at 37 

◦C in humidified
atmosphere with 5% CO 2 . Cells were harvested, washed
with phosphate-buffered saline, and counted. For RNA se-
quencing (RNA-seq) analyses, 5 × 10 

6 cells in three techni-
cal replicates per cell line were frozen in liquid nitrogen and
shipped on dry ice to Novogene Co., Ltd (Cambridge, UK)
for processing. RNA sequences were generated using the Il-
lumina NovaSeq platforms. Fragments per kilobase of tran-
script per million mapped reads were used directly to in-
fer enzyme abundance changes. For the metabolomics mea-
surements, five times 2 × 10 

6 cells in five technical replicates
from each parental HEK293 and 293- SLC25A51 -ko cells
were subjected to chloroform–methanol-based simultaneous
proteo-metabolomics liquid–liquid extraction [ 36 ]. Glycolytic
metabolites, metabolites of tricarboxylic acid (TCA) cycle,
and nucleotides (ATP , ADP , AMP) were analysed by ion
chromatography–single ion monitoring mass spectrometry
(IC–SIM-MS) [ 36 ] using a quadrupole orbitrap (Exploris
480) and an ICS-6000 IC system (both Thermo Fisher Sci-
entific). Free amino acids and tryptophan metabolites were 
analysed by multiple reaction monitoring (MRM) using a 
triple quadrupole mass spectrometer (TQ-XS, Waters) cou- 
pled to a UPLC system (ACQUITY Premier, Waters) as de- 
scribed previously [ 37 ]. IC–SIM-MS data were processed us- 
ing TraceFinder 5.0 (version 5.0.889.0, Thermo Scientific) and 

the LC–MRM-MS data were processed using MS Quan (Wa- 
ters Connect, Waters) [ 36 , 37 ]. 

Gene expression and metabolomics data from 

previous studies 

The tissue-specific transcriptomics, proteomics, and 

metabolomics from a longitudinal study of training-induced 

metabolic changes in rats were taken from [ 24 ]. The dataset 
consists of transcriptome and metabolome measurements 
from 18 tissues from sedentary rats and rats trained for 1, 2,
4, or 8 weeks. The matching proteome was only available for 
seven tissues. The differential proteomics and metabolomics 
from mucosa biopsies of IBD patients and healthy controls 
were obtained from [ 25–27 ]. 

Chemicals 

HPLC-grade acetonitrile, methanol, formic acid, Micro BCA 

Protein Assay Kit, Gibco Qualified FBS, and ammonium bicar- 
bonate were obtained from Thermo Fisher Scientific (Dreieich,
Germany). [U- 13 C]-labelled yeast extract of Pichia pastoris 
( 2 × 10 

9 cells) was purchased from ISOtopic Solutions (Vi- 
enna, Austria), reconstituted in 2 ml HPLC-H 2 O, aliquoted,
and stored at −80 

◦C. [U- 13 C]-labelled lactate [20% (w / w) 
dissolved in H 2 O] and [U- 13 C–15 N]-labelled canonical amino 

acids (dissolved in 0.1 M HCl) were purchased from Euriso- 
top (Saarbruecken, Germany). 

Calculation of error metrics 

We have calculated the following metrics to evaluate the error 
in GEMCA T’ s predictions: 

• Accuracy: It is defined as the ratio of correct predictions 
made by GEMCAT relative to the total number of pre- 
dictions as follows: 

accuracy = 

no . of correct predictions 
total no . of predictions 

, (8) 

where the term ‘correct predictions’ refers to predictions 
that have the same direction of change as the measurements. 

• Spearman’s rank: It measures the strength and direc- 
tion of the monotonic relationship between two ranked 

datasets. It was calculated using Equation ( 9 ): 

ρ = 1 − 6 

∑ 

d 

2 
i 

n 

(
n 

2 − 1 

) , (9) 

where d i is the difference between the ranks of correspond- 
ing observations and n is the number of observations. The 
coefficient ρ ranges from −1 to 1, where 1 indicates perfect 
positive correlation, −1 indicates perfect negative correlation,
and 0 suggests no correlation. 

