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Abstract: Liver injury is a significant public health issue nowadays. Shibi tea is a non-Camellia tea
prepared from the dried leaves of Adinandra nitida, one of the plants with the greatest flavonoid
concentration, with Camellianin A (CA) being the major flavonoid. Shibi tea is extensively used in
food and medicine and has been found to provide a variety of health advantages. The benefits of
Shibi tea and CA in preventing liver injury have not yet been investigated. The aim of this study
was to investigate the hepatoprotective effects of extract of Shibi tea (EST) and CA in mice with
carbon tetrachloride (CCl4)-induced acute liver injury. Two different concentrations of EST and CA
were given to model mice by gavage for 3 days. Treatment with two concentrations of EST and CA
reduced the CCl4-induced elevation of the liver index, liver histopathological injury score, alanine
aminotransferase (ALT), and aspartate aminotransferase (AST). Western blotting and immunohisto-
chemical analysis demonstrated that EST and CA regulated the oxidative stress signaling pathway
protein levels of nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1), the expression
of inflammatory cytokines, the phosphorylated nuclear factor-kappaB p65 (p-NF-κB)/nuclear factor-
kappaB p65 (NF-κB) ratio, the phospho-p44/42 mitogen-activated protein kinase (p-MAPK), and
the apoptosis-related protein levels of BCL2-associated X (Bax)/B cell leukemia/lymphoma 2 (Bcl2)
in the liver. Taken together, EST and CA can protect against CCl4-induced liver injury by exerting
antioxidative stress, anti-inflammation, and anti-apoptosis.

Keywords: Adinandra nitida (Theaceae); Camellianin A; liver injury; oxidative stress; inflammation;
anti-apoptosis

1. Introduction

The liver is a key controller of many physiological processes by mediating the synthesis
and metabolism of endogenous compounds and participating in biological functions such
as storage of liver glycogen, synthesis of secretory proteins, bile secretion, regulation
of hematopoiesis, immune responses, and the metabolism of many existing exogenous
compounds, including drugs, alcohols, and toxins [1,2]. The liver has a unique ability to
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regenerate and can fully recover from the most severe nonrecurrent conditions. However, a
variety of conditions, including viral hepatitis, non-alcoholic fatty liver disease, chronic
alcohol abuse, and long-term drug use, can lead to persistent liver injury, resulting in liver
scarring and cirrhosis, which eventually progress to dysfunction and, later, hepatocellular
carcinoma [3]. With the deterioration of the environment and the abuse of chemicals, liver
injury has become a widespread disease with high morbidity [4].

Reactive oxygen species (ROS) are perceived to be molecular secondary messengers
and play an important role in cell signal transduction and physiological processes [5].
However, when ROS are not cleared promptly, they can lead to intracellular protein, lipid,
and nucleic acid destruction during pathological processes [6]. Due to the liver tissue usually
being susceptible to pathological cascades of oxidative stress, inflammatory apoptotic
response and excessive ROS generation have been postulated to trigger the formation of
liver injury [7]. CCl4 is a chemical widely used in the laboratory to induce experimental acute
liver injury, and its toxicity is mainly due to the generation of ROS [8] and the p-NF-κB [9],
then leading to organ damage. The natural active ingredient flavonoids were found to have
some hepatoprotective effects in experimental liver injury models in animals [10]. Silymarin
is the most well-studied hepatoprotective flavonoid, which showed good hepatoprotective
effects in CCl4-induced experimental liver injury models and has been applied in the
treatment of liver injury [11]. Therefore, the exploration of safe, natural, effective efficacious
flavonoid fractions of plant origin with hepatoprotective activity in a model for liver injury
induced by intraperitoneal injection of CCl4 is essential to develop measures to elucidate
the mechanism of hepatoprotective action.

Shibi tea, also known as Shiya tea, is a traditional non-Camellia Chinese tea prepared
from Adinandra nitida leaves, which are high in flavonoids. Shibi tea is a unique wild tea
that has been used as a health tea and herbal medicine in Southeast Asia, including China,
for hundreds of years [12]. It is mainly grown in the cool, moist, and high-altitude (above
500 m) cliffs in southern China, and in recent years, it has also been cultivated on a large
scale in Guangdong and Guangxi [13]. Shibi tea is not only tasty and sweet, but also rich in
flavonoids (up to 28.4%), and it has been found to have antioxidant and antibacterial effects
and prevent peptic ulcers [14,15]. Shibi tea is one of the plants with the highest flavonoid
content. Among them, CA, a flavonoid glycoside with apigenin as its parent nucleus, is
its main flavonoid (nearly 60%) [16]. However, the advantages of Shibi tea and CA in the
prevention of liver injury are still unknown. In this study, we successfully established CCl4-
induced liver injury in C57BL-6J mice and explored the anti-inflammatory, anti-apoptosis,
and antioxidative effects of EST and the main flavonoid, CA, in repairing acute liver injury.
We have established the hepatoprotective effects of Shibi tea and the functional ingredient CA
in vivo. Consequently, we propose that Shibi tea might serve as a functional beverage with
hepatoprotective effects, and emphasize CA as a novel natural plant-souse hepatoprotective
ingredient that plays a significant role in the alleviation of liver injury.

