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ABSTRACT

Objective: Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challeng-

ing and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages mul-

tiple independent, online resources to streamline the phenotyping process within EHRs.

Materials and Methods: PheMap is a knowledge base of medical concepts with quantified relationships to pheno-

types that have been extracted by natural language processing from publicly available resources. PheMap searches

EHRs for each phenotype’s quantified concepts and uses them to calculate an individual’s probability of having this

phenotype. We compared PheMap to clinician-validated phenotyping algorithms from the Electronic Medical

Records and Genomics (eMERGE) network for type 2 diabetes mellitus (T2DM), dementia, and hypothyroidism us-

ing 84 821 individuals from Vanderbilt Univeresity Medical Center’s BioVU DNA Biobank. We implemented

PheMap-based phenotypes for genome-wide association studies (GWAS) for T2DM, dementia, and hypothyroid-

ism, and phenome-wide association studies (PheWAS) for variants in FTO, HLA-DRB1, and TCF7L2.

Results: In this initial iteration, the PheMap knowledge base contains quantified concepts for 841 disease phe-

notypes. For T2DM, dementia, and hypothyroidism, the accuracy of the PheMap phenotypes were >97% using

a 50% threshold and eMERGE case-control status as a reference standard. In the GWAS analyses, PheMap-

derived phenotype probabilities replicated 43 of 51 previously reported disease-associated variants for the 3

phenotypes. For 9 of the 11 top associations, PheMap provided an equivalent or more significant P value than

eMERGE-based phenotypes. The PheMap-based PheWAS showed comparable or better performance to a tradi-

tional phecode-based PheWAS. PheMap is publicly available online.

Conclusions: PheMap significantly streamlines the process of extracting research-quality phenotype informa-

tion from EHRs, with comparable or better performance to current phenotyping approaches.
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INTRODUCTION

Electronic health records (EHRs) contain a wealth of clinical information

that is valuable to medical research.1 In the past decade, EHRs have been

used increasingly in medical research and have facilitated scientific dis-

covery.1,2 The use of EHRs for medical research, however, can be chal-

lenging because they are designed primarily for clinical care and not for

clinical research.1–3 Developing phenotyping algorithms to classify cases

and controls from EHRs typically requires clinical experts with domain

knowledge. This process is time consuming, often requiring months of re-

peated manual chart review and algorithmic refinement.2,4,5 Overcoming

this expensive development process through high-throughput approaches

can expedite clinical and translational research.6

Effectively incorporating information other than diagnosis codes

(such as symptoms, medications, and laboratory tests) has been shown to

improve phenotyping,7 but still remains a challenge for high-throughput

phenotyping. Recent statistical modeling or machine learning approaches

may leverage the full spectrum of EHR data to generate predictive pat-

terns and features.8–13 However, many of these methods are supervised

or semi-supervised and may still require labeled training data and/or do-

main expertise, whether for feature selection or model tuning.10,11 More-

over, phenotypes derived using statistical modeling or machine learning

are often trained on a single institution’s data.8–13 Differences across insti-

tutions (eg, cohort demographics and provider diagnostic patterns) may

affect their portability and lead to inconsistent or biased results.14–17

We introduce PheMap, an approach that leverages multiple indepen-

dent, online resources to streamline the phenotyping process within

EHRs. In prior work, we demonstrated that a combination of online

resources could be used to generate a computable knowledge base that

identifies relationships between medications and their indications

(MEDI),18 which has since been used in pharmaceutical, clinical, and ge-

nomic research.19–21 Expanding on this development, we estimated the

strength of relationships between phenotypes and medical concepts,

which includes a wide variety of clinically relevant information, such as

diagnoses, laboratory tests, medications, procedures, and symptoms. We

then used these quantified relationships to calculate “phenotype scores”

and assigned probabilities for individuals to have the phenotype of inter-

est, based on the presence of associated medical concepts in their EHRs.

We generated 841 PheMap phenotypes and calculated the proba-

bility for having each phenotype in a cohort of 84 821 adult individuals

in the BioVU DNA Biobank at Vanderbilt University Medical Center

(VUMC).22 We applied our approach to 3 phenotypes-type 2 diabetes

mellitus (T2DM), dementia, and hypothyroidism-and conducted man-

ual chart reviews to compare PheMap with clinician-validated algo-

rithms from the Electronic Medical Records and Genomics (eMERGE)

network.23 We compared the phenotyping performance of PheMap

and eXtraction of Phenotypes from Records using Silver Standards

(XPRESS), a proposed high-throughput approach from Agarwal et al10

that trains classifiers with noisy-labelled data. We also conducted

genome-wide and phenome-wide association studies (GWAS and Phe-

WAS, respectively) to evaluate PheMap’s performance in replicating

known single nucleotide polymorphism (SNP) disease associations.