• Symmetric mean absolute percentage error (SMAPE) is 
a normalized error metric that quantifies the accuracy of 
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BA

Figure 2. Comparison of predicted and measured changes in the abundance of metabolites in SLC25A51 -deficient (293- SLC25A51 -ko) cells relative to 
parental HEK293 cells. ( A ) A histogram showing the distribution of changes predicted in the abundance of 8399 metabolites in the HMM (Recon3D 

model) using RNA-seq data from three replicates. ( B ) A scatter plot showing the distribution of the mean of predicted metabolic changes calculated 
based on the integration of RNA-seq data from three replicates in comparison to the mean of the experimentally measured changes in metabolite 
concentrations in 293- SLC25A51 -ko relative to parental HEK293 cells from five replicates (for details see the ‘Materials and methods’ section). The 
dashed lines are used to divide the plot into four quadrants. The upper right and lower left quadrants show metabolites, whose concentration changes 
are predicted correctly. In each quadrant, the percentage and names of metabolites corresponding to it are shown. Metabolite abbreviations: AMP, 
adenosine monophosphate; ATP, adenosine triphosphate; cAMP, cyclic AMP; 2,3-DPG, 2,3-diphosphoglyceric acid; 6PG, 6-phosphogluconic acid; S7P, 
D -sedoheptulose 7-phosphate; F16BP, fructose 1,6-bisphosphate; F6P, fructose 6-phosphate; G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; PEP, 
phosphoenolp yru vic acid; SAM, S -adenosylmethionine; NAA, N -acetyl- L -aspartic acid; 3OHKYN, h y dro xykynurenine. 
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predictions in a way that accounts for both the magni-
tude of the errors and the relative scale of the measured
and predicted values. It was calculated using Equation
( 10 ): 

SMAPE = 

1 

n 

n ∑ 

i =1 

∣∣y i − ˆ y i 
∣∣(∣∣y i ∣∣ − ∣∣ ˆ y i 
∣∣)/ 2 

× 100 , (10)

where y i is the measured value, ˆ y i is the predicted value, and
 is the number of observations. SMAPE provides a percent-
ge error, with values ranging from 0 to 100%. 

• Mean squared logarithmic error (MSLE) is used to eval-
uate the accuracy by penalizing under-predictions more
than over-predictions and is useful when the target vari-
able (residual) spans multiple orders of magnitude. It was
calculated using Equation ( 11 ): 

MSLE = 

1 

n 

n ∑ 

i =1 

(
log (1 + y i 

) − log ( 1 + 

ˆ y i ) ) 
2 , (11)

where y i is the measured value, ˆ y i is the predicted value, and
 is the number of observations. 

• Normalized root mean square error (NRMSE) is a vari-
ation that normalizes the root mean square error by the
range of the measured values, thus allowing a compar-
ison across data with different scales. It was calculated
using Equation ( 12 ): 

NRMSE = 

√ 

1 
n 

∑ n 
i =1 ( y i − ˆ y i ) 

2 

y max − y min 
, (12)

where y i is the measured value, ˆ y i is the predicted value, n is
he number of observations, and y max and y min represent the

aximum and minimum values of the measurements.  
Results 

Metabolic alterations in an engineered HEK293 cell 
line 

We used RNA-seq data from an SLC25A51 CRISPR–Cas9
knockout cell line that lacks a functional mitochondrial NAD
transporter [ 35 ]. Differential gene expression was calculated
by comparing the RNA-seq from three different replicates
of SLC25A51 knockout (293- SLC25A51 -ko) and parental
HEK293 cells, respectively. We used Recon3D [ 28 ] as a
genome-scale HMM. Two thousand six hundred fifteen tran-
scripts could be mapped to the Recon3D model. As the model
contains 3695 enzymes that catalyse 7675 out of 13 543 re-
actions in total, we assumed that the remaining reactions did
not change and thus set the corresponding values to 1. Trun-
cated transcripts of SLC25A51 can still be detected in the
293- SLC25A51 -ko cell line, which is common in CRISPR–
Cas9 deletions. However, the massive decrease of mitochon-
drial NAD has been shown experimentally, thereby func-
tionally validating the knockout [ 35 ]. We thus set the trans-
port reaction of NAD across the mitochondrial membrane
to 0. We used our newly developed algorithm GEMCAT to
calculate the differential PR centrality ( dPR ) of metabolites
M ( M = m 1 , m 2 , . . . , m n ; n = 8399 ) in the HMM and used
dPR as an estimate for metabolic alteration that is caused
by changes in transcript abundance in 293- SLC25A51 -ko
compared to parental HEK293 cells. The predicted log 2 fold
changes vary between −0.75 and 0.75 (see Fig. 2 A). As
Recon3D is a compartmentalized model, but we only have
whole-cell metabolomics measurements, we calculated the
arithmetic mean of predicted metabolite changes across all
subcellular compartments (compartment-specific predictions
are shown in Supplementary Fig. S1 ). We compared the mean
values with experimentally measured concentration changes
in 44 metabolites. Twenty-eight out of 44, thus ∼64% of
the metabolites, were predicted correctly (see Fig. 2 B). This
includes several intermediates of the TCA cycle that have
previously been reported to decrease in SLC25A51 -deficient

