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Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection
has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed,
HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than
5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity
to HIV, indicate that HIV resistance may be associated with the host’s capacity to preserve systemic integrity by constraining
immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration
of balanced, first-line and adaptive immune responses.

1. Introduction

At the end of 2010, 34 million people were living with
HIV/AIDS world-wide. In that year, a total of 2.7 million
people were infected by HIV, mostly through heterosexual
intercourse, and 60% of new HIV infections affected women
in sub-Saharan Africa [1]. Needless to say, the design of
effective vaccines and microbicides to prevent HIV infection
remains a global priority. High levels of anti-inflammatory
and neutralizing proteins, such as antiproteases and HIV-
specific immunoglobulins (Ig), are found in the genital
mucosa of highly exposed HIV-seronegative (HESN) indi-
viduals, such as HIV-uninfected, “resistant” commercial sex
workers (CSWs) [2, 3]. This suggests that efforts to develop
effective microbicides and vaccines should aim at mimicking
and/or soliciting innate and adaptive immune responses,
such as those seen in the context of natural immunity
to HIV. From such a viewpoint, vaccine approaches to
specifically induced mucosal responses seem very promising.
Indeed, genital IgA and IgG, elicited through combined

intra-muscular and intranasal vaccination against HIV-gp41,
delivered via virosome in nonhuman primates, prevented
systemic HIV invasion by blocking transcytosis and by medi-
ating antibody-dependent cellular cytotoxicity (ADCC) [4].
These animals lacked serum-neutralizing antibody activity,
highlighting the role of effector antibodies at the mucosal
point of entry, and their importance in preventing the
dissemination of HIV infection [5]. In humans, the RV144
vaccine regimen (canarypox prime, HIV gp120 envelope
(Env) glycoprotein boost) elicits protective responses, the
nature of which remains to be defined in terms of gener-
ation and effector mechanisms [6]. Reduced rates of HIV
acquisition without significant effects on initial viral loads
or CD4 T-cell counts have led to the hypothesis of a
transient, protective B-cell response. Moreover, binding of
IgG antibodies to variable regions 1 and 2 (V1, V2) of Env
has been shown to be inversely correlated with HIV infection
rates [7]. Unfortunately, mucosal samples were not collected
during the RV144 trial to assess mucosal Env-specific Ig
levels, which we predict may constitute better correlates
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of protection. Success in conceiving effective vaccines most
likely relies on their capacity to establish rapid, first-line
immune responses at the mucosal point of entry as well as
long-term protection, which operates both at the mucosal
and systemic levels.

A better understanding of the mechanisms of trans-
mission and HIV-specific immune responses at the initial
site of infection is therefore pivotal to the design of
preventive strategies. Most observations relating to these
events have been obtained with simian immunodeficiency
virus (SIV) infection in nonhuman primates (reviewed in
[8, 9]). In humans, findings in HESN individuals, such as
HIV-uninfected CSWs, who represent a model of natural
immunity to HIV, may thus yield important clues to the
development of preventive approaches. As such, the current
perspective on cumulative data, reported by us and others,
supports the notion that HIV “resistance” in these highly
exposed CSWs may be associated with their capacity to
control genital inflammatory conditions and recruitment of
HIV target cells at the initial site of infection. This could be
achieved by locally constraining immune activity to mucosal
sites and preserving peripheral integrity, a process that likely
involves genetic factors and orchestration of strong innate
and adaptive immune responses.