MATERIALS AND METHODS

Retrieving phenotype information from publicly

available resources
We collected articles describing diagnoses, symptoms, treatments,

and labs for diseases of interest (phenotypes) from publicly available

resources that offer consumer health information for patients, fami-

lies, and health-care professionals. The 5 resources we utilized in-

cluded the Mayo Clinic Patient Care & Health Information website,

MedlinePlus, MedicineNet, WikiDoc, and Wikipedia. Descriptions

of the resources are provided in Supplementary Table 1.

To map the articles to phenotypes, we first matched article titles

to concept unique identifiers (CUI) in the Unified Medical Language

System (UMLS).24 We then mapped the article title CUIs to Interna-

tional Classification of Disease (ICD) codes using the UMLS, and fi-

nally mapped the ICD codes to “phecodes,” which were designed

for and commonly used in PheWAS.25–29 More general phecodes

may be mapped to several articles from the same resource or multi-

ple resources, whereas some specific phecodes may not be mapped

to any articles.

Mayo Clinic, MedlinePlus, MedicineNet, and WikiDoc all main-

tain directories of articles describing diseases. We directly scraped

the article titles and the body text from these directories. We

extracted articles from Wikipedia by querying Wikipedia’s applica-

tion programming interface with UMLS concepts.

Constructing the PheMap knowledge base
The PheMap is composed of sets of quantified concepts, each associ-

ated to a phenotype via a phecode. To determine the weights

assigned to each concept, we first merged the articles sharing a phe-

code into a single “phenotype document,” adjusting for the average

length of articles in each resource. We used KnowledgeMap Concept

Indexer, our locally developed natural language processing (NLP)

pipeline, to identify CUIs in each phenotype document.30 To esti-

mate the importance of the relationship between a concept and a

phenotype, we applied term frequency–inverse document frequency

(TF-IDF):

TF-IDF t; d;Dð Þ ¼ TF t;dð Þ � IDF t;Dð Þ

¼ ft;dP
t�2d ft� ;d

� log
D

d 2 D : t 2 d

� �

where t is the term (concept), d is the document (phenotype), D is

the corpus of all documents (all phenotypes), ft;d is the count of term

t in document d, D is the total number of documents in the corpus,

and d 2 D : t 2 d is the number of documents that contain term t.

We assigned the TF-IDF score to each concept in the phenotype doc-

ument.

For each phenotype, we used the UMLS to map the associated

concepts to standard medical terminologies. We assigned the con-

cept’s TF-IDF score to the mapped terminologies. A single concept

can, therefore, be mapped to many unique entities within each ter-

minology, all of which will share the original concept’s TF-IDF

score. Currently, these terminologies include (1) ICD, including

both Ninth and Tenth revisions, Clinical Modification (ICD-9-CM

and ICD-10-CM, respectively), a system of codes used by health

insurers to classify medical diagnoses and procedures for billing pur-

poses; (2) Systematized Nomenclature of Medicine Clinical Terms

(SNOMED CT), a comprehensive collection of medical terms pro-

viding codes, synonyms, definitions, and relationships for clinical

documentation and reporting; (3) Current Procedural Terminology,

a set of medical codes used to report medical, surgical, and diagnos-

tic procedures and services; (4) Logical Observation Identifiers

Names and Codes, a universal standard to identify medical labora-

tory observations; and (5) RxNorm, a normalized naming system

for generic and branded drugs. The list of terminologies can be eas-

ily expanded if necessary.

We noticed that some UMLS CUIs describing diagnoses only

mapped into SNOMED CT instead of the more frequently used
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ICD. For instance, the top CUI for the phenotype “malignant neo-

plasm of the female breast” (phecode 174.11) is “breast

carcinomas” (CUI C067822), which only maps to SNOMED CT

concepts for breast cancer through the UMLS. To improve our abil-

ity to capture ICD codes, we mapped SNOMED CT codes to ICDs

codes using SNOMED CT to ICD maps (https://www.nlm.nih.gov/

healthit/snomedct/archive.html; accessed January 2019).

Patient population and data sources
For our validation and replication analyses, we used data from

BioVU, a deidentified DNA biobank linked to VUMC’s Synthetic

Derivative.22 The data included EHRs from 84 821 adult patients

linked to genotype data from the Illumina Infinium Expanded

Multi-Ethnic Genotyping Array. A subset of 57 002 patients, se-

lected for European ancestry and unrelatedness, was used for genetic

and phenotypic association analyses. For genotyping quality control,

we excluded SNPs with a missing rate >0.05, a minor allele fre-

quency <0.005, relatedness >0.25, and deviation from the Hardy-

Weinberg equilibrium with a P value�1�10�6. Only directly gen-

otyped variants (and not those imputed) were used. After quality

control, 772 394 variants remained for association testing.