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
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A B

Figure 3. Efficacy of GEMCAT in predicting training-induced metabolic alterations in rats. ( A ) A box plot representation of GEMCAT’s prediction accuracy 
distribution for > 100 metabolites, compared to experimentally measured changes across various tissues. Accuracy is the ratio of correctly predicted 
metabolites to the total number of predictions. Prediction efficiency is further evaluated using Spearman’s rank coefficient, which ranges from −1 to +1, 
with 0 indicating no correlation. A coefficient of −1 or +1 implies an exact monotonic relationship. Each box represents the interquartile range, with the 
line inside the box indicating the median. The whiskers extend to show the distribution. ( B ) A dot plot distribution of mean accuracy per metabolite for 
the se v en tissues that had met abolomics, proteomics, and transcriptomics dat a a v ailable. Detailed results f or all metabolites are pro vided in the 
extended data sheets available at https:// doi.org/ 10.6084/ m9.figshare.28170524 . 

https://doi.org/10.6084/m9.figshare.28170524
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A B

Figure 4. Comparison of predicted and measured changes in the abundance of metabolites in UC patients relative to healthy controls. ( A ) The histogram 

shows the distribution of predicted changes in all 8399 metabolites contained in the HMM. ( B ) A scatter plot showing the comparison of the predicted 
changes against the experimentally measured metabolic changes. The dashed lines separate the quadrants between correctly (upper right and lower left 
quadrants) and incorrectly predicted metabolites. All metabolites measured to be changed significantly ( p < 0 . 05 [ 26 ]) and having a dPR > ‖ 0 . 01 ‖ are 
sho wn here. T he complete results f or 137 metabolites are pro vided in Supplement ary Fig . S5 and dat a at https:// doi.org/ 10.6084/ m9.figshare.28170524 . 
Metabolites are shown in orange and corresponding names are indicated in the respective quadrants. The percentage of metabolites in each quadrant is 
also shown. Metabolite abbreviations: 3OH-C16-C, 3-hydroxyhexadecanoylcarnitine; 3OH-IV-C, 3-hydroxyisovalerylcarnitine; 3OH-11 Z -C18-C: 
3-h y dro xy -11 Z -octadeceno ylcarnitine; 3OH-C12-C, 3-h y dro xy dodecano ylcarnitine; 3OH-C14-C, 3-h y dro xytetradecano ylcarnitine; C10-C, decanoylcarnitine; 
C8-C, L-octanoylcarnitine; 3OH-LC18, (3 S )-3-hydroxylinoleoyl-CoA; IV-C, isovalerylcarnitine; NAA, N -acetyl-L-aspartic acid; A-LC18-C, 
alpha-linolenylcarnitine; C4-C, butyrylcarnitine; Tiglyl-C, tiglylcarnitine; Glutaryl-C, glutarylcarnitine; C6-C, he xano ylcarnitine; G3P, glycerol 3-phosphate. 
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measured metabolites and extended data sheets available at 
AP1 cells [ 38 ]. Further details about variation between repli-
ates are provided in Supplementary Figs S1 and S2 and ex-
ended data sheets are available at https:// doi.org/ 10.6084/
9.figshare.28170524 . 

redicting metabolic alterations in rats 

e used a published transcriptome and proteome dataset
omparing the tissue-specific training-induced changes in rats
o that of sedentary (control) rats [ 24 ]. Both transcriptome
nd proteome datasets comprise measurements at five time
oints, i.e. 0, 1, 2, 4, and 8 weeks, from different tissue sam-
les. While the longitudinal measurements of the transcrip-
ome from 18 different tissues were available, proteomics data
ere only available from 7 tissues. We used a comprehensive

enome-scale metabolic model of rat (RatGEM [ 29 ]) cover-
ng 8458 metabolites to integrate the gene expression data.