2. Materials and Methods
2.1. Chemicals and Reagents

Shibi tea was obtained from Zhengqi Agricultural Development Co., Ltd. in Yingde, and
from Taihongyuan Agriculture Co., Ltd. in Xinyi, Maoming, Guangdong, China. The EST
was prepared and the component analysis of EST was realized in our previous study [17]. CA
(HPLC ≥ 98%) was obtained according to our previous study [16]. The 4% paraformaldehyde
(BL539A) was purchased from Biosharp (Anhui, China).

2.2. Establishment of Murine Liver Injury Model

Male C57BL/6 mice (7 weeks old) were purchased from the Beijing Huafukang Bio-
science Co. Ltd. (Beijing, China). The mice were housed at room temperature (22 ± 2 ◦C)
with 60% ± 15% humidity on a 12 h light/dark cycle, with free access to deionized water
and basic feed. The mice were acclimatized for 1 week, and then randomly divided into the
following seven groups (n = 7 each): control group (Control), untreated CCl4 model (Model),
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CCl4 + 100 mg/kg silymarin (Positive), CCl4 + 30 mg/kg CA (L-CA), CCl4 + 100 mg/kg
CA (H-CA), CCl4 + 200 mg/kg EST (L-EST), and CCl4 + 700 mg/kg EST (H-EST). Silymarin,
EST, and CA were dissolved in a 0.5% CMC-Na solution. Except for the Control group,
the acute liver injury model was induced by intraperitoneal injection of 0.2 mL/kg CCl4
(dissolved in maize oil) to each animal in the remaining groups, and the control group
was injected with an equal amount of maize oil as a negative control. Two hours after in-
traperitoneal injection, gavage treatment was performed according to the dose administered
to each group for three days. The Control and Model groups received the same volume
of 0.5% CMC-Na solution.

2.3. Tissue Processing

Two hours after the 3-day treatment, the body weights of mice were measured. Then,
the mice were anaesthetized with 40 mg/kg pentobarbital and euthanized by cervical
dislocation. Whole blood was collected in heparinized tubes, and the sera were separated
by centrifuging at 3000 rpm for 10 min. The wet weight of liver tissue was measured and
collected for further analysis. The liver and spleen index were calculated as follows: liver
or spleen index (%) = liver or spleen wet weight (mg)/mouse body weight (mg) × 100%.
After weighing, the liver tissue was divided into two parts; the intact liver lobules were
fixed in 4% paraformaldehyde solution for the preparation of liver tissue sections, and the
remaining liver tissue was stored at −80 ◦C for subsequent analysis.

2.4. Biochemical Analysis

The serum levels of AST (C010-2-1) and ALT (C009-2-1) were measured using com-
mercially available kits from Nanjing Jiancheng Bioengineering Institute (Nanjing, China)
according to the manufacturer’s instructions. The liver tissues were fully homogenized
by a homogenizer (OMNI Bead Ruptor 24) after adding saline in the ratio of weight (g) to
volume (mL) of 1:9, and the homogenate was centrifuged at 4 ◦C for 10 min at 2500 rpm.
The supernatant was taken and the protein content in the supernatants was measured
using the Pierce BCA protein assay kit (Thermo VK312556). The ROS levels in liver were
measured using an ELISA kit (MM-43700MA) purchased from Jiangsu Meimian (Yancheng,
China). The levels of malondialdehyde (MDA) (A003-1-2), glutathione peroxidase (GPx)
(H545-1-1), catalase (CAT) (A007-1-1), glutathione (GSH) (A006-2-1), and superoxide dis-
mutase (SOD) (A001-3-2) in the liver were measured using specific assay kits according to
the manufacturer’s instructions (Nanjing Jiancheng Bioengineering Institute).