Comparison with eMERGE phenotyping algorithms
We generated PheMap phenotypes using the top 100 concepts for

each phenotype.22 To calculate phenotype scores, we searched for

each phenotype’s associated concepts in the patients’ EHRs, includ-

ing observations, billing codes, laboratory test orders, procedure

orders, and medication prescriptions, and summed across the

uniquely identified concept weights (ie, identified concepts that

appeared more than once would be summed only once).

With the assumption that the phenotype scores follow a roughly

bimodal distribution for cases and controls, we fitted Gaussian mix-

ture models to the phenotype score with 2 components

XjY ¼ i � Normal li;r
2
i

� �
, where X is the phenotype score,

Y 2 f0; 1g is the unknown case-control status, and li and ri denote

the mean and variance, respectively, of the phenotype score for

patients with case-control status Y ¼ i. Therefore, the probability

density function is:

f xð Þ ¼ p �Normal l1; r
2
1

� �
þ 1� pð Þ �Normal l2;r

2
2

� �

where p ¼ P Y ¼ 1ð Þ, li, and ri are estimated with the expectation

maximization algorithm. The Gaussian mixture models allowed us

to determine the posterior probability that a patient is a case or con-

trol for the phenotype of interest.

For our comparison, we focused on T2DM, dementia, and hypo-

thyroidism, which were chosen for having readily available

clinician-validated phenotyping algorithms in the eMERGE network

from previously reported genetic studies.23,31,32 We used the

eMERGE-defined case-control status as a reference standard and set

an arbitrary threshold of 50% for PheMap phenotype probabilities.

We had a clinician systematically review a random sample of 10

patients from the following categories: eMERGE-defined cases with

probability <50%, eMERGE-defined controls with probability

�50%, unclassified patients with probability <50%, and unclassi-

fied patients with probability �50%.

Comparison with other high-throughput approaches
For our comparison with other proposed high-throughput pheno-

typing approaches, we chose XPRESS because it involves minimal

domain expertise and incorporates features beyond diagnosis codes.

Briefly, XPRESS uses keywords specific to a phenotype of interest to

identify noisy labels that can be used to train a L1 penalized logistic

regression model.10 For our implementation of XPRESS, we used

Automated PHenotype Routine for Observational Definition, Iden-

tification, Training and Evaluation (APHRODITE),33 which applies

the XPRESS algorithm within the widely adopted Observational

Medical Outcomes Partnership (OMOP) Common Data Model.34

XPRESS typically requires domain experts to review the keywords

to remove ambiguous terms. However, we did not implement the

keyword review process for our implementation of XPRESS to allow

for a fair comparison with PheMap, which does not involve any do-

main expertise. We also only used structured data to train the

XPRESS models since unstructured data, such as NLP features

extracted from clinical notes, were not available.

We trained the XPRESS models for T2DM, dementia, and hypo-

thyroidism using a sample of 1500 noisy labelled patients (750

cases, 750 controls) for each phenotype. Like PheMap, XPRESS also

outputs phenotype probabilities, which we converted to case-control

labels with an arbitrary 50% threshold. We also investigated the

performance of phecodes, where patients with �2 phecodes were

designated as cases and patients with 0 phecodes were controls.

Using eMERGE case-control definitions as a reference standard,

we calculated the accuracy, positive predictive value (PPV), and neg-

ative predictive values (NPV) of PheMap, XPRESS, and �2 pheco-

des for T2DM, dementia, and hypothyroidism. In addition, we

calculated the overall area under receiver operating characteristics

(AUROC) of PheMap and XPRESS.

Genetic and phenotypic analyses
All statistical analyses were performed with PLINK 2.0.35 We con-

ducted GWAS for T2DM, dementia, and hypothyroidism with lin-

ear regression models using the posterior probabilities from the

Gaussian mixture models of the PheMap phenotype score as a con-

tinuous outcome variable. We also applied logistic regression mod-

els using the eMERGE case-control status. All regression models

were adjusted for sex, age, date of first visit, date of last follow-up,

and the first 10 principle components of the genotyping array for an-

cestry.

For PheWAS, we used linear regression models for the PheMap

phenotype probabilities. We chose variants in FTO (rs8050136),

HLA-DRB1 (rs3135388), and TCF7L2 (rs7903146), which were se-

lected because their associations with common phenotypes have

been well documented: FTO (rs8050136) with obesity and T2DM,

HLA-DRB1 (rs3135388) with multiple sclerosis, and TCF7L2

(rs7903146) with T2DM.25,36–38 For the phecode analysis, we used

logistic regression models, where patients with �2 phecodes were

assigned as cases. All regression models were again adjusted for sex,

age, date of first visit, date of last follow-up, and the first 10 princi-

ple components of the genotyping array for ancestry.

