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Within the bone marrow microenvironment, mesenchymal stromal cells (MSCs) are an
essential precursor to bone marrow adipocytes and osteoblasts. The balance between
this progenitor pool and mature cells (adipocytes and osteoblasts) is often skewed by
disease and aging. In multiple myeloma (MM), a cancer of the plasma cell that
predominantly grows within the bone marrow, as well as other cancers, MSCs,
preadipocytes, and adipocytes have been shown to directly support tumor cell survival
and proliferation. Increasing evidence supports the idea that MM-associated MSCs are
distinct from healthy MSCs, and their gene expression profiles may be predictive of
myeloma patient outcomes. Here we directly investigate how MM cells affect the
differentiation capacity and gene expression profiles of preadipocytes and bone marrow
MSCs. Our studies reveal that MM.1S cells cause a marked decrease in lipid accumulation
in differentiating 3T3-L1 cells. Also, MM.1S cells or MM.1S-conditioned media altered
gene expression profiles of both 3T3-L1 and mouse bone marrow MSCs. 3T3-L1 cells
exposed to MM.1S cells before adipogenic differentiation displayed gene expression
changes leading to significantly altered pathways involved in steroid biosynthesis, the cell
cycle, and metabolism (oxidative phosphorylation and glycolysis) after adipogenesis.
MM.1S cells induced a marked increase in 3T3-L1 expression of MM-supportive genes
including Il-6 and Cxcl12 (SDF1), which was confirmed in mouse MSCs by qRT-PCR,
suggesting a forward-feedback mechanism. In vitro experiments revealed that indirect
MM exposure prior to differentiation drives a senescent-like phenotype in differentiating
MSCs, and this trend was confirmed in MM-associated MSCs compared to MSCs from
normal donors. In direct co-culture, human mesenchymal stem cells (hMSCs) exposed to
MM.1S, RPMI-8226, and OPM-2 prior to and during differentiation, exhibited different
levels of lipid accumulation as well as secreted cytokines. Combined, our results suggest
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that MM cells can inhibit adipogenic differentiation while stimulating expression of the
senescence associated secretory phenotype (SASP) and other pro-myeloma molecules.
This study provides insight into a novel way in which MM cells manipulate their
microenvironment by altering the expression of supportive cytokines and skewing the
cellular diversity of the marrow.
Keywords: myeloma, bone marrow, adipocytes, senescence, microarray, mesenchymal stromal cells
(MSCs), preadipocytes
INTRODUCTION

The pathogenesis of multiple myeloma (MM) involves
bidirectional interactions of MM cells with bone marrow (BM)
resident cells. MM cells often depend on these host cells to
provide factors that aid in drug resistance and proliferation.
Specifically, MM cells interact with osteoblasts (1–3), osteoclasts
(4, 5), osteocytes (6), BM mesenchymal stem cells (MSCs) (7),
and bone marrow adipocytes (BMAds) (8, 9), each playing a
unique type of supportive role for MM cells. MSCs are a
common progenitor for pericytes, osteoblasts, osteocytes, and
adipocytes. The differentiation capacity of MSCs is influenced
and regulated by many growth factors, canonical WNT signaling
(10), and metabolic programming (11). Indeed, high fat diet in
mice (11) and obesity in humans (12) have recently been shown
to modulate the number of adipocyte progenitors in the marrow,
skewing the delicate balance between MSCs, osteoblasts, and
BMAds. Interestingly, obesity is also a risk factor for MM
development and progression, with obese patients being 20%
more likely than non-obese patients to transition from a
premalignant stage, monoclonal gammopathy of undetermined
significance (MGUS), to overt MM (13, 14). Obesity likely
contributes to MM in many ways; for example, Bullwinkle
et al. found that conditioned media from white adipocytes
from obese patients contained increased IL-6, and when
cultured with MM cells, led to increased MM cell survival and
adhesion via increased STAT-3 (15). Lwin et al. found that diet-
induced obesity increased IGF1 levels in mice and created a
permissive BM microenvironment for the progression of MM
from MGUS (16). Increased levels of BMAds have also been
correlated with obesity in human patients (17), suggesting that
obesity-associated levels of increased BMAds, likely contribute to
an optimal MM microenvironment. Moreover, MM incidence
increases with age, and BMAds make up 0% of BM cells in
infancy and almost 70% in the elderly (18), again demonstrating
a correlation between increased BMAds and MM. Thus,
understanding the role of BMAds in MM, and how MM
influences BMAds and their progenitors, is crucial for fully
understanding MM disease progression and incidence.

The bidirectional relationship between myeloma cells and
BMAds is yet to be fully elucidated; however, the data suggest
that BMAds typically support myeloma cells. BMAds were
previously believed to be inert bystanders, but in recent years,
they were found to be intricate and responsive players in the BM
microenvironment. BMAds contribute to systemic metabolism
(19), bone remodeling (20), and hematopoiesis (21). Several
2

studies have shown that BMAds influence MM cell
proliferation, apoptosis, migration, and homing to the marrow
(18, 22). Adipocyte-derived factors such as MCP-1/CCL2 and
SDF1a/CXCL12 are chemotactic factors for myeloma cells (8,
15), while other adipokines promote myeloma proliferation (e.g.,
leptin/LEP) (18) and resistance to chemotherapies (e.g., leptin/
LEP, adipsin/CFD) (9, 23). Recent studies have demonstrated
that BMAds are modulated by MM cells (22, 24–26) and that
MM-reprogrammed BMAds contribute to myeloma-induced
bone disease (27). Myeloma patient-derived MSCs (MM-
MSCs) also have alterations in the expression of transcripts
involved in MM disease pathogenesis (IL-6) (28) as well as
impaired osteogenic capabilities (7, 28–30). Evidence suggests
that MM-MSCs have senescent characteristics accompanied by
an aberrant secretory profile that may impair bone formation (7,
28, 30). Here we further investigate the adipogenic capacity of
patient-derived MM-MSCs and model MM-induced changes in
adipogenic progenitors with a co-culture system.
MATERIAL AND METHODS

Cell Culture
3T3-L1, human BM MSCs from normal, non-malignant bone
marrow (NBM-MSCs), or myeloma patient bone marrow (MM-
MSCs) (7), and naïve mouse BM MSCs (mMSCs) were cultured
and differentiated as previously described (6). mMSCs were
extracted from wild-type mice of C57BL6/J background of
approximately 2–3 months of age. All experimental studies and
procedures involving mice were performed in accordance with
approved protocols from the Maine Medical Center Research
Institute (Scarborough, ME, USA) Institutional Animal Care and
Use Committee (IACUC), Reagan Laboratory protocol #1812.
NBM-MSCs were isolated and utilized for experiments as
previously described (31). 5TGM1, MM.1S, RPMI-8226, and
OPM-2 cells were cultured as previously described (22, 31). For
transwell co-culture experiments, stromal cells were seeded into
the bottom of 6- or 24-well plates prior to adipogenic
differentiation, allowed to adhere, and grown to 80–100%
confluence depending on the cell type. Myeloma cells were
then seeded either directly, or into the top of 0.4 µm transwell
membranes (Corning; Corning, NY) and cultured for 48 h for
indirect co-culture experiments, or allowed to remain in direct
co-culture throughout adipogenic differentiation. Lipid droplets
from adipocytes in vitro were labeled with Oil Red O alone, or in
combination with DAPI (Thermo Fisher Scientific, Waltham,
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MA) and AF488-phalloidin (Invitrogen, Carlsbad, CA) and
analyzed as previously described (6). All cell culture reagents
were acquired from VWR unless stated.