2. Immunology of the Female Genital (FGT)

FGT immunology has been reviewed recently [10] and will
only be summarized here briefly. The FGT is subdivided into
3 major areas presenting distinct phenotypic profiles: the
nonsterile vagina and ectocervix colonized by commensal
microflora, the sterile endometrium and fallopian tubes,
and the endocervix in which sterility may be temporally
related to menstrual cycle phase. Thus, FGT immunity
is tightly regulated by a hormonal/inflammatory process
throughout the menstrual cycle, having to deal with the
pressure of procreation and microbial control. The innate
immune compartment of the FGT involves the mucous
lining of a tight epithelial cell (EC) barrier, stratified at
the vaginal and ectocervical levels, as well as dendritic
cells (DCs), Langerhans cells (LCs), macrophages, natural
killer (NK) cells, and neutrophils, which confer protection
through the production of antimicrobial agents, chemokines,
and cytokines [10, 11] (Figure 1). Control of flora and
invading pathogens is modulated via pattern recognition
receptors (PRRs), such as toll-like receptors (TLRs) and
NOD-like receptors, which recognise specific common
microbial/pathogen-associated molecular patterns. As such,
genital ECs form an uninterrupted barrier between the
lumen and underlying cells and express PRRs, such as TLR-
1 to -9, indicating the potential to respond to a wide
range of microbes/pathogens [10–14]. DCs also express a
large spectrum of PRRs, and the interaction between ECs
and submucosal DCs likely modulates the maintenance of
homeostatic balance between tolerance and inflammation in
the FGT [10–15]. FGT-associated lymphoid organs are part
of mucosal-associated lymphoid tissue, (MALT) which also
includes gastrointestinal lymphoid tissue (GALT). Unlike

GALT, the FGT does not contain M cells or organised
lymphoid crypts or follicles in the submucosa. Rather, the
upper FGT contains unique lymphoid aggregates constituted
of CD8+ T cells that surround a central B cell core, which are
encapsulated by macrophages [10] (Figure 1). Immunisation
at the FGT level has been shown to elicit local CD8+ cytotoxic
T lymphocyte (CTL), IgG, and IgA responses. Although
immune induction mechanisms in the FGT remain poorly
understood, it is likely that DCs migrate to FGT mucosal-
associated lymphoid structures to induce first-line B-cell
responses and to regulate adaptive lymphocyte responses
[10, 16–18]. Interestingly, detailed characterisation of the
Ig repertoire of cervical and systemic B cells from a HESN
individual in Kenya disclosed that site-specific responses
occur with unique regulation of tolerance and recruitment
into local memory or blast B cell compartments. Also, the
infusion of systemic post-germinal center B cells to the
human cervix seems to be a common event [19]. These
findings suggest that cervical B cell populations largely
contribute to protection against HIV, by producing first-line
and mature mucosal HIV-specific IgG and IgA, which are
correlates of control “resistance” to HIV infection in the FGT
of HESN women. Understanding how B cell populations are
recruited and maintained in the FGT is crucial for the design
of preventive approaches, to block infection by HIV at its
main point of entry.

3. HIV Transmission in the FGT

Until now, the cascade of events leading to HIV infection
after heterosexual transmission remains unclear. Several
reports in humans and rhesus macaques suggest that LCs
and DCs on mucosal surfaces are the earliest cell types
to be exposed, and possibly infected by HIV or SIV, and
migrate to the lamina propria and draining lymphoid tissues
to facilitate transmission of the virus to permissive cells
(reviewed in [8, 9, 20–23]). The most likely scenario has been
proposed recently by the group of Haase [9, 24]. After genital
administration to macaques, SIV establishes foci of infection
in the vaginal sub-mucosa within a matter of days through a
scheme involving macrophage inflammatory protein-3alpha
(MIP-3α) (CCL20) production by ECs and early recruitment
of interferon-alpha (IFN-α) producing plasmacytoid DC
(pDC) as well as DC and CD4+ T-cell effectors, rapidly
accessing draining lymph nodes and establishing systemic
invasion by days 10–14. Recent studies with genital explants
indicate that LCs can elaborate protrusions across the strat-
ified epithelium into the lumen of the FGT to capture HIV
mainly through the surface expression of langerin (CD207)
[8, 20–23]. LCs may then enable HIV transmission to sub-
mucosal DCs that express PRRs, such as DC-SIGN (CD209),
and to CD4+ CCR5+ effector target T lymphocytes and/or
migrate to draining lymphoid tissues. DCs are also thought
to have the capacity to establish protrusions across the
epithelium, enabling direct HIV transmission to permissive
populations in the lamina propria or after their migration to
draining lymphoid compartments [8, 20–23].
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Figure 1: Qualitative and quantitative differences in mucosal innate and adaptive immune components are associated with the outcome of
HIV infection in the female genital tract (FGT).