RESULTS

PheMap knowledge base
PheMap contains quantified concepts for 841 unique disease pheno-

types, which are defined by phecode. We applied TF-IDF to quantify

the relationship between a phenotype and a relevant concept. For

example, some of the most important medical concepts for T2DM

besides diagnosis codes included blood glucose measurements, hy-

perglycemia, metformin, and thirst. We were able to incorporate in-
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formation from 2 or more online resources for 774 (92%) of the dis-

ease phenotypes (Figure 1).

Comparison with clinician-validated eMERGE pheno-

typing algorithms
We generated 841 PheMap phenotypes for 84 821 adult individuals

in the BioVU DNA Biobank at VUMC.22 It took less than 30 sec-

onds on average to compute scores for each phenotype via a Stan-

dard Query Language query executed in our high-performance data

environment, which includes clinical data for over 3 million unique

individuals. We used clinician-validated eMERGE algorithms as a

reference standard for cases and controls. The eMERGE algorithms

were designed for a high positive predictive value and leave many

patients unclassified, whereas PheMap assigns a continuous score to

all patients. Distributions of the phenotype score stratified by

eMERGE-defined case-control status are shown in Figure 2.

We applied Gaussian mixture models to the phenotype scores

and determined the posterior probability of a patient being a case

(Supplementary Figure 1). To investigate the discrepancy between

PheMap and eMERGE, we had a clinician manually review a ran-

dom sample of 10 patients from the following categories: eMERGE-

defined cases with probability <50%, eMERGE-defined controls

with probability �50%, unclassified patients with probability

<50%, and unclassified patients with probability �50% (Table 1).

A review of the 10 eMERGE-defined dementia cases with low prob-

ability revealed that 6 of these cases were likely false positives under

the eMERGE definition but were correctly phenotyped by PheMap.

Of note, the PPV of the eMERGE definition for dementia was 0.897

at the original site and ranged between 0.70 to 0.85 at replication

sites.

Comparison of PheMap with other high-throughput

approaches
PheMap outperforms XPRESS when phenotyping with structured

data, achieving improved AUROC, accuracy, PPV, and NPV for all

3 phenotypes (Table 2). PheMap also had higher recall than

XPRESS for T2DM and hypothyroidism, but XPRESS achieved a

higher recall for dementia. PheMap also produced phenotypes with

higher accuracy, recall, and NPV than �2 phecodes for all 3 pheno-

types. PPV was also comparable between PheMap and �2 phecodes.

The top 10 XPRESS features for T2DM, dementia, and hypothy-

roidism can be found in Supplementary Table 2. A comparison of

our T2DM features with those from the original XPRESS implemen-

tation at Stanford is shown in Supplementary Table 3.10

GWAS comparison of PheMap and eMERGE algorithms
We compared results of genome-wide analyses using the PheMap

phenotype probability as a quantitative trait and eMERGE case-

control status (Figure 3). For T2DM, both PheMap and eMERGE

replicated association signals in the TCF7L2 and FTO loci at the

genome-wide significance level of P < 5 � 10�8.36,38 PheMap also

identified an association signal for HLA and COBLL1, while

eMERGE identified an association signal for IGF2BP2. For the

IGF2BP2 variants, PheMap found similar associations for T2DM,

but they did not reach the genome-wide significance level. For de-

mentia, only the APOE signal reached the genome-wide significance

level in both eMERGE and PheMap. For hypothyroidism, both

eMERGE and PheMap uncovered signals in FOXE1, HLA, and

PHTF1-PTPN22, and PheMap also picked up signals in CTLA4

and SH2B3-ATXN2.

We also evaluated the capacity of eMERGE and PheMap to rep-

licate known associations reported in previous GWAS for T2DM,

Figure 1. (A) Venn diagram for the 841 unique phenotypes found in the 5 online medical resources. The phenotypes are represented by phecodes, which are man-

ually aggregated diagnosis codes designed for PheWAS with EHRs. An overlap between 2 resources indicates that both resources have descriptions about those

phenotypes. There are 774 (92%) phenotypes that are covered by at least 2 resources. (B) Flowchart describing the process of constructing the PheMap knowl-

edge base and calculating phenotype scores and phenotype probabilities. EHR: electronic health record; PheWAS: phenome-wide association studies; TF-IDF:

term frequency–inverse document frequency; NLP: natural language processing.
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dementia, and hypothyroidism (Supplementary Table 4).22,39–42