Total mRNA Extraction and Quantitative
Reverse Transcriptase Polymerase
Chain Reaction
Total RNA was harvested in QIAzol and prepared via Qiagen
miRNEASY Kit with DNase On-column digestion (Qiagen; Hilden,
Germany) according to the manufacturer’s protocol. Ribolock (1U/
µl; Thermo Fisher Scientific) was added to inhibit RNA degradation
in samples processed for microarray. mRNA was quantified and
tested for quality and contamination using a Nanodrop 2000
(Thermo Fisher Scientific) and subjected to quality control
minimum standards of 260/230 > 2 and 260/280 > 1.8 prior to
downstream applications. qRT-PCR experiments were carried out
as previously described (6). Ranges of Cq values utilized for qPCR
experiments include human mesenchymal stem cells (hMSCs):
ACTB (22.08–30.84), PPARG (25.80–34.45), CEBPA (27.62–
35.03), FABP4 (22.30–39.51); mBMSCs: Actb (17.56–19.25), Pparg
(23.48–25.71), Cebpa (24.44–27.8), Fabp4 (18.30–28.81), Cxcl1
(27.50–34.40), Cxcl2 (25.03–34.79), Il6 (32.46–37.57); 3T3L1: Actb
(18.37–38.15), Pparg (22.39–39.05), Adipoq (21.09–38.30), Cxcl12
(19.45–37.30), Cxcl1 (27.79–39.36), Il6 (30.09–39.04).

3T3-L1 Gene Expression Assessed
by Microarray
Total RNA (100 ng) was used for cRNA synthesis, prepared, and
purified as previously described (22); 5.5 µg of fragmented single-
strand cDNA (GeneChip ® WT PLUS reagent Kit) was purified,
labeled, and hybridized prior to injection into Mouse Clariom S
arrays, also as previously described (22). Arrays were placed in
the Affymetrix® GeneChip® Hybridization Oven 645 and
stained with the Affymetrix GeneChip® Fluidics Station 450
prior to scanning (7G Affymetrix GeneChip Scanner 3000). Raw
data (Affymetrix CEL files) were imported into the Gene
Expression Workflow (Partek Genomics Suite v. 6.17.0918,
Partek, St Louis, MO) (GSE143269) and normalized prior to
log2 transformation, and differential expression (DE) analysis, as
previously described (22), except here a one-way ANOVA was
utilized in the DE analysis and DE genes were defined based on
an absolute fold change > 1.5 in combination with an unadjusted
p-value of 0.05 or less.

Differential expression of functional groups was assessed through
Pathway-ANOVA and GO-ANOVA analyses in Partek Genomic
Suite, which utilized Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway and GO term databases, respectively. Both
Pathway- and GO-ANOVA were performed on normalized
expression data without filtering using the method of moments
algorithm. Parameters for the Pathway- and GO-ANOVA analyses
were configured such that only pathways with more than two and
fewer than 500 genes are considered and only GO-terms with more
than two and fewer than 100 genes were considered.

Normalized gene expression values were also subjected to a
gene set enrichment analysis (GSEA) using the Java
implementation from the Broad Institute (32). Array probe
Frontiers in Oncology | www.frontiersin.org 3
sets were collapsed into gene symbols for the analysis and the
chip platform used for annotation was Clariom_S_
Mouse.r1.chip available from the annotation directory within
the GSEA software. Phenotype labels for treatment (the factor of
interest) were “MM.1S” and “Control.” “Diff_of_Classes” was
used as the gene ranking metric. Several Molecular Signatures
Database Collections (MSigDB v6.1, Dec 2, 2017) were used to
identify gene sets significantly enriched in MM.1S vs control
cultures for both the preadipocyte and mature adipocyte
experiments, including H (Hallmark), C2 (curated gene sets),
and C5 (Gene Ontology, GO, gene sets), which contained 50,
3,689, and 4,429 gene sets respectively, when gene set size filters
min=15 and max=500 were applied (33). Only those gene sets
with a false discovery rate (FDR) < 25% were considered
significantly enriched.

Analysis of External Multiple Myeloma-
Mesenchymal Stromal Cells and Normal
Bone Marrow-Mesenchymal Stromal
Cells Dataset
Microarray gene expression data from Corre et al. (28) was
accessed for MSCs derived from non-malignant, normal bone
marrow (NBM; n=7) or multiple myeloma (MM; n=6) patient
bone marrow. Differentially expressed (DE) genes were
determined via unpaired, two-tailed t-test for each transcript
(p<0.05). Gene relatedness was assessed with a tool for recurring
instances of neighboring genes (STRING v11.0), input was
limited to significant DE genes with a fold-change ≥|2| (34).
Heatmaps were generated using the publicly available Morpheus
data visualization tool through the Broad Institute (https://
software.broadinstitute.org/morpheus/).

Analysis of p16 and p21 in Adipogenic
Precursors and Adipocytes
Protein from cell lysates was extracted using RIPA buffer (Santa
Cruz, 24948) and quantified using DC protein assay kit II (Bio-
Rad, 5000112). Each sample was denatured in 4x laemmli buffer
(Bio-Rad, 1610747) for 5 minutes at 95°C. Samples were run on
12% polyacrylamide gels (Bio-Rad, 5671043) and transferred
onto PVDF membranes (Bio-Rad, 1704156). Primary antibodies
anti-p16 (Abcam, ab108349; 5% milk in TBS-T, 3 days), p21
Waf1/Cip1 (Cell Signaling Technology, #2947; 5% BSA in TBS-
T, 1 day) and b-tubulin (Cell Signaling Technology, #2146; 5%
BSA in TBS-T, 1 day) were used at a 1:1,000 dilution with
incubation at 4°C. HRP-linked anti-rabbit IgG (Cell signaling
technology, #7074; 5% BSA in TBS-T) was used as the secondary
antibody at a 1:5,000 dilution with incubation at 4°C for 24 h.

Analysis of Secreted Cytokines Following
Exposure to Multiple Myeloma Cells
Cell culture conditioned media (CM) was collected from mature
naïve adipocytes or MM-adipocytes in culture after 48 (mouse)
or 72 (human) hours of incubation and frozen at −20°C.
Secreted cytokines in the CM were quantified with either the
Mouse Cytokine Array A (R&D; Minneapolis, MN) or the
Human Cytokine Array (R&D) per the manufacturer’s instructions.
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In Vitro Myeloma Cell Functional
Characterization
Myeloma cell number was assessed using bioluminescence
(MM.1S, OPM-2) or CellTiter-Glo (5TGM1, RPMI-8226;
Promega, City, State). Cells were collected and stained with
APC-Annexin V (BioLegend, San Diego, CA) and DAPI
(Thermo Fisher Scientific, Waltham, MA) for apoptosis. For
proliferation, cells were fixed in fixation buffer (BioLegend) prior
to washing and staining with Alexa Fluor 647 anti-human Ki-67
antibody (BioLegend) prior to flow cytometry via MACSQuant
Analyzer (Miltenyi Biotec, Bergisch Gladbach, Germany). A
minimum of 10,000 events were captured and analyzed using
FlowJo v.10.1 (Becton, Dickinson & Company, Ashland, OR).

Statistical Analysis
All graphs were created with GraphPad Prism (version 7); statistical
significance was determined by using two-way ANOVA (multiple
groups) or Student’s T-test (two groups) unless otherwise stated. For
these tests, we made the assumptions that the data had a Gaussian
distribution and that they meet the qualifications for a parametric
test (normality, equal variance, and independence). All data are
expressed as mean ± SEM. For more information, please reference
Supplemental Methods. Statistical analyses for the microarray data
were completed as outlined above.
RESULTS

Multiple Myeloma Patient-Derived
Mesenchymal Stromal Cells Exhibit
Changes in Key Metabolic Genes
We began with a thorough analysis of the publicly available data
from Corre et al. (28), investigating relative differences in the
gene expression profiles in MSCs from normal bone marrow
(NBM) and multiple myeloma (MM) patient bone marrow. We
found 224 downregulated genes in MM-MSCs compared to
NBM-MSC controls, and 183 of these genes were connected
nodes in our gene network analysis (STRINGv11.0,
Supplementary Figure 1A). In the significantly downregulated
genes, we observed significant enrichment of transcripts
encoding genes in the cellular differentiation pathway
(GO:0030154; FDR<0.05) including the transcription factors
forkhead box transcription factors A1 and M1 (FOXA1,
FOXM1), pioneering transcription factors that can enhance or
suppress the expression of differentiation and/or proliferation
factors (35, 36) as well as lim homeobox 8 (LHX8), which is
involved in the pro-osteogenic BMP signaling cascade (37). Nine
genes specifically involved in osteogenesis were also significantly
downregulated including collagen type XI alpha 1 chain
(COL11A1), the BMP4 antagonist chordin like 1 (CHRDL1),
insulin like growth factor 1 (IGF1), and asporin (ASPN) which
binds collagen and calcium in cartilage, inducing cartilage
mineralization. The leptin receptor (LEPR), a known regulator
of osteogenic and adipogenic progenitors (38), was also
significantly decreased in MM-MSCs compared to controls,
suggesting that in addition to impaired osteogenic capacity, as
Frontiers in Oncology | www.frontiersin.org 4
previously described (28), adipogenic capacity may also be
impaired in MM-MSCs.