2.5. Histological Evaluation

The fixed liver tissues were dehydrated with 70% ethanol for 24 h and further embed-
ded in paraffin. Paraffin-embedded liver samples were sectioned (thickness approximately
2 µm) and stained with hematoxylin and eosin (HE stain) using a commercial kit (C0105S)
from Beyotime (Shanghai, China) as the standard protocol. The sections were sealed with
neutral gum and observed under a microscope (Olympus, Tokyo, Japan, 100 X), and a
histopathological assessment was performed as previously described [18].

The severity of the liver injury is graded on a scale of 1 to 5 depending on the degree
of cellular necrosis, coagulum, central area, and surrounding inflammatory infiltrate: a
score of 0 indicates normal, 1 indicates very low (<1%), 2 indicates mild (1–25%), 3 indicates
moderate (26–50%), 4 indicates moderate/severe (51–75%), and 5 indicates severe/high
(76–100%) [19,20]. The injury score was averaged for each group of animals.

2.6. Western Blotting

The liver tissues (20 mg) were homogenized by a homogenizer in 180 µL Radio-
Immunoprecipitation assay (RIPA) lysis buffer (P0013B, Beyotime, Shanghai, China) sup-
plemented with 2 µL phenylmethanesulfonyl fluoride (PMSF). The tissue lysates further
lysed were incubated on ice for 1 h and then centrifuged at 13,200 rpm at 4 ◦C for 5 min. The
protein content was measured using the Pierce BCA protein assay kit (Thermo VK312556).
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An equal amount of protein per sample was collected and boiled for Western blotting
analysis. Western blotting was performed as previously described [21]. The antibodies
used in this work included Nrf2 (12721S, CST, Danvers, MA, USA), HO-1 (43966S, CST),
β-actin (A1978, Sigma, MO, USA), NF-κB (8242S, CST), p-NF-κB (Ser536) (13346, CST),
p-MAPK (3510, CST), Bcl2 (ab117115, Abcam, Cambridge, U.K.), and Bax (ab32503, Abcam).
Positive signals were visualized using a chemiluminescence (ECL) analysis kit (170-5061,
Bio-Rad, Hercules, CA, USA) and recorded with the Chemi Doc system (Bio-Rad, USA).
The positive bands were quantified by densitometry using ImageJ software (Bethesda,
Rockville, MD, USA) and normalized to the density of β-actin.

2.7. Immunohistochemical (IHC)

Immunohistochemical analysis was performed using the 3,3N-Diaminobenzidine
Tertrahydrochloride (DAB) horseradish peroxidase color development kit (P0203, Beyotime)
as previously described [22]. The sections were incubated with primary antibodies targeting
tumor necrosis factor-α (TNF-α) (ab6671, Abcam, Cambridge, U.K.), interleukin-6 (IL-6)
(SC-1265, SantaCruz, Dallas, TX, USA), Interleukin-1beta (IL-1β) (bs-0812R, Bioss, Woburn,
MA, USA). After being mounted with neutral resin, the sections were observed under a
light microscope (Olympus, Japan) and analyzed using the ImageJ software.

2.8. Statistical Analysis

The experimental results are presented as mean ± standard deviation (mean ± SD).
Experimental data and graphs were statistically analyzed and plotted using GraphPad
Prism 7 software for Windows (GraphPad Software Inc., San Diego, CA, USA). One-way
analysis of variance (ONE WAY-ANOVA) was used to compare the significant differences
between all groups, and all experiments were performed with at least three independent
replications. p < 0.05 (* compared with the Model group/# compared with the Control
group) and p < 0.01 (** compared with the Model group/ ## compared with the Control
group) were considered statistically significant.

3. Results
3.1. EST and CA Ameliorated the CCl4-Induced Liver Injury

As shown in Figure 1a,b, the liver and spleen indices of mice in the model group were
significantly higher (p < 0.01) and decreased in mice treated with silymarin, CA, and EST.
Among them, the liver index of L-CA and L-EST was comparable to that of the control group.
To assess the effect of EST and CA on liver injury, the levels of AST and ALT in serum and
liver tissues were detected, respectively. Compared with the control group, the AST and
ALT of the model group were significantly increased (p < 0.01). Consistent with the gross
observations, the AST (Figure 1c,e) and ALT (Figure 1d,f) levels of the mice treated with EST
and CA were significantly reduced.