Although HIV does not productively infect ECs, it can
be transcytosed, reaching sub-mucosal DC populations and
effector target T lymphocytes in the lamina propria [25–
30]. Furthermore, HIV likely facilitates its incursion through
the genital epithelium by inducing a proinflammatory

milieu that affects tight junction proteins and enhances
microbial translocation [31]. HIV has also been shown to
be internalized by FGT ECs via gp340, a scavenger receptor,
subsequently promoting the production of proinflammatory
thymic stromal lymphopoietin (TSLP) via TLR-7 signalling,
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which then activates DCs and promotes HIV transmission
to CD4+ T cells [32, 33]. The galactosyl ceramide receptor
induces HIV endocytosis in ECs and DCs, allowing transcy-
tosis and transfer to susceptible CD4+ T cells [34].

HIV acquisition may depend on the level of inflamma-
tion and availability/permissiveness of target populations,
such as activated CD4+ T cells expressing CCR5 and α4β7
[35, 36]. In human peripheral blood, CD4+ T cells expressing
CCR6+ are most permissive to HIV infection [37, 38]. In
the gut, which represents a major viral reservoir, mucosal
Th17 effectors are the main targets of HIV/SIV [39–42].
These mucosal Th17 cells are mostly α4β7+ CD103+, express
RORγt+ and have been reported to require factors, such as
transforming growth factor-beta (TGF-β), interleukin (IL)-
1, IL-6, IL-21, and IL-23, for their differentiation [43].
They express CCR6, a major ligand of MIP-3α, which is
mainly secreted by mucosal ECs and is known to also attract
immature LCs and DCs [44, 45]. It has been determined
that homeostatic balance between mucosal T effector versus
T regulatory (Treg) populations in the gut is modulated by
EC and DC cross-talk, and is highly influenced by factors,
such as retinoic acid (RA) and TGF-β [46, 47] (Figure 1).
TGF-β is also known to influence FGT integrity [48, 49],
and RA is involved in the regulation of ovarian function
and FGT immune status by its modulatory effect on sexual
hormones [50]. Also, oestrogen can upregulate RA and TGF-
β production and signalling in the human endometrium
[51, 52].

Thus, ECs and DCs appear to play a critical role in
HIV infection by sensing through PRRs and orchestrating
the dynamics of cellular populations, inflammatory condi-
tions, and adaptive immune responses. The fact that TLR
expression and responsiveness are increased in viraemic HIV
infections suggests that TLR modulation is likely to influence
HIV infection [53]. From this viewpoint, modulation of
inflammatory responses through TLR agonists is a promising
therapeutic approach in diseases with an imbalance in T cell
responses, such as allergy and asthma, and could be seen as
impacting inflammatory conditions and immune status in
the FGT, the mucosal point of entry for the virus.

4. Nonpathogenic SIV Infections Provide
Novel Insights into the Pathogenesis of
Human HIV Infection

Similar to pathogenic HIV and SIV infections in susceptible
hosts, SIV infections in the natural host Sooty mangabeys
result in high viral replication and massive depletion of gut
mucosal effector CD4+ T cells [54]. However, a major dis-
tinction from pathogenic infection is the rapidly developing
anti-inflammatory milieu that prevents chronic activation,
apoptosis, and proliferation of T cells in SIV-infected Sooty
mangabeys. This contributes to the maintenance of mucosal
barrier integrity, preventing microbial translocation from the
gut, which is the hallmark of pathogenic infections [55].
The control of disease progression appears to be linked to
better management of aberrant immune activation caused by
SIV infection. Indeed, the early onset of anti-inflammatory

IL-10 production and Treg activity seems to be favoured
in SIV nonpathogenic infections [54]. Furthermore, it was
recently demonstrated that Sooty mangabeys generated less
Th17 effector target cells than highly-susceptible macaques
[40]. Importantly, the capacity to manage inflammatory
conditions in Sooty mangabeys is associated with a low
type I IFN gene profile. The latter appears to be linked
to genetic polymorphisms in the type I IFN regulatory
factor-7 (IRF-7) gene involved in the regulation of IFN
production downstream of TLR-7 and -9 signalling, which
are intracellular ligands for lentiviral ssRNA viruses, such as
SIV and HIV, and CpG DNA, respectively [56]. Moreover,
early blocking of MIP-3α and pro-inflammatory cytokines
in the FGT of SIV-susceptible macaques prevented cellular
recruitment, establishment of an inflammatory milieu, and
infection despite repeated intravaginal exposure to high SIV
doses [24]. Therefore, low inflammatory conditions are ben-
eficial to the host in the context of HIV/SIV, and we believe
that preventive approaches, such as microbicides, should be
designed to induce and maintain a low inflammatory milieu.