We next created two clusters of transcripts involved in both
the KEGG PPAR signaling pathway (Figure 1A) and the
Hallmark adipogenesis gene set (Figure 2) to begin to
specifically investigate the effects of MM exposure on lipid
metabolism and metabolic homeostasis. Within the PPAR
signaling pathway, we observed significantly altered expression
of 14 transcripts (associated with nine genes) within this cluster
(Table 1). Seven out of nine genes were downregulated,
including fatty acid desaturase 1 (FADS1; Figure 1B,
Supplementary Figure 1A) and fatty acid desaturase 2
(FADS2; Figure 1C), potentially representing a modulation of
the processing of long-chain polyunsaturated fatty acids in MM-
MSCs. MM-MSCs exhibited slight but significant increases in
acetyl-coA acyltransferase 1 (ACAA1), acyl-CoA oxidase 1
(ACOX1), and acyl-CoA oxidase 2 (ACOX2), which are
involved in fatty acid oxidation. These findings led us to
hypothesize that MM cells modulate the metabolism of MSCs
and may alter their adipogenic differentiation. As previously
reported by Corre et al., we also confirmed >2 fold increases in
two transcripts for angiopoietin like 4 (ANGPTL4; Figure 1D,
Supplementary Figure 1B), the expression of which is
responsive to peroxisome proliferation activators (28).

By further examining genes that were significantly different
(p<0.05) between MM and NBM-MSCs in the Corre dataset, we
observed differential expression of 68 genes that are specifically
upregulated during adipogenesis (Figure 2). The cluster of genes
upregulated in MM-MSCs included acyl-CoA dehydrogenase
long chain (ACADL)—a mitochondrial enzyme involved in fatty
acid metabolism, as well as aldolase fructose-bisphosphate A
(ALDOA), a glycolytic enzyme, suggesting that MM-MSCs burn
rather than store more fatty acids than normal MSCs. ATP
binding cassette subfamily A member 1 (ABCA1), a membrane-
associated protein involved in cellular lipid removal, was also
upregulated in MM-MSCs. The cluster of transcripts
downregulated in MM-MSCs included metabolic enzymes 1-
acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3),
ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2),
and dihydrolipoamide S-acetyltransferase (DLAT). Signal
transducer and activator of transcription 5A (STAT5A), a key
molecule involved in the signaling cascades triggered by many
ligands including interleukins and growth hormones, was also
downregulated in MM-MSCs compared to controls.
Interestingly, key regulators of cell cycle and apoptosis were
downregulated in MM-MSCs, including cyclin dependent kinase
inhibitor 2C (CDKN2C), a cell cycle regulator that controls G1
progression, and programmed cell death 4 (PDCD4), which
regulates proliferation by inducing cell cycle arrest at G1 (39).
Overall, these data suggest that MM patient derived MSCs
exhibit changes in key metabolic genes that may inhibit their
ability to differentiate into adipocytes.

In a second study utilizing mesenchymal cells isolated from
patient bone marrow biopsies (40), MM-MSCs exhibited
differential expression profiles compared to ND-MSCs. The
authors identified seventy-eight differentially expressed genes
February 2021 | Volume 10 | Article 584683
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between MM- and ND-MSCs, with transcripts representing
processes such as cell adhesion, cell cycle and proliferation,
and transcriptional regulation. We utilized the data from this
study to investigate functional enrichments and connectedness
of the DE genes (Supplementary Figure 2). Our analysis
revealed that 31 of the 78 genes (approximately 40% of the
differentially expressed genes) were involved in the regulation of
cellular metabolic process (GO:0031325), including a number of
Frontiers in Oncology | www.frontiersin.org 5
transcription factors (Supplementary Figure 2A) including
nuclear receptor subfamily 1, group D, member2 (NR1D2),
SRY-box transcription factor 9 (SOX9), nuclear receptor
subfamily 2 group F member 1 (NR2F1), paired like
homeodomain 2 (PITX2), and YY1 transcription factor (YY1).
ENPP1 was also significantly decreased in MM-MSCs compared
to controls (Supplementary Figure 2B), as we have highlighted
above in the dataset from Corre et al. In addition, in this second
A
B

D

C

FIGURE 1 | Expression of genes encoding key metabolic proteins in myeloma patient mesenchymal stromal cells (MSCs). Expression of transcripts involved in
PPAR signaling Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (A), in MSCs derived from normal patient bone marrow (NBM) or myeloma patients
(MM), graphically demonstrated using Morpheus software (The Broad Institute). Groups of down and upregulated genes can roughly be seen in the top and bottom
boxed regions. Reduced gene expression of FADS1 (B) and FADS2 (C) and increased expression of ANGPTL4 (D). Analysis of publicly available data from Corre et
al. 2007, Leukemia.
February 2021 | Volume 10 | Article 584683
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study MM-MSCs exhibited significantly decreased expression of
CCAAT enhancer binding prote in a lpha (CEBPA ;
Supplementary Figure 2B), which functions as a key early
adipogenic transcription factor. In addition, SOX9 and MEIS1
wer e up r e gu l a t e d i n MM-MSCs v s . NBM-MSCs
(Supplementary Figure 2C), but the inactivation of these two
factors have been linked to adipogenic differentiation (41). In
addition, zinc finger protein 36 (ZFP36) and Salvador family
WW domain containing protein 1 (SAV1), which have been
linked to positive regulation of fat cell differentiation
(GO:0045600) were also downregulated in MM-MSCs.

Primary Mesenchymal Stromal Cells From
Mouse and Human Bone Marrow Exhibit
Reduced Adipogenic Gene Expression
Profiles During the Differentiation Process
To determine if the gene expression changes above translated to
functional effects, we next tested our hypothesis that
adipogenesis is inhibited in MM-MSCs by comparing the in
vitro differentiation capacity of normal bone marrow (NBM) and
myeloma donor (MM) MSCs (Figure 3A). While NBM-MSCs
readily differentiated into adipocytes (Figure 3B), MM-MSCs
exhibited diminished differentiation capacity (Figure 3C;
Supplementary Figure 2A). Having observed phenotypic
differences in differentiated MM-MSCs, we next tested their
relative gene expression of key adipogenic transcripts by qRT-
PCR and observed suppression of PPARG (Figure 3D), CEBPA
(Figure 3E), and FABP4 (Figure 3F). These findings
demonstrate significantly reduced adipogenic capacity of MM-
MSCs compared to NBM-MSCs using patient stromal cells.

This led to us to ask if MM cells themselves directly cause these
alterations in MSCs, thus, we next tested the hypothesis that MM
FIGURE 2 | Expression of genes encoding key adipogenic proteins in
myeloma patient mesenchymal stromal cells (MSCs). Expression of
transcripts included in the Hallmark Adipogenesis Gene Set, in MSCs derived
from normal patient bone marrow (NBM) or myeloma patients (MM).
Graphically demonstrated using Morpheus software (The Broad Institute).
Analysis of publicly available data from Corre et al. 2007, Leukemia.
TABLE 1 | 14 Metabolic genes significantly altered in myeloma patient-derived
mesenchymal stem cells (MM-MSCs).