e could map the abundance of 2617 transcripts and 1759
roteins to the annotated enzymes in the RatGEM. The values
or the enzymes not covered by the transcriptome were set to 1
nd thus assumed to be unchanged between the two compared
amples. Upon expression data integration, we performed the
alculation of the dPR scores for all samples from each tis-
ue against all samples from the same tissue independent of
he time point and treatment, thus resulting in over 10 000
omparisons. Since the RatGEM is also a compartmentalized
odel and we have metabolome measurement from the whole

ell, we took the arithmetic mean across all intracellular com-
artments. We compared the mean to the experimentally mea-
ured concentrations in > 100 metabolites. We summarize our
redictions in terms of accuracy, i.e. the ratio between the
orrectly predicted metabolites and the total predictions (Fig.
 ). Additionally, we evaluated the quality of our predictions
y calculating the Spearman’s rank coefficient. A distribution
f the prediction accuracy and Spearman’s rank coefficient
s shown in Fig. 3 A. On average, we predicted 70% of the
metabolites correctly (accuracy ≈ 0.7). It is worth noting that
the prediction based on proteomics is slightly better (average
accuracy = 0.73) than prediction based on transcriptomics
data (average accuracy = 0.67; for accuracy per tissue, see
Fig. 3 A). An analysis of individual metabolite predictions is
given in Fig. 3 B and Supplementary Fig. S3 . Some metabolites
are consistently predicted much more accurately than others.
A more detailed analysis evaluating the quality of prediction is
shown in Supplementary Fig. S4 . For a comprehensive list of
accuracies for each metabolite, see extended data sheets pro-
vided at https:// doi.org/ 10.6084/ m9.figshare.28170524 . 

Predicting metabolic alterations in IBD patients 

To predict metabolic alterations in IBD patients with ulcer-
ative colitis (UC), we used a published mucosa proteome
dataset comparing protein abundance in patients with severe
UC to that of healthy adults [ 27 ]. The dataset comprises only
significantly changed protein abundances. These were mapped
to 158 enzymes in the Recon3D model. The values for the
enzymes not covered by the proteomics were set to 1 and
thus assumed to be unchanged between patients and controls.
Upon integration of the differential proteomics data, we cal-
culated the dPR scores of all metabolites in our HMM to
predict the changes in their concentrations. The distribution
of predicted changes in the metabolite concentrations was
centred around 0 (see Fig. 4 A), with most of the metabo-
lites being unchanged as expected as very few enzymes in
the network were significantly changed. To validate our pre-
dictions, we compared them with the metabolite measure-
ments from the same set of UC patients and healthy adults
[ 25 , 26 ]. We correctly predict changes in ∼79% of the metabo-
lites measured to change significantly (i.e. p < 0 . 05 [ 26 ], Fig.
4 B). See Supplementary Fig. S5 for the comparison of all

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
https://doi.org/10.6084/m9.figshare.28170524
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
https://doi.org/10.6084/m9.figshare.28170524
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
https://doi.org/10.6084/m9.figshare.28170524
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqaf003#supplementary-data
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A

C

B

Figure 5. Calculation of response coefficients ( �M 

E ) to trace metabolic alterations back to the underlying changes in gene expression. ( A ) Changes in 
met abolomics dat a mapped onto the human met abolic net w ork. ( B ) T he scatter plot is based on the comparison sho wn in Fig. 2 B but limited to 
metabolites that show consistent predicted changes for three replicates of transcriptomics data and significant changes in the measurements ( p < 0 . 05 , 
t wo-t ailed Student’s t -test). Each dot represents the mean value of a metabolite. The bold lines highlight the upper right and bottom left quadrants, 
where the direction of the predicted changes agrees with the experimentally measured changes. In each quadrant, the percentage and names of 
metabolites corresponding to it are shown. ( C ) A heatmap showing the response coefficients ( �M 

E > ‖ 0 . 005 ‖ ) of correctly predicted metabolites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https:// doi.org/ 10.6084/ m9.figshare.28170524 for values and
standard deviation. 

Multi-omics integration allows tracing of metabolic 

changes to changes in enzyme abundance 

As the accessibility of metabolomics measurements increases,
it becomes important to integrate them with other omics
datasets such as transcriptomics and proteomics. We therefore
extended GEMCAT to enable tracing of metabolic changes
back to the changes in gene expression or proteomics. To this
end, we first analysed the impact of abundance changes in each
enzyme on the predicted change of all metabolites. This ap-
proach is similar to metabolic control analysis and is an im-
portant component of mathematical analysis of complex sys-
tems [ 39 , 40 ]. It describes the system behaviour in terms of
the properties of its variables. To systematically analyse the
effect of perturbation of the metabolic network, we estimated
the centrality control coefficient ( C 

PR m 
E e 

, Equation 7 ). If this co-
efficient is positive, the PR centrality of the metabolite m in-
creases as the weight of the reaction increases, which in turn
is increased due to the increase in abundance of enzyme E e .
These coefficients are characteristic for a given network and
are not dependent on the expression data. Furthermore, these
coefficients can be used to estimate the change in centrality of 
metabolites M for a given differential in enzyme abundance 
[ �E = ( E 

′ − E ) /E , where E 

′ and E denote enzyme abun- 
dances for compared and reference conditions, respectively] 
and refer to this as response coefficient ( �PR M 

E = C 

PR M 
E · �E ).

