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Abstract

Ovarian tumors of low-malignant potential and low-grade ovarian serous carcinomas are thought 

to represent different stages on a tumorigenic continuum and to develop along pathways distinct 

from high-grade ovarian serous carcinoma. We performed gene expression profiling on 3 normal 

human ovarian surface epithelia samples, and 10 low-grade and 10 high-grade ovarian serous 

carcinomas. Analysis of gene expression profiles of these samples has identified 80 genes up-

regulated and 232 genes down-regulated in low-grade ovarian serous carcinomas. PAX2 was 

found to be one of the most up-regulated genes in low-grade ovarian serous carcinoma. The up-

regulation of PAX2 was validated by real-time quantitative RT-PCR, Western blot and 

immunohistochemical analyses. Real-time RT-PCR demonstrated a statistically significant 

difference in PAX2 mRNA expression (expressed as fold change in comparison to normal human 

ovarian surface epithelia) among ovarian tumors of low-malignant potential (1837.38, N=8), low-

grade (183.12, N=17), and high-grade (3.72, N=23) carcinoma samples (p=0.015). Western blot 

analysis revealed strong PAX2 expression in ovarian tumors of low-malignant potential (67%, 

N=3) and low-grade carcinoma samples (50%, N=10) but no PAX2 protein expression in high-

grade carcinomas (0%, N=10). Using immunohistochemistry, tumors of low-malignant potential 

(59%, N=17) and low-grade carcinoma (63%, N=16) samples expressed significantly stronger 

nuclear staining than high-grade ovarian carcinoma samples (9.1%, N=263). Furthermore, 

consistent with previous immunohistochemical findings, PAX2 expression was found to be 

expressed in the epithelial cells of fallopian tubes but not in normal ovarian surface epithelial 

cells. Our findings further support the two-tiered hypothesis that tumors of low-malignant 

potential and low-grade ovarian serous carcinoma are on a continuum and are distinct from high-

grade ovarian carcinomas. Additionally, the absence of PAX2 expression in normal ovarian 

epithelia but expression in fallopian tube fimbria and ciliated epithelial inclusions would suggest 
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the potential development of tumors of low-malignant potential and of low-grade ovarian serous 

carcinomas from secondary Müllerian structures.
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Introduction

Ovarian cancer, a leading cause of cancer deaths among women in the United States, is 

estimated to affect over 20,000 women each year, with over 15,000 dying of the disease.(1) 

Serous carcinoma, the major histologic subtype of ovarian cancer, represents about 87% of 

advanced-staged cases.(2) Currently, no uniform grading system exists despite the fact that 

histologic grade is a significant prognostic factor in women with epithelial ovarian 

carcinoma.(3) Malpica et al. proposed a 2-tiered grading system for ovarian serous 

carcinoma based on nuclear atypia and mitotic rate and classified tumors into low-grade 

versus high-grade.(4) Low-grade carcinomas and ovarian serous tumors of low malignant 

potential are often associated together in histologic and molecular studies and are rarely 

linked with high-grade ovarian carcinoma. (4, 5) Differences in clinical behavior further 

support the distinction between the two grades. Low-grade carcinomas are typically 

characterized by a younger patient population with longer overall survival and increased 

platinum chemoresistance compared to high-grade carcinomas.(6) These variations in 

histologic and clinical behavior have led investigators to suggest that low-grade and high-

grade ovarian serous carcinomas may develop along different pathways, and tumors of low-

malignant potential may exist on a continuum with low-grade ovarian serous carcinoma.

The precise etiology and pathogenesis of ovarian carcinoma remains elusive despite 

significant research. The cell of origin is still widely unknown and debated. The most 

common hypothesis is that ovarian carcinomas develop from the surface epithelium or 

postovulatory inclusion cysts in response to trauma or prolonged exposure to hormones or 

other chemokines.(7-9) However, growing evidence suggests other possible etiologies, 

including the tubal epithelium and distal endosalpinx.(10, 11) Molecular and translational 

studies have suggested that differences in development pathways may contribute to the 

clinical, histologic, and genetic differences between low-grade and high-grade ovarian 

serous carcinomas.(12)

Further evidence is needed, however, to establish definitively that ovarian tumors of low-

malignant potential progress to low-grade ovarian serous carcinomas and that the 

developmental pathway of these two is distinct from that of high-grade ovarian serous 

carcinomas. Toward that end, in this study, we utilized gene expression profiling to identify 

a variety of genes that are differentially expressed in tumors of low-malignant potential and 

low-grade ovarian serous carcinomas compared with high-grade ovarian serous carcinomas. 

From the list of differentially expressed genes, we identified PAX2 to be highly up-regulated 

in low-grade ovarian carcinomas. Thus, we further validated the expression of PAX2 at the 

mRNA and protein level and demonstrated its significantly higher expression in tumors of 
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low-malignant potential and low-grade ovarian serous carcinomas than in high-grade 

ovarian serous carcinomas. The differential PAX2 expression in tumors of low-malignant 

potential and low-grade tumors supports the two-tiered system of serous ovarian cancer 

grading and endorses further potentially different development pathways in low- and high-

grade ovarian serous carcinoma.