Gene
symbol

Gene name P-value Relative
expression
(MM/NBM)

EHHADH Enoyl-CoA hydratase and 3-
hydroxyacyl CoA dehydrogenase

0.0024 0.64

DBI Diazepam binding inhibitor, acyl-CoA
binding protein

0.0028 0.80

FADS1 Fatty acid desaturase 1 0.0030 0.57
DBI Diazepam binding inhibitor, acyl-CoA

binding protein
0.0037 0.81

DBI Diazepam binding inhibitor, acyl-CoA
binding protein

0.0045 0.78

ACOX2 Acyl-CoA oxidase 2 0.0046 1.17
FADS1 Fatty acid desaturase 1 0.0083 0.66
FADS1 Fatty acid desaturase 1 0.0143 0.48
ACOX3 Acyl-CoA oxidase 3, pristanoyl 0.0300 0.75
ANGPTL4 Angiopoietin like 4 0.0355 2.68
ANGPTL4 Angiopoietin like 4 0.0365 3.63
FADS2 Fatty acid desaturase 2 0.0384 0.37
ACAA1 Acetyl-CoA acyltransferase 1 0.0447 1.17
ACOX1 Acyl-CoA oxidase 1 0.0452 1.35
February 2021 |
 Volume 10
Analysis of publicly available data from Corre et al. 2007, Leukemia; p<0.05. Blue text
indicates downregulated; red indicates upregulated.
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cells can directly induce changes in primary BM stromal cells with
in vitro co-culture. Primary BM stromal cells from naïve mice
(Supplementary Figure 2B) were exposed toMM.1S myeloma cells
via transwell co-culture for 72 h prior to adipogenic differentiation
(Figure 4A). Imaging after differentiation revealed significantly
fewer lipid-containing adipocytes in cultures with MM pre-
exposure, compared to controls (Figure 4B). Immediately after
MM exposure (day 3), and 2 days later (day 5), mouse MSCs
exhibited suppression of the key adipogenic transcription factor
Frontiers in Oncology | www.frontiersin.org 7
Pparg (Figure 4C) with slight, but non-significant suppression of
both Cebpa (Figure 4D) and the mature adipocyte marker Fabp4
(Figure 4E). While expression levels of these adipogenic transcripts
were reduced, the overall pattern of induction mirrored that of the
control cells, suggesting that adipogenic differentiation was
occurring at some capacity. These experiments support the
hypothesis that MM cells induce rapid and long-lasting effects on
adipocyte precursors, and that these effects are at least in part
mediated through soluble molecules.
A

B

D E F

C

FIGURE 3 | Mesenchymal stromal cells (MSCs) derived from myeloma patients exhibit impaired adipogenic differentiation. Experimental design of MSC differentiation
experiment (A). MSCs differentiated into adipocytes for 21 days from normal donor bone marrow (NBM-BMAds), (B), or myeloma patient bone marrow (MM-BMAds,
(C) for 21 days; images taken at 20X, scale bars = 250 µm. PPARG (D), CEBPA (E), and FABP4 (F) expression are decreased at the end of the adipogenic
differentiation period in adipocytes derived from myeloma patient MSCs (MM-BMAds), relative to normal donor controls (NBM-BMAds) (n=3); *p < 0.05.
February 2021 | Volume 10 | Article 584683
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Indirect Co-Culture with Myeloma Cells
Results in Reduced Lipid Accumulation
and Inhibition of Adipogenic Transcripts in
Differentiating Mouse Preadipocytes
Having observed similar effects in primary human samples and
in vitro with co-cultures, we next investigated MM-induced
changes in adipogenic precursors using the 3T3-L1 murine
preadipocyte cell line, to eliminate donor variability. We
utilized multiple different experimental designs to characterize
Frontiers in Oncology | www.frontiersin.org 8
the effects of MM cells on 3T3-L1 cells (MM-3T3-L1s): pre-
exposure of 3T3-L1 cells to MM cells for 2 days prior to
differentiation (using direct or indirect co-cultures;
Supplementary Figure 4A), and co-culture of 3T3-L1 cells
with MM cells during differentiation (through exposure to MM
conditioned media (MM-CM) during differentiation;
Supplementary Figure 4B). 3T3-L1 preadipocytes exposed to
MM.1S cells during differentiation exhibited significantly
reduced lipid content in direct co-culture and this trend also
A
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FIGURE 4 | Mouse bone marrow mesenchymal stem cells (BM-MSCs) exposed to multiple myeloma (MM) cells via indirect co-culture in vitro exhibit reduced
adipogenesis. Experimental design of co-culture experiment (A). Images taken with 10X objective (scale bars = 500 µm) at terminal differentiation following pre-
exposure (day 9; B). Pparg (C), Cebpa (D), and Fabp4 (E) expression as assessed by qRT-PCR is suppressed in mouse MSCs “pre-exposed” to myeloma cells
in vitro for 72-h prior to differentiation (first dotted line indicates the end of pre-exposure and start of differentiation), and levels are slightly suppressed throughout
differentiation (second dotted line represents day 2 of adipogenic differentiation) (n=3); *p ≤ 0.05.
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seen in indirect co-culture (Figure 5A). Similarly, 3T3-L1 cells
exposed to MM-CM during differentiation exhibited significantly
reduced Pparg gene expression (Figure 5B), and adiponectin,
Adipoq (Figure 5C) at day 14. Although we observed these
reductions with MM co-culture, lipid accumulation did increase
over the course of differentiation, and the expression of adipogenic
transcripts was also turned on, suggesting that MM cells inhibit,
but do not completely block adipogenesis.

Indirect exposure of 3T3-L1 preadipocytes to MM.1S cells via
transwell for 48 h prior to differentiation (Supplementary
Figure 4A), revealed significant differences in the expression of
1287 total genes as assessed by microarray (Figure 5D). Of these,
105 transcripts were significantly upregulated (>1.5-fold, p<0.05;
Supplementary Table 1) and 179 were significantly
Frontiers in Oncology | www.frontiersin.org 9
downregulated (<1.5-fold, p<0.05; Supplementary Table 2).
Among them, we observed increased expression of interleukin-
1-receptor- associated kinase 3 (Irak3) and lipocalin 2 (Lcn2)
(Table 2; Supplementary Table 1), a small transport protein
involved in the shuttling of small hydrophobic molecules. We
also detected decreased expression of insulin growth factor (Igf2;
Table 2; Supplementary Table 2), a growth factor which
promotes subcutaneous preadipocyte differentiation (42). Also,
of note, we detected significantly reduced expression of odd-
skipped related 2 (Osr2), which has been linked to the control of
BMP and semaphorin 3A (SEMA3A) signaling. Interestingly,
Sema3a was also suppressed in MM-3T3-L1s (Table 2;
Supplementary Table 2), and its expression is known to
inhibit MM progression in mouse models (43). Overall, we
A
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FIGURE 5 | Adipogenic differentiation of 3T3-L1 preadipocytes is inhibited by MM.1S myeloma cells. 3T3-L1 adipocytes were assessed for Oil Red-O content either
alone (control) or with exposure to MM.1S cells prior to differentiation process via indirect (+MM ID) or direct (+ MM D) co-culture (day 11). Lipid content is
significantly reduced by MM.1S co-culture (indirect, MM ID; direct, MM D) during differentiation compared to 3T3-L1 cells on their own (CTRL); quantification of Oil
Red-O staining (A). Expression of adipogenic transcripts Pparg (B) and Adipoq (C) are suppressed during differentiation in the presence of conditioned media from
MM.1S cells; n=4. Significant differences in gene expression (p ≤ 0.05, FC |1.8|, red is upregulated, green is downregulated) in 3T3-L1 adipocytes exposed to
myeloma cells for 48-h prior to differentiation as measured by microarray (D); control n=2, MM.1S n=3; *p < 0.05, **p < 0.01, ****p < 0.0001.
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have seen that MM cells reduce lipid accumulation and inhibit
adipogenic transcripts in differentiating mouse preadipocytes.

Myeloma Cells Drive Aberrant Expression
of Genes Involved in Critical Pathways in
Mouse Adipocytes via Soluble Signals
Utilizing our indirect co-culture system with pre-exposure of
3T3-L1 cells to MM cells prior to differentiation (Supplementary
Figure 4A), we next examined whether MM cells induce changes
in major pathways when co-cultured with 3T3-L1 cells within
the microarray data. The differential expression results from
Pathway-ANOVA analysis of microarray data show several
significantly enriched KEGG pathways including steroid
biosynthesis and oxidative phosphorylation, cell cycle, DNA
replication, and ubiquitin-mediated proteolysis (Table 3). Both
the oxidative phosphorylation (Table 3) and glycolysis (not
shown) KEGG pathways were enriched in 3T3-L1 adipocytes
with pre-exposure to MM cells prior to differentiation,
suggesting that exposure to MM-derived factors leads to
metabolic dysfunction in preadipocytes and mature adipocytes.
In addition to KEGG pathway analysis, we utilized normalized
Frontiers in Oncology | www.frontiersin.org 10
microarray data to perform gene set enrichment analysis
(GSEA). While many signatures were not significant, GSEA
analysis indicated significant enrichment (FDR<25%) in 14 out
of 50 Hallmark gene sets (Table 4) including glycolysis (Figure
6A), fatty acid metabolism (Figure 6B), and mTORC signaling
(Figure 6C).