5. Factors Associated with
Susceptibility/Resistance to HIV Infection

The number of sexual partners and failure to use condoms
are the best documented behavioural risk factors for sexual
HIV transmission. Among the most compelling biological
risk factors are the presence of vaginosis and sexually-
transmitted infections, high viral load and low CD4+ T
lymphocyte counts in infectious contact, and possibly viral
virulence and tropism (reviewed in [57]). In Figure 1, top
panel: controlled immune homeostasis results in resistance
to HIV infection at the mucosal point of entry. Homeostatic
balance between mucosal T effector versus T regulatory
(Treg) populations is modulated by epithelial cell (EC) and
dendritic cell (DC) cross-talk and is influenced by factors,
such as retinoic acid (RA) and transforming growth factor-
beta (TGF-β). Host factors associated with resistance to
HIV infection involve the modulation of mucosal innate
factors, such as defensins, secretory leukocyte proteasein-
hibitor (SLPI), and other antiproteases as well as variations
in frequencies and activities of DC, B, T, and natural
killer (NK) cell populations [2, 58] (Table 1). HIV-specific
mucosal IgA blocks viral transcytosis through the epithe-
lium, and IgG is involved in antibody-dependent cellular
cytotoxicity(ADCC). High levels of β-chemokines, such as
macrophage inflammatory protein-1alpha (MIP-1α), MIP-
1β and regulated upon activation, normal T-cell expressed
and secreted (RANTES), which are natural CCR5 (major
HIV coreceptor) ligands, can block cell viral entry to the FGT
mucosa. Bottom panel: uncontrolled inflammation results
in susceptibility to HIV infection at the mucosal point of
entry. Unbalanced ratios between mucosal T effector versus
Treg populations favouring high levels of T effectors are
the hallmark of an inflammatory environment. Established
vaginal inflammation can facilitate HIV infection through
epithelium damage and recruitment of CD4+ T effectors,
prime targets of HIV. The virus can also bind to ECs, be
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captured by Langerhans cells or DCs, and subsequently
transcytosed and transferred to productively infect CD4+

target cells. Host factors associated with susceptibility to
HIV infection are inflammatory markers, such as tumour
necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ),
IFN-α, interleukin-1beta (IL-1β), as well as thymic stromal
lymphopoietin (TSLP) and MIP-3α secreted primarilyby ECs
after downstream HIV signalling, favouring the recruitment
of plasmacytoid DC (pDC) and CD4+ target cells. The
promotion of an inflammatory milieu will contribute to
infection and dissemination of HIV across the genital tract.

NK cells represent a critical component of the host
innate immune response against viral infections. The killing
inhibitory receptor (KIR)3DL1/S1 locus has been linked with
both slow progression to AIDS and resistance to HIV infec-
tion in a high-risk cohort of i.v. drug users from Montreal
[59], and the KIR2DL2/DL3 locus has also been associated
with resistance to HIV infection among African CSWs
[60]. Functional modulation of NK cell responses (IFN-
γ), NK activation (CD69), and degranulation (CD107a)
markers has been correlated with resistance to HIV infection
in several independent cohorts of HESN individuals [58].
Human leukocyte antigen (HLA) alleles, which are KIR
ligands, are also associated with susceptibility/resistance
to HIV infection and disease progression [61–65]. Other
factors include IRF-1 [66], TLR-9 [67], and chemokine
receptor/ligand polymorphisms, such as CCR5 [68–76],
CCR2b [77, 78], CCL3 (MIP-1α) [79], and CCL4 (MIP-
1β) [80]. Viral restriction factors, such as apolipoprotein
B mRNA-editing catalytic polypeptide-like (APOBEC) 3G,
tripartite motif (TRIM) 5α, tetherin, and sterile alpha motif
and HD domain 1 (SAMHD1), exert anti-HIV activity. Lens
epithelium-derived growth factor (LEDGF/p75) may also
contribute to HIV resistance [81, 82]. Indeed, relatively low
levels of LEDGF/p75 occurred in blood CD4+ T lymphocytes
of HESN subjects enrolled in a Senegalese cohort of HIV-
serodiscordant couples [83].