Materials and Methods

Human subjects and tissue specimens

Tissue specimens were obtained and stored in accordance with the human subject research 

protocols approved by the institutional review board. Frozen tissue sections of tumors of 

low-malignant potential and of low-grade and high-grade carcinomas were obtained from 

the tumor repository in the Department of Gynecologic Oncology at The University of 

Texas M. D. Anderson Cancer Center. Lysates were obtained from these bulk tumors, and 

pathologic review of frozen sections showed at minimum 70% tumor cell component. 

Sections from 3 human ovarian surface epithelia and from 10 low-grade and 10 high-grade 

ovarian serous carcinoma samples were utilized to perform gene expression profiling. We 

also examined levels of PAX2 expression from total RNA extracted from a second 

independent frozen tissue section set consisting of 8 low-malignant potential tumors and 17 

low-grade and 23 high-grade ovarian carcinomas. A third independent set of paraffin tissue 

samples (2 normal human ovarian surface epithelia, 3 normal fallopian tubes, 17 low-

malignant potential tumors, 16 low-grade and 263 high-grade carcinomas) from the 

University of Texas M.D. Anderson Cancer Center were also obtained and used for 

immunohistochemistry (IHC) validation studies. All tissue samples were reviewed and 

examined by specialized gynecologic oncology pathologists and graded according to criteria 

outlined by Malpica et al.(4)

Expression microarray

Frozen tissue samples of 10 low-grade and 10 high-grade ovarian serous carcinomas 

containing >70% tumor cells were homogenized in preparation for RNA extraction. RNA 

was obtained from short-term cultures of 3 different normal human ovarian surface 

epithelial cells that were initiated from the surface scraping of normal ovaries prior to their 

removal from patients with nonmalignant diseases. RNA extraction was performed using the 

Mini-prep RNeasy kit (Qiagen, Valencia, CA) per the manufacturer's protocol. Expression 

profiles were generated by using Affymetrix Human Genome U133 plus 2.0 (HG U133 plus 

2.0) Gene Chips (Affymetrix, Santa Clara, CA) according to the Affymetrix Eukaryotic 

One-cycle protocol. Briefly, 5 μg of total RNA was used to generate biotinylated cRNA, 

which was then fragmented by heat and ion-mediated hydrolysis at 94°C for 35 minutes in 

24 μL H2O and 6 μL of 5× fragmentation buffer (Affymetrix). The fragmented cDNA was 

hybridized to the HG U133 plus 2.0 Gene Chip (Affymetrix) for 16 hours at 45°C in an 

Affymetrix Hybridization Oven 640 (Affymetrix). Arrays were then washed and stained on 

an Affymetrix Fluidics Station 450 (Affymetrix) and subsequently scanned on an 

Affymetrix GeneChip Scanner 3000 and GeneChip Operating Software (Affymetrix) to 

obtain fluorescence intensities. The resulting raw images (CEL files) were processed with 
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dChip software,(13) and unsupervised cluster analysis was performed, as previously 

described.(14)

Real-time RT-PCR

To perform real-time RT-PCR, we obtained and homogenized a second independent set of 

frozen ovarian tissue sections from 8 low-malignant potential serous tumors and 17 low-

grade and 23 high-grade ovarian serous carcinomas. Again, RNA extraction using the Mini-

prep RNeasy kit (Qiagen) was performed. cDNA synthesis was constructed from samples of 

all 3 normal human ovarian surface epithelia, 8 low-malignant potential, 17 low-grade, and 

23 high-grade RNA using the High Capacity cDNA Reverse Transcription kit (Applied 

Biosystems, Foster City, CA). A 25-μL solution containing 1 μg RNA, 10× RT buffer, 25× 

dNTPs, and 10× random hexamers was created for each RNA sample. cDNA amplification 

was done for 1 cycle at 25°C for 10 minutes, at 37 °C for 60 minutes, and at 95 °C for 5 

minutes. The reaction was stopped using 1 μL of 50-mM EDTA and diluted 1:10 using 

sterile dH2O. Each real-time RT-PCR reaction was performed in triplicate. For each 

reaction, 5 μL of each cDNA was combined with 10 μL 2× Brilliant II QPCR Master Mix 

(Stratagene, La Jolle, CA), 3.7 μL dH2O, 0.3μL 1:500 diluted reference dye, and 1 μL 20× 

PAX2 Taqman gene expression assay mix (Applied Biosystems). All results were 

normalized to cyclophilin A pre-developed Taqman expression gene assay (Applied 

Biosystems). mRNA quantification was determined using MX4000 Multiplex Quantification 

PCR System (Stratagene) for 1 cycle at 95°C for 10 minutes, followed by 40 cycles of 95°C 

for 15 seconds and 60°C for 1 minute. The mRNA copy number for tumor samples was 

compared with that for samples of normal ovarian surface epithelial cells.