Within the 179 significantly downregulated genes
(Supplementary Table 2) in MM-3T3-L1s (Figure 6D), we
observed enrichment in sterol, lipid, and cholesterol metabolic
processes by gene network analysis- including 27 genes
specifically linked to lipid metabolic processes. Like our data
from analysis of normal donor versus myeloma patient MSCs
(Table 1), we again found that Fads1 and Fads2 were
significantly downregulated in MM-3T3-L1s compared to
controls. Additionally, the expression of the key enzymes fatty
acid synthase (Fasn) and carnitine palmitoyltransferase 1a
(Cpt1a) were both suppressed in adipocytes with MM pre-
exposure demonstrating altered metabolic activity, with specific
implications for fatty acid synthesis and b-oxidation.
TABLE 2 | Altered expression of transcripts in 3T3-L1 adipocytes with exposure to MM.1S cells.

Increased in adipocytes w/pre-exposure toMMcells p-value Fold
change

(MM/CTRL)

Decreased in adipocytes
w/pre-exposure to MM cells

P-value Fold
change

(MM/CTRL)

Cathelicidin antimicrobial peptide (Camp) 0.046908 3.725 Angiotensin II receptor, type 2 (Agtr2) 0.002039 −9.069
Interleukin-1 receptor associated kinase 3 (Irak3) 0.011152 3.644 Aldolase C, fructose-bisphosphate (Aldoc) 0.012447 −4.186
CD4 antigen (C4a) 0.004946 2.405 Interleukin 1 receptor-like 1 (Il1rl1) 0.009467 −4.055
Lipocalin 2 (Lcn2) 0.012884 2.346 Apolipoprotein D (Apod) 0.02907 −3.747
Complement component 4 b (C4b) 0.000832 2.300 Semaphorin 3a (Sema3a) 0.001421 −3.282
Fibrinogen-like protein 1 (Fgl1) 0.01909 2.241 UTP14B small subunit processome component

(Utp14b)
0.025423 −3.246

Inhibitor of DNA binding 3 (Id3) 0.00221 2.195 Odd-skipped related 2 (Osr2) 0.002808 −3.191
Alpha 1,4, galctosyltransferase (A4galt) 0.047703 2.181 Cytochrome P450, family 51 (Cyp51) 0.005149 −3.089
Haptoglobin (Hp) 0.004879 2.170 Insulin-like growth factor 2 (Igf2) 0.000666 −2.955
STEAP family member 4 (Steap4) 0.014702 2.125 Integrin, beta-like 1 (Itgbl1) 0.000345 −2.891
February 2021 | Vo
lume 10 | A
Top 10 most significant gene expression changes in 3T3-L1 adipocytes with exposure to MM.1S cells prior to differentiation derived frommicroarray data. Bold indicates discussed in text.
Blue text indicates downregulated and red text indicates upregulated.
TABLE 3 | Microarray data reveal key cellular Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways altered in response to multiple myeloma (MM) cell
exposure.

KEGG pathway (pretreat) P-value FC

Steroid biosynthesis 5.84E−16 −1.41136
Cell cycle 1.67E−12 −1.08717
Terpenoid backbone biosynthesis 1.22E−08 −1.2398
DNA replication 1.23E−07 −1.13989
Rheumatoid arthritis 4.03E−07 1.08281
Ubiquitin mediated proteolysis 5.50E−07 −1.0509
Protein processing in endoplasmic reticulum 1.02E−06 −1.04289
Oxidative phosphorylation 1.46E−06 1.03672
Phagosome 2.37E−06 1.04667
Systemic lupus erythematosus 4.97E−06 1.05049
KEGG Pathways significantly altered in 3T3-L1 adipocytes with exposure to MM.1S cells
prior to differentiation derived from microarray data. Pathway analyses incorporate all
robust multi-array average (RMA)-normalized genes. Bold indicates discussed in text. Blue
text indicates downregulated and red text indicates upregulated.
TABLE 4 | Key gene sets revealed as altered in response to multiple myeloma
(MM) cell exposure.

Hallmark gene set enriched FDR (<0.25)

Androgen response 0.091
Mitotic spindle 0.091
mTORC1 signaling 0.091
Cholesterol signaling 0.091
G2M checkpoint 0.118
Protein secretion 0.122
Myogenesis 0.129
E2F targets 0.142
Glycolysis 0.148
Hypoxia 0.155
UV response DNA 0.155
Fatty acid metabolism 0.157
Apical junction 0.198
PI3K-AKT-MTOR signaling 0.206
Significant gene set enrichment analysis (GSEA) results in 3T3-L1 adipocytes with
exposure to MM.1S cells prior to differentiation compared to controls. Derived from
microarray data; analyses incorporate all robust multi-array average (RMA)-normalized
genes. Bold indicates discussed in text.
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By specifically examining the 103 significantly upregulated
genes in 3T3-L1 adipocytes with prior exposure to MM cells, we
further identified a network of genes with Il6 as a central node
(Figure 7). Collectively, these genes are enriched for GO terms
such as “cellular response to interleukin-1” (GO:0071347),
“inflammatory response” (GO:0006954), and “response to
tumor necrosis factor” (GO:0034612). These results suggest
that 3T3-L1 adipocytes exposed to MM cells in their
progenitor stage increase the expression of genes that produce
inflammatory proteins known to modulate the bone marrow
microenvironment, and many of these are known members of
the senescence-associated secretory phenotype (SASP).
Frontiers in Oncology | www.frontiersin.org 11
Multiple Myeloma Induces Expression of
Key Transcripts Involved in the
Senescence Associated Secretory
Phenotype in Adipocyte Lineage Cells
Having obtained evidence that MM-3T3-L1s express genes
encoding SASP proteins, we wanted to verify this in each of
our cell types. We confirmed that Cxcl12 and two traditional
SASP genes, Cxcl1, and Il6, were elevated in MM-3T3-L1s versus
control 3T3-L1s by qRT-PCR (Figure 8A). To confirm the
presence of elevated SASP transcripts in primary cells, we first
utilized mouse MSCs pre-exposed to MM.1S cells. After 24 h of
MM exposure, we observed extremely high expression of Cxcl1
A B

D

C

FIGURE 6 | Cellular metabolism and key signaling pathways are altered in myeloma-associated mouse adipocytes. 3T3-L1 adipocytes exposed to MM.1S prior to
differentiation have altered expression of genes involved with glycolysis (A), fatty acid metabolism (B), and mTORC signaling (C) as determined via gene set
enrichment analysis (GSEA) analysis of 3T3-L1 microarray data. Expression of genes involved in lipid metabolism and encoding essential growth factors are
downregulated in MM-3T3-L1 adipocytes (D) as visualized by string-db analysis of 3T3-L1 microarray data (p < 0.05, FC<−1.5).
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(Figure 8B), Cxcl2 (Figure 8C), and Il6 (Figure 8D) which was
not basally expressed in mouse BM stromal cells. Elevated
expression of both Cxcl2 and Il6 were sustained in the pre-
exposure group throughout adipogenic differentiation.
Combined these data suggest that mouse adipocytes with prior
exposure to MM soluble factors produce elevated SASP proteins,
which would have profound effects on tumor cells and the bone
marrow microenvironment.