When comparing to previous GWAS, we only considered SNP dis-

ease associations that reached genome-wide significance level and

were genotyped in our study population. We defined replicated asso-

ciations as those with P values <.05 in their respective GWAS. For

T2DM, both PheMap and eMERGE replicated 36 of the 44 previ-

ously reported SNP disease associations.40 PheMap and eMERGE

also replicated the only the SNP disease association that reached a

genome-wide significance level in the prior dementia GWAS.41 For

hypothyroidism, both PheMap and eMERGE replicated all 6 of the

previously reported SNP disease associations.42 The replication

analyses for the top 5 SNP disease associations (by P value) for the 3

Figure 2. PheMap phenotype score distributions of (A) T2DM, (B) dementia, and (C) hypothyroidism as box plots (left) and density plots (right), stratified by case-

control status defined with clinician-validated eMERGE phenotyping algorithms. For each box plot, the band indicates the median, the boxes indicate the IQR,

and the whiskers indicate the minimum and maximum values within 1.5 � IQR from the first and third quartiles, respectively. The circles indicate individual out-

lier values. eMERGE: Electronic Medical Records and Genomics; IQR: interquartile range; T2DM: type 2 diabetes mellitus.
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phenotypes are shown in Table 3. Notably, for 9 of the 11 replicated

associations, PheMap provided an equivalent or more significant P

value than eMERGE.

PheWAS comparison of PheMap and phecodes
We compared PheWAS results for FTO (rs8050136), HLA-DRB1

(rs3135388), and TCF7L2 (rs7903146) that were derived using the

PheMap phenotype probability with those using phecodes (Fig-

ure 4).26,27 For the FTO variant, both PheMap and eMERGE identi-

fied associations for obesity and T2DM at P < 5 � 10�5, the

significance level after adjusting for multiple comparisons using the

Bonferroni correction. PheMap also identified associations for ob-

structive sleep apnea, chondrocalcinosis, and type 1 diabetes melli-

tus (T1DM). For the HLA-DRB1 variant, associations with

multiple sclerosis and T1DM were identified in both PheMap and

eMERGE, and PheMap additionally revealed a significant associa-

tion for systemic sclerosis. For the TCF7L2 variant, both PheMap

and eMERGE reported significant associations for T2DM and

T1DM. PheMap also identified associations for glossodynia and

Table 1. Summary information

Review Categorya n (%)b Chart Review Summary

T2DM (n ¼ 84 821; cases ¼ 9301, controls ¼ 23 776)

Cases with probability <50% 675 (0.80) 7 cases: none had T2DM diagnosis codes, but they did have a history of diabetes in

clinical notes with medication and elevated blood glucose measurements.

3 could not be determined: no mention of T2DM in clinical notes but they had

medication and elevated blood glucose measurements.

Controls with probability �50% 24 (0.03) 1 case: clinical notes indicate well-controlled T2DM.

9 non-cases: no evidence that suggests T2DM, but they had other features that

inflated the phenotype score, like blood glucose measurements or hypoglycemia.

Unclassified with probability <50% 39 611 (46.69) 10 non-cases: no evidence that suggests T2DM.

Unclassified with probability �50% 12 133 (14.31) 6 cases: history of T2DM in clinical notes.

4 non-cases: 3 have no evidence that suggests T2DM; 1 has prediabetes.

Dementia (n ¼ 84 821; cases ¼ 2989, controls ¼ 77 688)

Cases with probability <50% 1339 (1.58) 4 cases: history of dementia in clinical notes with no dementia diagnosis codes but

they were identified as cases by the presence of an associated medication.

6 non-cases or could not be determined: no evidence that suggests dementia;

identified as cases by the presence of an associated medication, where the

medication was prescribed for reasons unrelated to dementia

Controls with probability �50% 0 (0.00) 0 cases

Unclassified with probability <50% 2894 (3.41) 10 non-cases: 7 diagnosed with delirium, but not dementia.

3 with a persistent mental disorder, but not dementia

Unclassified with probability �50% 1250 (1.47) 5 cases: history of dementia in clinical notes but excluded from a case group for

not having >5 diagnosis codes.

5 non-cases: persistent mental disorder, but not dementia

Hypothyroidism (n ¼ 84 821; cases ¼ 5170, controls ¼ 27 926)

Cases with probability <50% 16 (0.02) 10 cases: history of hypothyroidism in clinical notes, but specific diagnosis code

were not captured or assigned a lower score by PheMap

Controls with probability �50% 133 (0.16) 5 non-cases: goiter, but no hypothyroidism

5 non-cases: coma (assigned a high score by PheMap), but unrelated to hypothyroidism

Unclassified with probability <50% 45 499 (55.64) 10 non-cases: no evidence that suggests hypothyroidism

Unclassified with probability �50% 11 492 (13.55) 3 cases: history of hypothyroidism in clinical notes

3 cases: postsurgical or secondary due to recent contrast exposure

4 non-cases: goiter or coma (see “Controls with probability �50%”)

Note: Data are of subjects with inconsistent PheMap phenotype probabilities, eMERGE-defined case-control status, and results of chart reviews of randomly

selected 10 samples per group. eMERGE: Electronic Medical Records and Genomics; T2DM: type 2 diabetes mellitus; XPRESS: eXtraction of Phenotypes from