The response coefficients �PR M 
E can be used to trace metabolic 

alterations back to the underlying changes in the gene expres- 
sion or proteomics, as shown in Fig. 5 . (The full set of central- 
ity control coefficients C 

M 

E and response coefficients �M 

E is pro- 
vided at https:// doi.org/ 10.6084/ m9.figshare.28170524 .) Al- 
ternatively, the approach can be used to analyse discrepancies 
between predictions and experiments and thus identify poten- 
tial points of post-translational regulation or potential incom- 
plete pathway information. 

Discussion 

In this study, we present GEMCAT, a new algorithm to pre- 
dict metabolic alterations in a large set of metabolites us- 
ing genome-scale metabolic networks. Unlike FBA, GEMCAT 

does not require an objective function, and only uses the 
intrinsic properties of the metabolic network. Furthermore,
it can predict qualitative changes in metabolite concentra- 

https://doi.org/10.6084/m9.figshare.28170524
https://doi.org/10.6084/m9.figshare.28170524
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ions directly. Upon integration of enzyme abundances into
 graph-based representation of the metabolic network, we
alculated the change in PR centrality of metabolites con-
ained in the graph. This change in PR centrality, referred
o as differential PR ( dPR ) centrality in this paper, was used
o predict metabolic alterations originating from changes in
nzyme abundances. Using different genome-scale metabolic
odels (Recon3D and RatGEM as human and rat genome-

cale metabolic reconstructions, respectively), GEMCAT can
redict changes in > 8000 metabolites for different subcellu-
ar compartments. As metabolomics measurements are lim-
ted to a much lower number of metabolites and are diffi-
ult, if not impossible, to perform for all subcellular com-
artments, we can only verify our predictions on a limited
et of metabolites. Since most metabolomics studies comprise
hole-cell analyses, we combined the predicted subcellular

hanges into whole-cell changes, and here used a simplified
ssumption, i.e. the calculation of arithmetic means across all
ubcellular compartments. To accurately determine the con-
ribution of each subcellular compartment to changes at the
hole-cell level, compartment-specific concentrations of each
etabolite would be required. Such data are not available to
ate. Compared to transcriptomics, proteomics data are con-
idered a better proxy for enzyme activities, and we indeed
chieved slightly better prediction accuracy for the integra-
ion of rat proteomics data compared to the integration of
ranscriptomics data from the same rats. However, protein
overage is often still much lower in proteomics compared
o transcriptomics datasets. Despite these limitations, GEM-
AT achieves a remarkably high prediction accuracy for the
roteomics-based predictions for rat and patient datasets even
hough they only covered 1759 and 158 enzymes of the Rat-
EM and Recon3D network, respectively. Given that untar-

eted metabolomics measurements are still rather expensive
nd incomplete, GEMCAT provides a new approach to de-
ive hypotheses about metabolic alterations that can be vali-
ated by far more accurate targeted metabolite measurements.
n this way, GEMCAT can also assist in the identification of
isease-specific metabolic biomarkers or signatures. 
In the analysis of the rat dataset, we see that GEMCAT

chieves a higher prediction accuracy for a subset of metabo-
ites. The origin of this bias can be manifold: Besides poten-
ial differences in metabolite measurements’ accuracy, there
ould be errors in the network reconstruction or a bias result-
ng from the integration algorithm towards certain parts of
he network. To understand the reasons for incorrectly pre-
icted metabolic changes, one can trace back the predicted
hanges to the corresponding expression changes and net-
ork components using our network-based control analysis

pproach. Consequently, our approach can be applied to im-
rove metabolic network reconstruction by tracing incorrectly
redicted metabolites to identify errors or gaps in the network
econstructions. 

We envisage that GEMCAT can be extended in several ways
o improve prediction quality. It should, for example, be noted
hat it is not yet possible to incorporate changes in media com-
osition or diet that do of course impact nutrient availabil-
ty and thus metabolite changes. We furthermore believe that
rediction accuracy can be further improved through integra-
ion of kinetic parameters and other relevant information such
s post-translational modifications and their functional effects
y adjusting the weights of the edges. 
Supplementary data 

Supplementary data is available at NAR Genomics & Bioin-
formatics online. 
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