We next tested whether soluble factors from 5TGM1 murine
myeloma cells have a similar effect on 3T3-L1 adipogenesis. Neither
indirect pre-exposure to 5TGM1 cells prior to differentiation, or
exposure to 5TGM1 soluble factors (conditioned media, CM)
during differentiation resulted in phenotypic changes in 3T3-L1
adipocytes at terminal differentiation (Supplementary Figure 5A).
Lipid content, as assessed viaOil Red-O staining and quantification,
also was not significantly different (Supplementary Figures 5B, C).
Exposure to 5TGM1 soluble factors CM (Supplementary Figure
5D), or with transwell indirect co-culture (Supplementary Figure
5E), also had no significant effects on in the secretion of over 40
cytokines, (including IL-6, CXCL1, and CXCL2), assessed via
cytokine array; suggesting a differential effect of either myeloma
cell line, or between species. To explore whether indirect co-culture
with myeloma cells increases p16 or p21, commonly implicated in
cellular senescence, NBM-MSCs were exposed to MM.1S and
RPMI-8226 myeloma cells via transwell co-culture for 48 h prior
to adipogenic differentiation (21 days). MSCs were harvested for
total protein either immediately after co-culture, or at the end of the
Frontiers in Oncology | www.frontiersin.org 12
differentiation process. MM co-culture seemingly had very little
effect on p16 or p21 in hMSCs compared to naïve (Supplementary
Figures 6A, B), with no overall differences at the end of 21 days of
adipogenic differentiation. p21 and p16 also increased in BMAT
samples relative to MSCs, consistent with previous reports of
PPARG stimulation of senescent markers (p16) expression (44).

In the patient dataset reanalysis (28), we compared MSCs from
MM patients and from normal bone marrow (NBM), and observed
significantly increased expression of 267 genes (Supplementary
Figure 7), 36 of which encode secreted proteins (KW-0964; Table
5). These include key signaling molecules known to modulate the
BM microenvironment including: C-C motif chemokine ligand 5
(CCL5), C-X-C motif chemokine ligand 8 (CXCL8/IL-8), platelet
derived growth factor B (PDGFB), as well as transforming growth
factors A and B (TGFA, TGFB). Secreted phosphoprotein 1 (SPP1)
was also increased inMM-MSCs relative to NBM-MSCs, suggesting
that myeloma MSCs may be similar to other types of cancer-
associated stromal cells and adipocytes (45–47). In the DE genes
reported by Todoerti et al. (40), only 21 genes were significantly
upregulated in MM- vs. NBM-MSCs, which were predominantly
enriched for factors involved in transcription, including YY1 which
may regulate p16 expression (48) (Supplementary Figure 2).

We further examined the expression of senescence-associated
genes and observed a general trend for increased SASP gene
expression (including CXCL1, CXCL2, and IL6) in MM-MSCs
when compared to NBM-MSCs (Figure 8E) (28). Elevated
expression of IL6 in MM-MSCs relative to normal donor
FIGURE 7 | Key signaling pathways are altered in myeloma-associated mouse 3T3-L1 adipocytes. Upregulated genes in MM-3T3-L1s are connected via the central
node of Il6 as demonstrated graphically by string-db analysis of 3T3-L1 microarray data.
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MSCs was observed in an independent experiment utilizing
nanostring gene expression data (~2.5-fold, data not shown),
and has been previously reported (7, 30). Overexpression of
SASP genes Interleukin 1 beta (IL1B) and serpin family E
member 1 (SERPINE1) were also previously reported (28).
Additionally, we found that cyclin dependent kinase inhibitor
2A (CDKN2A) and high mobility group AT-hook 2 (HMGA2)
were significantly increased in MM-MSCs 2- and 2.4-fold
respectively; these genes encode proteins involved in
senescence-associated heterochromatin foci (GO:0035985;
Frontiers in Oncology | www.frontiersin.org 13
Supplementary Figure 7). In the Todoerti et al. dataset, MM-
MSCs overexpressed NR2F1, a transcription factor that has been
linked to increased expression of CXCL12 (49), however none of
the signaling molecules listed above were included in the list of
significantly different genes. In addition, among the
downregulated genes were those associated with response to
cytokine stimulus (GO:0071345), and the interferon signaling
pathway (HSA-913531), suggesting that these processes are
aberrant in MM-MSCs compared to NBM-MSCs, although the
specific relationships remain unclear.
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FIGURE 8 | Exposure to myeloma cells prior to adipogenic differentiation induces SASP production in adipocyte precursors. 3T3-L1 cells exposed to MM.1S
soluble factors during differentiation exhibit increased expression of: Il6, Cxcl1, and Cxcl12 after terminal differentiation (A). Mouse bone marrow MSCs were exposed
to MM.1S cells in vitro for up to 72 h prior to adipogenic differentiation. Cells were harvested for RNA extraction after 24 (first dotted line), 48, and 72 (second dotted
line; change to adipogenic media) hours of pre-exposure, and after the first treatment of adipogenic media (day 5). Cxcl1 (B), Cxcl2 (C), and Il6 (D) gene expression
was quantified in mMSCs at each time point; n=3 per group, *p < 0.05, **p < 0.01. Reanalysis of previously published MSC gene expression data comparing bone
marrow from normal donors (NBM) and myeloma donors (MM) examining the SASP gene cluster (E) data from Corre et al. 2007, Leukemia.; heatmap generated via
Morpheus.
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To specifically test whether MM cells can inhibit adipogenesis
and promote expression of SASPs in hMSCs, we directly co-
cultured NBM-MSCs with tumor cells prior to and during
differentiation (Figure 9A). NBM-MSCs were exposed directly to
MM.1S, RPMI-8226, and OPM-2 cells for 48-h prior to the
initiation of differentiation. At day 0 of differentiation, the co-
culture media was removed, and cells were washed gently prior to
the addition of fresh adipogenic differentiation media which was
Frontiers in Oncology | www.frontiersin.org 14
changed 1–2 times weekly until day 18 at which time conditioned
media was collected from the co-cultures and cells were fixed and
stained for analysis (Figure 9B). We found that direct co-culture
with MM.1S resulted in no net change in lipid content, while
RPMI-8226 tumor cells a slight, non-significant decrease on lipid
accumulation or content as evidenced by fluorescent microscopy
and quantified by Oil Red-O elution (Figure 9C). However, co-
culture with OPM-2 resulted in severe decreased adipogenesis as
evidenced by the lack of full-fledged lipid laden adipocytes (Figure
9B, bottom left) and significantly reduced Oil Red-O content
(Figure 9C). In conditioned media from MM.1S+BMAT co-
cultures, we were unable to detect any differences in 36 different
cytokines (Figure 9C). However, we observed increased
inflammatory cytokines in the conditioned media of RPMI-8226
and OPM-2 co-cultures (Figure 9C), with significant differences in
CXCL1 (OPM-2 only), ICAM-1, and IL-8 and trends for increased
IL-6 and PAI-1 (SERPINE1).

Interestingly, we detected different responses of the myeloma
cells to BMAT differentiation media (Supplementary Figure
8A) , with severe reduction in MM.1S cel l number
(Supplementary Figure 8B), proliferation (Supplementary
Figure 8C), coupled with high levels (~80%) of apoptosis
(Supplementary Figure 8D). Conversely, OPM-2 cells were
largely unaffected by the BMAT differentiation media, with a
slight but significant reduction in cell number (Supplementary
Figure 8E), coupled with minimal reductions in proliferation
(Supplementary Figure 8F) and apoptosis (Supplementary
Figure 8G). Treatment of RPMI-8226 cells with BMAT
differentiation media resulted in an approximate 50%
reduction in cell number (Supplementary Figure 8H), no
effect on proliferation (Supplementary Figure 8I), with a
moderate increase in apoptosis (Supplementary Figure 8J).
The experimental design of this direct co-culture experiment
therefor investigated the pre-exposure of MSCs (MM.1S), as well
as co-culture with low (RPMI-8226), and high (OPM-2) levels of
tumor cells throughout the differentiation process. This data
could, in part, explain the differing levels of adipocyte
differentiation and/or lipid accumulation, and its correlation
with the production of SASPs, if these processes are tied to
tumor cell presence, but cannot be teased apart from cell-line
specific signals that might be involved in altering adipogenesis.
Combined these results suggest that MM cells are likely inducing
senescence in cells within the marrow niche including both
adipocytes and their precursors (MSCs), which has
implications for tumor cell proliferation and survival.
DISCUSSION

In this study, we demonstrate that exposure to myeloma cells
modulates adipocyte progenitors by altering adipogenic
differentiation capacity, skewing metabolism-related
transcripts, and increasing the expression of inflammatory
cytokines. Our data build on what is known in the field of
myeloma, to demonstrate that preadipocytes that are exposed to
soluble MM-derived factors are phenotypically altered. Overall,
TABLE 5 | Genes upregulated in myeloma patient-derived mesenchymal stem
cells (MM-MSCs) compared to non-malignant bone marrow-MSCs (NBM-MSCs)
that encode secreted proteins.