Histological evaluation was performed to visualize the extent of liver tissue injury. As
shown in Figure 2a, the hepatocytes of the control mice had normal morphology, regular
and tight arrangement, and the structure of liver lobules was clear. After the CCl4 was
induced, the liver tissues of mice in the model group showed obvious pathological changes,
which were manifested by obvious inflammatory cell infiltration and disorder of hepatocyte
arrangement. In comparison to the model group, treatment with the positive drugs silymarin,
EST (200 and 700 mg/kg), and CA (30 and 100 mg/kg) alleviated the inflammatory cell
infiltration induced by CCl4.. Furthermore, the liver injury score showed that EST and CA
significantly reduced liver injury (p < 0.01) and restored normal cell morphology (Figure 2b).
In addition, we detected the collagen fiber content of liver tissues in different treatment
groups by using Masson trichrome staining. Masson staining of the model group showed
increased collagen staining. Both CA and EST ameliorated the histopathological lesions in
the CCL4-induced model group of mice (Figure S1).
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3.2. EST and CA Decrease the CCl4-Induced Oxidative Stress by Activating the
Nrf2/HO-1 Pathway

Oxidative stress is an important factor contributing to CCl4-induced liver injury. To
evaluate the antioxidant effect of the EST and CA, we analyzed the levels of MDA, ROS, SOD,
CAT, GSH-Px, and GSH in the liver tissues. As shown in Figure 3, EST and CA significantly
reduced MDA (p < 0.01) and ROS (p < 0.05) levels and increased those of endogenous
antioxidants such as SOD, CAT, GSH-Px, and GSH by varying degrees. These data indicate
that both EST and CA restored antioxidant enzyme activity in the liver at different degrees
compared with the model group.
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To explore whether the Nrf2/HO-1 signaling pathway was involved in the hepatopro-
tective effects of EST and CA, we examined the protein expression levels of Nrf2 and HO-1
in liver tissues of different treatment groups by Western blot analysis. As shown in Figure 4,
both Nrf2 (p < 0.01) and its downstream HO-1 protein expression were increased in the
model group compared to the normal group, and the expression was further increased after
EST or CA treatment. These results indicate that EST and its main active component CA
activate the Nrf2/HO-1 signaling pathway to exert hepatic antioxidant protective effects.
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3.3. EST and CA Suppress the CCl4-Induced Pro-Inflammatory Cytokines Expression via
Inhibiting the NF-κB Pathway

In the early stages of oxidative stress, liver immune cells secrete pro-inflammatory
factors, such as TNF-α, IL-6, and IL-1β, to trigger inflammatory responses and aggravate
liver injury [23]. Immunohistochemical results showed that the protein expression levels
of TNF-α, IL-6, and IL-1β were significantly increased in the CCl4-induced model group
compared with the control group (p < 0.01), while both EST and CA could inhibit the
expression of these three pro-inflammatory factors in a gradient manner, and the effect was
comparable to that of the positive drug, silymarin, indicating that EST and CA could inhibit
the expression of CCl4-induced pro-inflammatory factors and exerted anti-inflammatory
effects (Figure 5).
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Figure 5. Effects of EST and CA on liver TNF-α, IL-6, and IL-1β expression. (a) Immunohistochemical
staining of gastric TNF-α, IL-6, and IL-1β. (b–d) Densitometric quantification (n = 3). Data are expressed
as mean ± SD. ## p < 0.01 compared with the control group; * p < 0.05, ** p < 0.01 compared with the
model group.
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To further examine the effect of EST and CA on inflammatory signaling pathways,
the expression of NF-κB and p-MAPK (Figure 6a) in liver tissues, which is vital in in-
flammatory responses, were determined by Western blot analysis. We found a significant
2-fold upregulation (p < 0.01) of p-NF-κB/NF-κB in the liver of the model group com-
pared with the normal group. In contrast, silymarin, EST (200 and 700 mg/kg), and CA
(30 and 100 mg/kg) significantly (p < 0.01) inhibited the CCl4-induced p-NF-κB/NF-κB
upregulation (Figure 6b). The effect of different treatment groups of p-MAPK was basically
consistent with the ratio of p-NF-κB/NF-κB (Figure 6c). Together, these results suggest that
EST and CA alleviate the CCl4-induced hepatic inflammatory response by inhibiting the
NF-kB signaling pathway and the expression of pro-inflammatory cytokines.
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3.4. EST and CA Alleviate CCl4-Induced Hepatocyte Apoptosis by Regulating the
Expression of Bax/Bcl-2