Records using Silver Standards.
aCase, control, and unclassified refer to a patient’s eMERGE-defined case-control status.
bReporting as percentage of total patients (N ¼ 84 821)

Table 2. Phenotyping performance

AUROC Accuracy Recall PPV NPV

T2DM

PheMap 0.980 0.976 0.917 0.999 0.969

XPRESS 0.702 0.791 0.415 0.721 0.804

�2 phecodes – 0.923 0.750 1.000 0.750

Dementia

PheMap 0.867 0.983 0.552 1.000 0.983

XPRESS 0.646 0.568 0.648 0.054 0.977

�2 phecodes – 0.975 0.337 1.000 0.975

Hypothyroidism

PheMap 0.999 0.999 0.990 0.991 0.999

XPRESS 0.649 0.812 0.320 0.145 0.941

�2 phecodes – 0.993 0.905 0.995 0.993

Note: Data are of PheMap compared to other high-throughput approaches

using eMERGE case-control definitions as reference standards. AUROC: area

under receiver operating characteristics; eMERGE: Electronic Medical

Records and Genomics; PPV: positive predictive value; NPV: negative predic-

tive value; T2DM: type 2 diabetes mellitus.
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eMERGE additionally found an association for chronic ulcers of the

leg or foot.

The PheMap-based PheWAS replicated all the top SNP disease

associations (by P value) previously reported in a prior PheWAS for

FTO (rs8050136) and HLA-DRB1 (rs3135388; Table 4),25,37 but

phecodes were unable to replicate the overweight phenotype associ-

ation for the FTO variant.

DISCUSSION

PheMap significantly streamlines the process of extracting pheno-

type information from EHRs, allowing us to quickly derive a pheno-

type score and probability for all 841 unique phenotypes without

the need for extensive domain expertise or chart reviews. Our analy-

ses demonstrated that PheMap has comparable or better perfor-

mance than clinician-validated algorithms, but drastically reduces

Figure 3. Manhattan plots of genome-wide association analyses with eMERGE case-control status (left) and PheMap phenotype probability (right) in (A) T2DM,

(B) dementia, and (C) hypothyroidism. The red lines on Manhattan plots show the genome-wide significance level (5.0� 10�8). eMERGE: Electronic Medical

Records and Genomics; T2DM: type 2 diabetes mellitus.
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the time to phenotype patients, from months to less than half a

minute.

Phenotyping with PheMap has several advantages compared

with previously reported approaches to high-throughput phenotyp-

ing.8,9,43 Compared to ontological approaches to high-throughput

phenotyping,43 PheMap provides a way to quantify the importance

of relationships between phenotypes and medical concepts through

NLP and the TF-IDF statistic. In addition to diagnosis codes,

Figure 4. Manhattan plots of phenome-wide association analyses with phecodes (left) and PheMap phenotype probability (right) in (A) FTO (rs8050136), (B) HLA-

DRB1 (rs3135388), and (C) TCF7L2 (rs7903146). The red lines on Manhattan plots show the Bonferroni level of significance (5.0� 10�5). Only phenotypes that

cross the Bonferroni level of significance are annotated.
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PheMap incorporates other medical information into the phenotype

score, including symptoms, medications, laboratory tests, and proce-

dures, which has been shown to improve phenotyping.7 In our anal-

yses, we also demonstrated that PheMap can produce phenotypes

with improved accuracy, recall, and NPV than using phecode counts

alone, on both a case-by-case basis and on a phenome-wide scale.