Gene
Symbol

Gene Name P-
Value

Relative
Expression
(MM/NBM)

ADAM23 a disintegrin and metallopeptidase
domain 23

0.00242 2.7021

ADAMTS12 a disintegrin-like and metallopeptidase
(reprolysin type) with thrombospondin
type 1 motif, 12

0.00848 2.2248

ANGPTL4 angiopoietin-like 4 0.03554 2.6803
ASAH1 N-acylsphingosine amidohydrolase 1 0.00302 2.4670
BAGE5 B melanoma antigen 0.00811 2.6112
CA6 carbonic anhydrase 6 0.00703 2.3897
CCL5 chemokine (C-C motif) ligand 5 0.00968 2.9745
CLEC3A C-type lectin domain family 3, member

a
0.03478 3.6175

CSHL1 chorionic somatomammotropin
hormone like 1

0.00117 2.2147

CST2 cystatin SA 0.04382 2.2356
CXCL8 C-X-C motif chemokine ligand 8 0.00164 2.2690
DPP4 dipeptidylpeptidase 4 0.00266 2.4102
ENPP5 ectonucleotide pyrophosphatase/

phosphodiesterase 5
0.03128 3.0575

HPX hemopexin 0.03025 2.3668
IL17D interleukin 17D 0.00164 2.3558
IL1A interleukin 1 alpha 0.04260 3.1132
LRRC17 leucine rich repeat containing 17 0.01147 2.6269
LYZ lysozyme 0.03481 2.5119
MSMB beta-microseminoprotein 0.03234 2.1747
NPPB natriuretic peptide type B 0.00038 3.9836
OLR1 oxidized low density lipoprotein (lectin-

like) receptor 1
0.00918 3.3160

PAPPA2 pappalysin 2 0.04318 2.2153
PDGFB platelet derived growth factor,

B polypeptide
0.01085 2.7339

PDGFRL platelet-derived growth factor receptor-
like

0.04730 3.1235

PLAT plasminogen activator, tissue 0.00253 2.2369
RSPO2 R-spondin 2 0.01459 2.3071
SEMG1 semenogelin 1 0.00777 3.0290
SERPINB2 serine (or cysteine) peptidase inhibitor,

clade B, member 2
0.00028 3.7445

SPP1 CXXC finger 1 (PHD domain) 0.01160 5.0380
SPX spexin hormone 0.03056 3.4733
TFPI tissue factor pathway inhibitor 0.00222 2.0072
TGFA transforming growth factor alpha 0.03717 2.6374
TGFB2 transforming growth factor, beta 2 0.01007 2.0666
THPO thrombopoietin 0.00976 2.1998
VWA5B1 von Willebrand factor A domain

containing 5B1
0.00672 4.1775

ZG16B zymogen granule protein 16B 0.00238 2.4187
Reanalysis of Corre et al. 2007 Leukemia. Bold indicates discussed in text.
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these data support the interpretation that MM cells modulate
adipocytes and their precursors by inducing senescence, and
stimulating production of MM-supportive cytokines and other
factors that likely contribute to “the vicious cycle” (2) of bone
destruction and release of growth factors fueling myeloma cells
in the bone marrow.

Corre and colleagues determined that MM-MSCs exhibit
extremely different expression profiles from NBM-MSCs (28).
Frontiers in Oncology | www.frontiersin.org 15
Among the upregulated genes highlighted in these findings were
factors that promote lipolysis, ANGPTL4 (50), growth
differentiation factor 15 (GDF15) (51), and known SASPs IL1B
and SERPINE1. This study also detected downregulation of
chemokine C-X-C motif ligand 12 (CXCL12, SDF1) and
insulin-like growth factor 1 (IGF1), and aberrant expression of
genes encoding molecules involved in WNT signaling Dickkopf
homolog 1 (DKK1) and WNT1 inducible signaling protein 1
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FIGURE 9 | Direct co-culture of human mesenchymal stem cells (hMSCs) with myeloma cells reveals cell-line specific effects on lipid accumulation and cytokine
production. Experimental design of co-culture experiment (A) where multiple myeloma (MM) cells (MM.1S, RPMI-8226, OPM-2) were added 2 days prior to the start
of differentiation. Myeloma cells were allowed to persist during differentiation with adipogenic media. Fresh adipogenic media was incubator for 72 h prior to the
collection of conditioned media. Conditioned media was collected and cells were fixed and stained on day 18 of differentiation, a few days prior to terminal
differentiation. Adipocytes were fixed, stained (phalloidin=green, Oil Red-O=red, DAPI=blue), and imaged with a 10X objective after differentiation and co-culture with
or without myeloma cells (B); images are from one hMSC donor, but are representative of n=3 donors. Lipid content was assessed by Oil Red-O staining, elution,
and quantification (C). Cytokines were assessed in conditioned media by human cytokine array (R&D) (D); n=3 donors for each condition (control=naïve, +MM.1S,
+OPM-2, +RPMI-8226). Significance was assessed via two-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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(WISP1) (28). By relaxing the stringency of our reanalysis, we
were able to detect additional differences in gene expression
(p<0.05; FC>|2|), confirm diminished expression of osteogenic-
related transcripts and growth factors, and further identify
FADS1 and FADS2 as being elevated in MM-MSCs. The
downregulation of these enzymes in MM-MSCs would likely
manifest in an altered portfolio of long-chain fatty acids available
to the cell, which has been tied to both osteogenic (52) and
adipogenic differentiation (53). In breast cancer cells, FADS1/2
have also been linked to inflammation via their production of
arachidonic acid (54), suggesting that their suppression in MM-
MSCs may be linked to an anti-inflammatory response linked to
increased cytokine signaling (55).

While we did observe some changes in transcript expression
related to PPAR signaling, no significant differences were detected
in PPARG or CEBPA/CEBPB, suggesting that MM-MSCs were not
committed to adipogenesis, although trends for low-level elevated
expression were observed in two independent datasets. Our data
suggest that while these genes can be turned on in MM-MSCs
during in vitro differentiation, traditional adipogenic differentiation
is inhibited. Our findings are consistent with single cell qRT-PCR
analysis of normal MSCs exposed to myeloma cells, which exhibit
trends for suppression of LEPR and PPARG (26). In addition, a
second dataset comparing gene expression in MM- to NBM-MSCs
demonstrated significant reductions in CEBPA, SOX9, MEIS1,
ZFP36, and SAV1—all of which have been linked to the
promotion of adipogenic differentiation (40), supporting our
hypothesis that adipogenesis is likely suppressed in MM-MSCs.

An increased number of preadipocytes within the marrow of
myeloma patients has been reported, as well as supportive effects
of preadipocytes and adipocytes on MM cells (8). Studies
utilizing conditioned media from 3T3-L1 preadipocytes and
mature adipocytes specifically highlighted a recruitment/pro-
migration role for mature adipocytes, and a proliferative
effect of preadipocytes on MM cells (8). These findings
implicate adipocyte-lineage cells as a source of chemokines
that drive myeloma bone marrow homing (8). A recent
study demonstrated that BMAds from myeloma patients
are reprogrammed to produce adipokines that stimulate
osteoclastogenesis and suppress osteoblastogenesis (27).
Our studies build on these findings by highlighting both
similar and new chemokines produced by uncommitted MSCs,
differentiating MSCs, and committed adipocytes, and
recapitulate their production after MM exposure. Within our
reanalysis of the data from Corre et al., we uncovered
significantly decreased expression of FOXA1, a transcription
factor whose suppression in cancer stem cells has been tied to
increased IL6 expression (56). We hypothesize that a similar
mechanism is controlling expression of IL6 in MM-MSCs, and
potentially other SASP proteins. We specifically highlight SASP-
related transcripts encoding inflammatory cytokines in each of
our adipocyte-lineage experiments and demonstrate that the
induction of these transcripts is sustained after differentiation.
In addition, we found that direct co-culture of hMSCs with two
myeloma cell lines prior to and during adipogenic differentiation
resulted in increased secretion of CXCL1/GRO, IL-8, and ICAM-
Frontiers in Oncology | www.frontiersin.org 16
1 in co-culture conditioned medium samples. We also observed
complete inhibition of adipogenic differentiation with OPM-2
co-culture.