Bax, a typical pro-apoptotic factor in cytoplasmic lysis, can be transferred to mito-
chondria to induce apoptosis, while Bcl-2 can inhibit Bax-induced apoptosis and is an
anti-apoptotic factor [24]. Since hepatocyte apoptosis plays an important role in models
of liver injury, we investigated the protein expression levels of Bax/Bcl-2 in liver tissues
of different groups of mice. As shown in Figure 7, Western blot analysis showed that the
expression of the pro-apoptotic protein Bax was significantly upregulated (p < 0.01), and the
expression of the anti-apoptotic protein Bcl-2 was significantly downregulated (p < 0.05) in
the model mice compared to the control mice. As with silymarin, CA (30 and 100 mg/kg) and
EST (200 and 700 mg/kg) inhibited the CCl4-induced increase in Bax expression and decrease
in Bcl-2 expression, and the effect was more pronounced in the EST-treated group. We also
performed TUNEL analysis to detect the degree of apoptosis in hepatocytes of different
treatment groups in Figure S2. These results suggest that EST and CA inhibited the apoptotic
signaling pathway by regulating the expression of apoptosis-related proteins Bax and Bcl-2.
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4. Discussion

Making tea from plants for drinking has been a tradition in China since ancient
times. According to the origin of the plants, tea can be divided into traditional tea and non-
Camellia tea. Traditional tea is a tea beverage made from processed leaves of Camellia sinensis
plants. In contrast, non-Camellia tea refers to tea beverages made from leaves, flowers, and
roots of plants that do not belong to Camellia [25]. Non-Camellia tea usually accumulated
certain application experience within a certain region or ethnic group, and, together with
traditional tea, forms the colorful tea culture of China [26]. Shibi tea is a kind of non-
Camellia tea made from the dried leaves of Adinandra nitida, which has been reported to
have various health benefits such as lowering blood pressure and antibacterial, antioxidant,
and analgesic effects, and is commonly used in food and medicine [27,28]. Shibi tea is rich
in flavonoids and other active ingredients. The research on the health activity of Shibi tea is
mainly focused on the active efficacy of the flavonoid components of Shibi tea, but there is
relatively little research on the active efficacy of its major flavonoid monomers, especially
CA. In one study, 3T3-L1 cell lines were used as an in vitro model of obesity, combined
with nuclear magnetic resonance (NMR) and liquid chromatography (LC)–MS techniques
to identify four triterpenoid saponins in Shibi tea that inhibit adipogenesis [29]. In our
previous study, we identified CA as the predominant flavonoid in Shibi tea and established
a method to prepare CA from Shibi tea [30]. We also investigated for the first time that
Shibi tea and CA alleviated alcoholic gastric injury by attenuating HCl/EtOH-induced
oxidative stress in the stomach and inhibiting the NF-kB signaling pathway to suppress the
expression of inflammatory factors in vivo [17]. However, the mitigating effects of EST and
CA on liver injury have not yet been studied.

Liver injury is a common pathological basis of various liver diseases, and clinical study
has found that long-term liver injury could lead to mild hepatic inflammation and even
liver fibrosis, cirrhosis, and hepatocellular carcinoma [31,32]. Liver injury is still a global
health issue, and the hunt for novel hepatoprotective methods is extremely important.
Experimental animal models are useful models for the study of drug-induced liver injury
and its pathogenesis. Among them, acetaminophen (Acetaminophen, APAP) and CCl4
are the two most common model inducers in the study of endogenous drug-induced liver
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injury [33]. Oxidative stress pathways, inflammatory cytokines, and apoptosis are the
main regulatory targets of liver injury [34]. When liver injury occurs, hepatocytes and
endothelial cells are damaged, hepatic Kupffer cells (KC) and hepatic stellate cells (HSC)
are activated, and inflammatory factors accumulate in the liver. As the therapeutic effects
of flavonoids on liver injury have been studied recently, the significant protective effects
of flavonoids on liver injury have been confirmed. Flavonoids, such as silymarin [35,36],
can reduce the production of oxidative free radicals and increase the activity of antioxidant
enzymes, effectively protecting the liver from oxidative damage. Studies have shown that
flavonoids protect hepatocytes and endothelial cells from oxidative stress and inhibit the
proliferation and activation of activated HSC and promote their apoptosis; in addition,
flavonoids inhibit TNF-α production and KC activation and reduce the accumulation of
inflammatory factors [37]. In this study, we demonstrated that the EST (200 and 700 mg/kg)
and its major flavonoid CA (30 and 100 mg/kg) significantly ameliorated CCl4-induced
acute liver injury (Figures 1 and 2) in a mouse model with intraperitoneal injection of CCl4,
using silymarin as a positive drug control, and that its hepatoprotective mechanism was
related to the antioxidant, anti-inflammatory, and anti-apoptotic effects of EST and CA.
Given that CA is the main flavonoid component of EST and the hepatoprotective effect is
comparable to that of EST, we propose that CA is potentially the main active substance
contributing to the hepatoprotective effect in EST.