Other investigators have proposed high-throughput phenotyping

methods that involve statistical modeling and machine learning on

local EHRs.8–13 However, many of these methods are still super-

vised or semi-supervised, requiring either domain-expertise manual

curation of silver-labeled data for training or pruning of extracted

phenotype features.10,11 Since different institutes often have substan-

tial regional differences in diagnostic practices and EHR usage,2,15

training models using only local EHRs may also result in poor gener-

alizability.17 Additionally, learning features from local EHRs intro-

duces privacy risks, especially for rarer diseases with only a few

patients.44 PheMap leverages information from independent, online

resources, which avoids the need for training with local EHRs and

produces quality phenotypes without supervision or domain exper-

tise. PheMap’s knowledge base of quantified concept can be quickly

implemented for phenotyping within EHRs using the widely

adopted OMOP Common Data Model.34 Therefore, phenotyping

with PheMap may generate more consistent and comparable pheno-

types across institutes, as compared to high-throughput phenotyping

approaches developed at a single institution, facilitating collabora-

tion and cross validation without comprising patient privacy.14,16

Our comparison of PheMap and XPRESS highlighted several

strengths of PheMap. As noted by Banda et al,33 phenotyping with

XPRESS through APHRODITE can take several hours due to a bot-

tleneck in extracting patient data for training. The time cost of

XPRESS may be prohibitive for phenome-wide analyses when need-

ing as many as the 841 PheMap phenotypes. When using structured

data alone, PheMap provides higher AUROC, accuracy, PPV, and

NPV than XPRESS. Additionally, our XPRESS implementation for

T2DM at VUMC identified different features from the original

XPRESS implementation for T2DM at Stanford, suggesting that

pretrained models are data-set sensitive and models trained at 1 site

may not be successfully transferred to other data sets without major

changes. However, it is also possible that our implementation at

VUMC identified different features, because unstructured data were

not included in our training data. At VUMC, XPRESS had an accu-

racy of 0.79 for T2DM in the absence of unstructured data, whereas

implementations of XPRESS and APHRODITE at Stanford, where

unstructured data were included, had accuracies of 0.89 and 0.91

for T2DM, respectively.10,33 This finding is consistent with the

study reported by Banda et al33, which reported that training

XPRESS models without unstructured data resulted in a loss in accu-

racy of about 15%. Thus, it is likely that including unstructured

data will improve phenotyping quality for both PheMap and

XPRESS.

Compared to traditional clinician-validated phenotyping strate-

gies, PheMap provides several advantages in addition to efficiency

and scalability. PheMap assigns a phenotype probability to every pa-

tient. In traditional phenotyping, many unclassified patients that do

not fulfill either case or control criteria are excluded from the

study.16 Our review of medical records demonstrated that PheMap

can still provide phenotype information for many of these unclassi-

fied patients. By assigning a continuous score, PheMap increases

sample sizes for analyses, potentially improving statistical power. A

continuous score may also be more informative than categorizing

Table 4. Comparison of PheMap-based PheWAS to phecodes and previous PheWAS results

PheMap Phecodes Previous PheWAS

Phenotypea Beta (95% CI)b P Value Cases OR (95% CI) P Value Cases OR (95% CI) P Value

FTO (rs8050136, n ¼ 56 990)c

Obesity 2.1 (1.7–2.6) 1.0 � 10�20 8695 1.17 (1.13–1.21) 6.0 � 10�14 1662 1.25 (1.16–1.35) 2.1 � 10�9

Diabetes mellitus 1.5 (1.1–2.0) 1.6 � 10�12 1948 1.04 (0.96–1.12) 3.3 � 10�2 – – –

Obstructive sleep apnea 0.8 (0.6–1.1) 1.2 � 10�8 6697 1.08 (1.04–1.13) 2.1� 10�4 2335 1.14 (1.07–1.22) 3.3 � 10�5

Overweight 0.9 (0.5–1.0) 4.8 � 10�8 1743 0.99 (0.91–1.08) 9.0� 10�1 3943 1.17 (1.11–1.24) 1.4 � 10�8

Chondrocalcinosis 0.7 (0.4–1.0) 9.3 � 10�8 286 0.99 (0.80–1.19) 9.4� 10�1 – – –

HLA-DRB1 (rs3135388, n ¼ 56 997)d

Multiple sclerosis 2.2 (1.8–2.6) 2.9 � 10�28 1505 2.20 (2.06–2.35) 6.4 � 10�26 89 2.24 (1.56–3.16) 2.8 � 10�6

Type 1 diabetes �2.0 (�2.6 to �1.4) 4.3 � 10�12 2752 0.45 (0.30–0.61) 2.6 � 10�23 – – –

Other demyelinating diseases

of central nervous system

1.4 (1.0–1.9) 1.1 � 10�9 738 1.90 (1.68–2.11) 4.1 � 10�9 – – –

Systemic sclerosis 1.6 (1.0–2.2) 9.3 � 10�8 357 1.18 (0.82–1.53) 3.7 � 10�1 – – –

Secondary diabetes mellitus �1.0 (�1.4 to �0.6) 2.4 � 10�7 784 1.24 (0.99–1.48) 8.6 � 10�2 – – –

TCF7L2 (rs7903146, n ¼ 56 982)e

Diabetes mellitus 2.6 (2.3–3.0) 5.8 � 10�28 1948 1.30 (1.22–1.38) 5.3 � 10�10 – – –

Type 2 diabetes 0.9 (0.6–1.2) 1.2 � 10�14 13 694 1.25 (1.21–1.28) 5.6� 10�37 – – –

Type 1 diabetes 1.0 (0.8–1.3) 2.8 � 10�11 2752 1.17 (1.10–1.24) 1.2 � 10�5 – – –

Secondary diabetes mellitus 0.6 (0.2–0.8) 2.0 � 10�10 784 1.21 (1.08–1.34) 3.8 � 10�3 – – –

Other abnormal glucose 1.0 (0.7–1.4) 1.1 � 10�7 3102 1.03 (0.97–1.10) 3.3 � 10�1 – – –