In a prospective cohort study of female CSWs in Nairobi,
Kenya, over a 13-year period, a small group of women were
found to be persistently IgG-seronegative and resistant to
infection [102]. HIV resistance in this cohort has been asso-
ciated with factors, such as trappin-2/elafin [84–86], serpins
and cystatins in genital samples [87], certain HLA class I and
II alleles [62], IRF-1 polymorphisms [66], and HIV-specific
immune responses. Indeed, HIV-specific CD4+ T cell and
CD8+ CTL responses as well as cross-clade neutralizing IgA
have been encountered in both the blood and genital tract of
resistant women [2, 88–94]. HIV-resistant CSWs from the
Kenyan cohort had increased cervical CD4+ T cell counts
compared to HIV-infected CSWs [92]. Moreover, CD4+ T
cells in HIV-resistant women had a low activation profile
but a much greater ability to proliferate in response to HIV
p24 peptides than HIV-infected CSWs [93]. Also, in resistant
women, higher levels of HIV-specific CTLs were noted in the
cervix than in blood [89]. Recent studies have demonstrated
that the quality of T cell responses in the context of HIV
may be a major determinant of disease progression [95–97].
In a cohort of HESN women from the Ivory Coast, HIV-
specific mucosal IgA was shown to block viral transcytosis

Table 1: Genetic and genital mucosa host factors associated with
resistance to HIV-1 infection in several HESN cohorts.

HIV-resistant host factors

Genetic Genital mucosa

KIR3D L1/S1 [59] Protease inhibitors (SLPI, lactoferrin,
serpins, cystatins, trappin-2/elafin)
[2, 84–87]

KIR2D L2/L3 [60]
HLA class 1 alleles
[61–65]

Defensins (α,β) [2]

IRF-1 [66] CC-β chemokines [9, 79, 80]

TLR 9 [67]
APOBEC3G, TRIM5α, tetherin,
SAMHD1, LEDGF/p75 [81–83]

CCR5Δ32 [68–76]
Elevated DC and NK cell
frequencies/activities [58]

CCR2b [77, 78]
CD4+- and CD8+-specific immune
responses and reduced T-cell

MIP-1α [79] activation [2, 88–97]

MIP-1β [80]
Cross-clade neutralizing specific IgA
(transcytosis inhibition and
ADCC activities) [2, 88–94, 98, 99]

ADCC: antibody-dependent cellular cytotoxicity; APOBEC: apolipoprotein
B mRNA-editing catalytic polypeptide-like; CTL: cytotoxic T lymphocyte;
DC: dendritic cell; HESN: highly-exposed HIV-seronegative; HLA: human
leucocyte antigen; IRF: interferon-regulating factor; KIR: killing inhibitory
receptor; LEDGF: Lens epithelium-derived growth factor; MIP: macrophage
inflammatory protein; NK: natural killer; SAMHD: sterile alpha motif and
HD domain; SLPI: secretory leukocyte protease inhibitor; TLR: Toll-like
receptor; TRIM: tripartite motif.

through tight epithelial barriers [98, 99]. Thus, HIV-specific
immune responses in CSWs prevail in the FGT and may
be important in preventing heterosexual HIV infection.
Interestingly, there is a clear indication of clustering of both
resistance and HIV-specific CTL responses among HIV-
resistant CSWs, suggesting that genetic factors could be
involved in “protective” immune responses [103]. However,
the durability and protective efficacy of CTL responses in
these subjects are not absolute. Late seroconversion occurred
in some HIV-resistant CSWs despite HIV-specific CTL
responses [104]. Seroconversion happened in the absence
of detectable CTL escape mutations and was related to the
waning of HIV-specific CD8+ CTL responses due to reduced
sexual activity and thus renewed antigenic exposure. These
findings suggest that production and maintenance of HIV-
specific effector responses and low-level immune activation
may depend on genetically determined genital HIV-specific
immune responses induced upon initial contact with HIV
and low ongoing viral exposure.