Oxidative stress is an important cause of liver injury, and the metabolites of CCl4,
CCl3- and CCl3OO-, both of which can cause oxidative stress in hepatocytes and con-
sequently hepatocellular injury [38]. Flavonoids improve oxidative stress by activating
the Nrf2/HO-1 pathway, and Nrf2 is a key transcription factor that upregulates the an-
tioxidant gene HO-1 [39]. Plant-derived flavonoids such as cyanidin flavonoids [40] and
alpinetin [41] have also been reported to effectively alleviate CCl4-induced acute liver injury
in mice by modulating the Nrf2 signaling pathway, reducing ROS and MDA levels, and
increasing antioxidant enzyme activity. In this study, we found that EST and CA increased
the activities of antioxidant enzymes SOD, CAT, and GSH-Px in liver tissues; increased the
level of antioxidant GSH; inhibited the CCl4-induced increase in MDA and ROS oxidative
stress levels (Figure 3); and significantly activated antioxidant pathway targets Nrf2 and
HO-1 to perform antioxidant effects (Figure 4).

Abnormal expression of inflammatory cytokines, which mediate the interference of
various immune cells, can directly affect the immune response, and occur frequently during
liver injury. Morin [42] significantly inhibited lipopolysaccharide (LPS)-induced production
of serum AST, ALT, IL-6, and TNF-α, which could exert antioxidant and anti-inflammatory
protective effects by activating the Nrf2 antioxidant signaling pathway and inhibiting the
NF-κB inflammatory pathway. Breviscapine [8] inhibited significantly elevated levels of
serum TNF-α, IL-6, IL-1β, and monocyte chemotactic protein-1 (MCP-1) in a CCl4 model
group of mice and suppressed the expression of downstream IκBα and NF-κB inflammatory
pathways, acting as hepatoprotective agents. Similarly, EST and CA significantly inhibited
CCl4-induced liver injury by targeting the MAPK and NF-κB pathways (Figure 6) and the
downstream inflammatory cytokines, such as TNF-α, IL-6, and IL-1β (Figure 5).

Flavonoids can also reduce liver injury by regulating apoptosis; for example, dihy-
dromyricetin significantly inhibited the expression of the pro-apoptotic protein Bax and
upregulated the expression of the anti-apoptotic protein Bcl-2, thereby inhibiting chronic
liver injury [43]. Baicalin played an important hepatic repair role in oxidative stress-induced
liver injury by regulating mitochondria-related apoptosis [44]. Wogonin significantly in-
creased the Bax/Bcl-2 ratio in T6 cells and regulated the activation and apoptosis of hepatic
stellate cells to reduce liver fibrosis [45]. We found that EST and CA regulate apoptosis by
regulating Bax/Bcl-2 expression to alleviate CCl4-induced liver injury (Figure 7).

In this study, we found that for the CA and EST treatment groups, the high-dose
group generally showed better results than the low-dose group, but did not reach a sig-
nificant difference in some of the results. Therefore, the current study provides a basis
for further research on the active dosage and underlying mechanisms of CA and EST
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hepatoprotective effects. In addition, we used 30 and 100 mg/kg CA treatments and
200 and 700 mg/kg EST treatments, which are much lower than the reported flavonoid
monomer concentrations (>500 mg/kg) that cause toxicity or side effects. Orally adminis-
trated dosages of 200–700 mg/kg EST are in accordance with the dosage taken by drinking
tea (3–10 g) per day. There were no effects of CA and EST on animal behavior during the
experiment and no significant visual damage to other organs of mice in all groups.

5. Conclusions

Our study demonstrates that EST and its major flavonoid component, CA, can effec-
tively alleviate CCl4-induced acute liver injury in mice. More importantly, the hepatopro-
tective effects of EST and CA are primarily attributed to the reduction of oxidative stress,
inhibition of inflammation, and regulation of apoptosis. Additionally, these results provide
a theoretical basis for the further investigation of EST and CA as potential agents for the
treatment and prevention of liver disease.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu14153037/s1, Figure S1: Masson trichrome staining of the liver sections of
different groups; Figure S2. Histological changes (TUNEL assay) in the liver of different groups.
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