Note: CI: confidence interval; PheWAS: phenome-wide association studies; OR: odds ratio; SNP: single nucleotide polymorphisms.
aTop 5 SNP disease associations (by P value) that met the Bonferroni correction (P < 5 � 10�5).
bBeta represents the percent increase in phenotype case probability per copy of minor allele. Betas and 95% CIs were derived from linear regression models ad-

justed for sex, age, date of first visit, date of last follow-up, and first 10 principle components.
cCronin et al, 2014.[37]
dDenny et al, 2010.[25]
eNo prior PheWAS on rs7903146 in TCF7L2.
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participants into cases and controls, as it may capture a continuum

of disease progression.45 In the genetic and phenotypic analyses, we

demonstrated that analyses with a continuous PheMap phenotype

probability are as powerful, if not more powerful, in identifying

SNP disease associations when compared to analyses with eMERGE

case-control statuses or phecodes. While PheMap’s improvement

over eMERGE in genetic and phenotypic analyses may be attributed

partly to sample size, the continuous PheMap probability still out-

performs phecodes using a similar sample size, demonstrating the

utility of the continuous trait. Researchers, however, may convert

the continuous phenotype probabilities into binary case and control

statuses using their own definition and threshold. For instance, a re-

searcher could increase the probability threshold to improve preci-

sion for a study that requires more pure cases or controls.

In our GWAS experiments, PheMap matched eMERGE in repli-

cating 43 of 51 reported SNP disease associations for T2DM, de-

mentia, and hypothyroidism from previous studies.38,46 Compared

to eMERGE, PheMap also identified 2 additional genome-wide sig-

nificant loci in CTLA4 and SH2B3-ATXN2, which have been previ-

ously associated with hypothyroidism.42,47 We observed only 1 false

positive association between HLA and T2DM using PheMap, where

HLA is more canonically associated with T1DM.48 This is poten-

tially because T1DM patients often receive T2DM diagnosis codes

as well, which influenced PheMap to assign higher T2DM scores for

T1DM patients. This particular issue could be fixed by using previ-

ously developed phecode exclusion criteria for relevant phenotypes

and concepts.27 Similar to the GWAS results, the PheMap-based

PheWAS outperformed traditional PheWAS with phecodes, and

identified several additional genotype-phenotype associations, like

obstructive sleep apnea for FTO and systemic sclerosis for HLA-

DRB1.

There are several limitations to the current iteration of PheMap.

Our approach used popular online medical resources aimed at con-

sumer audiences. These online articles typically provide general

descriptions of more common diseases, compared to professional

textbooks that contain more detail of the etiology, differential diag-

noses, procedures, and treatments. As a result, PheMap has limited

power to capture rare diseases or subspecialty medical concepts (eg,

uncommonly prescribed medications, rare genetic disorders). Phe-

Map also currently focuses on high-throughput phenotyping in adult

populations, since pediatric-specific information is limited in the

resources that we used. Additionally, our validation with eMERGE-

defined algorithms included 3 phenotypes that are clinically well de-

fined. Further validation may be needed to evaluate PheMap’s per-

formance with less well-defined phenotypes. In future work, we

plan to incorporate additional resources into PheMap, which may

provide the relevant information to help overcome these limitations.

Diagnoses are the most frequently mentioned in online articles

and are, therefore, assigned the heaviest weights in PheMap, which

causes PheMap to assign lower phenotype scores to patients that

lack diagnosis billing codes. PheMap overcomes this by incorporat-

ing additional medical information, including procedures, labora-

tory tests, or medications. However, our current implementation

does not incorporate the finer details related to these concepts that

may yield more precise phenotype definitions. For instance, PheMap

currently does not evaluate whether a given laboratory measurement

is normal or abnormal (eg, glucose for hypoglycemia and hypergly-

cemia). We also did not parse clinical notes to search for medical

concepts when phenotyping with PheMap. The chart review

revealed several patients with histories of T2DM, dementia, or hy-

pothyroidism in their clinical notes but no diagnosis codes. Parsing

these patients’ clinical notes for PheMap-quantified concepts should

allow PheMap to capture these patients. Since the general descrip-

tions from online resources did not contain much meaningful nega-

tion information, we did not incorporate negation when extracting

concepts for the knowledge base. However, negation of PheMap-

quantified concepts when parsing clinical notes will be an important

consideration. We will aim to address these challenges in future iter-

ations of PheMap.

CONCLUSION

In summary, we introduce PheMap as a holistic, NLP-based ap-

proach to high-throughput phenotyping in EHRs. By leveraging in-

formation from publicly available resources, PheMap circumvents

the need for expert clinical knowledge and facilitates phenotyping

portability. Our validation and replication analyses demonstrate

that the PheMap phenotype scores and probabilities can effectively

distinguish cases from controls and can be used as a quantitative

trait for genetic and phenotypic association studies. PheMap can ac-

celerate the pace of impactful clinical or translational research to-

wards improving precision medicine.
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