The recent finding that the frequency of immunosup-
pressive Treg lymphocytes was increased in the blood of
HIV-resistant women [105] is consistent with the notion
that the host’s capacity to control and/or maintain low
levels of immune activation may contribute to protection
against infection. According to this view, in a cohort of
highly HIV-exposed Beninese CSWs, we found that HIV-
uninfected CSWs had significantly lower genital levels of
tumour necrosis factor-alpha (TNF-α) and IFN-γ than
HIV-infected CSWs [100] (Table 2). These observations
suggest that the capacity to maintain a low-key inflammatory
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profile at the initial site of exposure is associated with
protection against HIV infection in HESN individuals.
In contrast, serum IL-2, IL-10, and TNF-α levels were
significantly higher in HIV-uninfected CSWs than in HIV-
infected CSWs. Importantly, when assessing the serum
effector (IL-6) to regulatory (IL-10) ratio, we determined
that it was lower in HIV-uninfected CSWs (0.9) than in
HIV-infected CSWs (1.5). Moreover, the relatively normal
cytokine levels found in the serum of HIV-uninfected CSWs
(similar to nonexposed women from the general population)
may be reflective of their capacity to maintain integrity
of the systemic immune compartment by stopping HIV
dissemination beyond the genital tract. In contrast, the low
levels of cytokines observed in the serum of HIV-infected
CSWs could reflect active recruitment of cytokine-producing
cells to the genital mucosa in response to HIV infection.
In this respect, HIV-infected CSWs had significantly higher
blood and genital levels of monocyte chemotactic protein-
3 (MCP-3) and monokine induced by gamma interferon
(MIG) compared to both HIV-uninfected CSW and non-
CSW groups [101]. In the HIV-infected group, MCP-3 and
MIG levels were significantly higher in the genital mucosa
than in blood, indicating a chemotactic gradient favouring
the recruitment of immune cells contributing to the mucosal
inflammatory response observed in these women. However,
HIV-uninfected CSWs had significantly higher MIP-1α levels
in the genital mucosa than both HIV-infected CSWs and
HIV-uninfected non-CSW women. Moreover, serum MIP-
1α (CCL3) and MIP-1β (CCL4) levels were higher in HIV-
uninfected CSWs than the other groups. Interestingly, MIP-
1α and MIP-1β are natural ligands of the HIV coreceptor
CCR5, and high copy numbers of CCL3 and CCL4 genes
have been previously associated with lower risk of HIV
infection [79, 80], possibly by competing/blocking viral
entry mediated by the co-receptor CCR5 [9]. Finally, recent
evidence indicates that local microflora may also play a
pivotal role in shaping host immune responses [2, 106], and
thus may be a potential ally in the modulation of a mucosal
immune compartment favourable to the maintenance of
low inflammatory conditions. Thus, the immune events
involved in natural immunity “resistance” to HIV may share
some similarities with those associated with the control of
the mucosal commensal microflora, which are thought to
involve mucosal Igs and balanced Treg/T effector responses
in absence of inflammation, and which cellular niches are
maintained by repeated antigenic exposure, such as likely
encountered by HESN individuals.

6. Conclusion

Overall, resistance in the context of HIV infection may be
associated with the host’s capacity to induce a strong innate
and HIV-specific immune response and, at the same time,
control/maintain low inflammatory conditions and fewer
HIV target cells at the initial exposure site (Figure 1). Under-
standing how the mucosal immune system in the human
FGT might prevent or facilitate HIV infection has important
implications for the design of effective interventions and may

Table 2: Cytokines and chemokines significantly associated with
resistance to HIV-1 infection in the Beninese HIV-1-uninfected and
infected CSW cohort.

Cytokines/chemokines HIV-resistant CSWs HIV-infected CSWs

Genital mucosa

TNF-α ↓ ↑
IFN-γ ↓ ↑
MIP-1α ↑↑ ↓
MCP-3 ↓ ↑↑
MIG ↓ ↑↑

Blood

IL-2 ↑ ↓
IL-10 ↑ ↓
TNF-α ↑ ↓
MIP-1α ↑ ↓
MIP-1β ↑ ↓
MCP-3 ↓ ↑
MIG ↓ ↑

[100, 101].
CSW: commercial sex worker; IL: interleukin; IFN: interferon; MCP: mono-
cyte chemotactic protein; MIG: monokine induced by gamma interferon;
MIP: macrophage inflammatory protein; TNF: tumour necrosis factor.

help develop strategies to modulate mucosal inflammatory
conditions, to establish quick, long-lasting, first-line mucosal
defence against HIV.
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