Interestingly, direct co-culture with MM.1S myeloma cells,
did not inhibit adipogenesis and resulted in no significant
changes in secreted cytokines. A recent study by Liu et al. (57)
directly co-cultured hMSCs with MM.1S cells and characterized
their gene expression profiles and adipogenic differentiation
capacity. After 48 h of direct co-culture, myeloma cells were
removed, and single cell RNA sequencing (scRNA-seq) was used
to demonstrate a shift in the gene expression profile of MSCs
cultured with MM.1S cells, including enrichment of the
adipokine signaling pathway. They also demonstrated impaired
mineralization with osteogenic differentiation (as assessed with
alizarin red staining) and elevated Oil Red O staining in MSCs
previously cultured with MM.1S cells compared to naïve MSCs
(57). Similar findings were also observed with ARP-1, U266, and
RPMI-8,226 cells. These findings are consistent with the data
presented in our current study, which utilizes a slightly different
experimental design, and demonstrates no negative effect in Oil
Red O staining in adipocytes directly co-cultured with either
MM.1S cells or RPMI-8226 cells. Liu et al. demonstrate that
MM.1S and ARP-1 cells stimulate PPARG in MSCs via a protein
kinase C-mediated mechanism that is triggered by the binding of
integrin-a4 on myeloma cells to VCAM1 on MSCs (57).

We also build on the findings of Liu et al. (57), by providing
evidence that direct co-culture with OPM-2 myeloma cells
eliminates or prevents adipogenic differentiation of hMSCs.
The experimental design of our direct co-culture experiments
differs from the study by Liu and colleagues (57), as myeloma
cells were allowed to persist in culture during the adipogenic
differentiation process. We observed adverse effects of the
adipogenic differentiation media on the tumor cells themselves,
with a severe reduction of MM.1S cells (coupled with a high level
of apoptosis), a moderate reduction of RPMI-8226 cells
(moderate apoptosis), and a slight reduction of OPM-2 cells
(low apoptosis) after a 72-h culture. This suggests that MM.1S
cells were not likely to persist throughout the adipogenic
differentiation process in the co-culture system, while OPM-2
cells remained and interacted with MSCs throughout the
duration of the experiment. Indeed, we observed complete
inhibition of the presence of lipid laden adipocytes in OPM-2
hMSC co-cultures, and significantly elevated levels of the SASPs,
GROa (CXCL1), IL8, and CD54 (ICAM-1), in the culture media.
Elevated levels of IL-6 and SDF-1 (CXCL12) protein were also
detected, although these were not significant by two-way
ANOVA. Interestingly, hMSCs differentiating with RPMI-8226
in direct co-culture were able to differentiate into lipid-laden
adipocytes and expressed significantly more CD54 (ICAM-1)
and IL-8, and slightly more PAI-1 (SERPINE1), SDF-1, MCP-1
(CCL2), and GROa. Further investigation is required to
determine whether the differences observed in direct co-culture
with these three cell lines is cell-line specific, or dependent on the
absence/presence of MM cells during differentiation.

Our findings are consistent with previous reports of myeloma
“primed” MSCs differentiated into adipocytes such as the
February 2021 | Volume 10 | Article 584683

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fairfield et al. Myeloma Cells Alter Adipocyte Precursors
Mehdi et al. study that demonstrated MSC-MM co-culture for 3
days suppressed adipogenic differentiation and reduced the
overall size and lipid content of those adipocytes (26). In
patient samples, the authors suggest that production of small,
immature IGFBP2+ adipocytes is negatively correlated with
disease progression- suggesting that myeloma inhibits the
formation of these cells, or that these cells are somehow
utilized during MM progression (26). In 3T3-L1 adipocytes, we
observed a slight, non-significant increase in Igfbp2 expression
after a two-day exposure to MM cells by indirect co-culture. The
authors did report an increase in genes associated with
senescence in MM patient MSCs, consistent with our findings,
and adding strength to a potential role of SASPs in myeloma
disease progression (31). Indeed, two key risk factors for
myeloma—aging (58) and obesity (12)—have been shown to
increase senescence in the bone marrow, suggesting that
targeting senescent cells via senolytic therapies (59) may be
beneficial in myeloma treatment.

We see a number of ways in which our work could translate to
the clinic. First, as mentioned above, targeting senescent cells using
senolytic treatment may remove senescent, myeloma-associated
bone marrow adipocytes (31), or pre-adipocytes, as shown here,
from the microenvironment. New ways to remove senescent cells
are being developed in the field of aging, such as quercetin or
dasatinib + quercetin, and the role of local senescent cells in tumor
growth is becoming increasingly evident in a variety of cancers
(60). The field of senotherapeutics is burgeoning and senolytics as
well as senomorphics, which act to interfere with a specific
senescence pathway in order to restore the appropriate cellular
function, may prove useful in cancer treatment. Interestingly,
dormant myeloma cells themselves (61), or MGUS (monoclonal
gammopathy of undetermined) cells may also be removed
through targeting senescent cells, as Weivoda et al. have recently
suggested at the ASBMR, 2020 annual meeting. Others have also
seen that other types of tumor cells can express senescent genes
and are sensitive to senolysis (60). Overall, targeting senescence
clinically may be a new means by which to target the tumor cells
and the host microenvironment simultaneously.

Moreover, targeting SASPs and other factors from myeloma-
associated adipocytes is another potential way to translate our
findings to the bedside. For example, targeting IL6 (e.g., Johnson
and Johnson’s drug sirukumab), or the IL6 receptor (e.g.,
Regeneron’s sarilumab) could be tailored perhaps by using
BMAT biomarkers (62), knowing now that BMAds, especially
myeloma-associated adipocyte lineage cells, are a source of IL6.
Better alignment with patient populations for enhanced
precision medicine could also be considered based on our data,
for therapies targeting the CXCL12/CXCR4 axis, such as the
CXCR4 inhibitor AMD3100 (plerixafor) (63), or the CXCL12
antagonist NOX-A12 (64). Our data may also help explain the
ability of treatment with plerixafor to overcome bortezomib
resistance and mobilize stem cells and immune cells, which
was recently reported in a phase I/II trial (65), by providing
new insight into the players in the bone marrow niche involved
in this pathway. Interestingly, new data in vitro has shown that
SDF-1a stimulation of CXCR4 on MM cells may up-regulate the
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expression of IL-6 through the activation of the PI3K/AKT,
suggesting that the IL6 and CXCR4/CXCL12 pathways overlap
in MM cells (64). Overall, our study provides insight into the
mechanism of action of drugs targeting the CXCL12/CXCR4
axis, the IL6/IL6R axis, or other SASP protein signaling pathways
in MM, and suggests that targeting proteins identified herein
may lead to new therapeutic avenues.

In conclusion, our studies demonstrate that adipocyte-lineage
cells are dramatically altered by MM cells. MSCs exposed to
myeloma-derived soluble factors exhibited reduced differentiation
capacity, and elevated expression of senescence-related transcripts
including MM-supportive Il6/IL6. Mouse preadipocytes exposed to
MM.1S myeloma cells can differentiate, but accumulate less lipid
and exhibit aberrant gene expression, including upregulation of key
SASP genes; however this was not observed with exposure to
5TGM1 murine myeloma soluble factors. Direct co-culture of
hMSCs with human myeloma cell lines revealed extreme
differences in the effects of myeloma cells on adipogenic
differentiation, with an increase in adipogenesis observed in
response to MM.1S co-culture, and an inhibitory response
observed in response to OPM-2 co-culture, which stimulated
SASP production. The induction of SASP gene expression by
MM cells in adipocyte lineage cells underlines the importance of
future studies to examine whether SASPs promote MM tumor
initiation, disease stage transition, or resistance to traditional
chemotherapies. Moreover, the myeloma-derived factors that
induce senescence and modulate adipogenesis and in pre-
adipocytes should be explored in future experiments. Our studies
indicate that myeloma cells induce senescence in adipocyte-lineage
cells and add to the building knowledgebase that SASP proteins are
involved in MM pathogenesis.
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