Western blot

RIPA buffer (Sigma, St. Louis, MO) was added to homogenized samples from 3 serous 

ovarian tumors of low-malignant potential and 10 low-grade and 10 high-grade ovarian 

serous carcinomas for protein extraction. Protein concentration was determined using a 

Beckman DU640B spectrophotometer (Beckman, Fullerton, CA). 50 μg of denatured protein 

was loaded and electrophoresed onto a 10% SDS-PAGE gel (Bio-Rad, Hercules, CA), 

electroblotted on Hybond ECL nitrocellulose membrane (GE Healthcare, Buckinghamshire, 

UK), and probed using rabbit polyclonal anti-PAX2 antibody (Zymed Laboratories, San 

Francisco, CA) at a 1:500 dilution. Goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology, 

Santa Cruz, CA) at a 1:10,000 dilution was used to bind to the anti-PAX2 antibody. The 

bound antibodies were detected using an Amersham ECL Western Blot Detection reagent 

kit (GE Healthcare).

Immunohistochemistry

PAX2 expression was validated using an independent set of paraffin tissue sections from The 

University of Texas M. D. Anderson Cancer Center. Immunohistochemistry was performed 

on deparaffinized sections from 2 normal ovarian epithelia, 3 normal fallopian tubes, 3 

endosalpingiosis samples from the ovaries, 17 low-malignant potential tumors and 16 low-

grade and 106 high-grade ovarian serous carcinoma samples. Additional IHC staining of 

high-grade ovarian serous carcinoma samples was performed using 3 pre-constructed tissue 
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microarray paraffin blocks (0.6 mm per core) that contained 157 high-grade ovarian 

carcinoma samples. For antigen retrieval, deparaffinized specimens were immersed in 1× 

Reveal (Biocare Medical, Concord, CA) in a Coplin jar and transferred to a Reveal 

decloaking chamber (Biocare Medical) heated at 121°C for 3 minutes followed by 1 minute 

at 95°C. Rabbit polyclonal anti-PAX2 antibody (Zymed Laboratories) at a 1:200 dilution 

was then placed onto the tissue sections at room temperature for 4 hours and probed with 

MACH 3 rabbit probe (Biocare Medical) and MACH 3 rabbit alkaline-phosphatase polymer 

(Biocare Medical). The tissue sections were subsequently stained using Vulcan Fast Red 

Chromagen Kit 2 (Biocare Medical) and counterstained using CAT Hematoxylin (Biocare 

Medical).

Each paraffin section was examined for nuclear staining and cytoplasmic staining for PAX2. 

However, only nuclear staining was considered indicative of PAX2 expression given that 

PAX2 encodes a transcription factor associated with organogenesis. Nuclear staining 

intensity was graded as negative, weak, moderate, or strong. The percentage of positive cells 

for each sample was also noted.

Statistical Analysis

Statistical analyses were performed using SPSS 15.0 software (SPSS, Chicago, IL). 

Kruskall-Wallis and Mann-Whitney U nonparametric tests were utilized to compare 

differences between PAX2 expression levels. P values of < 0.05 were considered statistically 

significant.

Results

Identification of differential PAX2 gene expression

The expression profiles of the samples in this study were deposited at the Gene Expression 

Omnibus (GEO) public database with access number GSE14001. Unsupervised clustering 

analysis of these samples with a list of 5131 genes with coefficient of variation in expression 

level between 0.5 and 1000 was performed. Figure 1 indicated that low-grade ovarian serous 

carcinoma and high-grade ovarian serous carcinoma clustered into two different groups 

except sample HG01-161 which clustered with low-grade ovarian carcinoma. To identify 

differentially expressed genes between low-grade and high-grade ovarian serous carcinoma, 

statistical analysis was performed by SAM (significance analysis of microarrays) software, 

which is a t-test analysis with permutation to estimate false discovery. Eighty genes were 

found to be up-regulated in low-grade ovarian serous carcinoma and 232 genes were found 

to be down-regulated in low-grade ovarian serous carcinoma with more than 2 fold with a 

false discovery of less than 20% (supplemental table 1). Four of the most differentially 

expressed genes were further validated by real-time RT-PCR (Table 1).

We selected PAX2 for further validation since it has been demonstrated to have high 

expression throughout the Mullerian duct system and to be involved in the development of 

breast and urogenital cancers.(10, 15, 16) In our study, PAX2 expression in low-grade 

ovarian serous carcinomas showed one of the highest fold-increases compared with its 

expression in the high-grade carcinomas or in normal human ovarian epithelia. The fold 
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change was statistically significant (mean PAX2 expression 291.19 for low-grade ovarian 

carcinomas versus 60.89 for high-grade ovarian carcinomas; p=0.040).

PAX2 mRNA Quantification

We used real-time RT-PCR quantification of PAX2 mRNA to validate the expression array 

data. PAX2 mRNA expression levels differed significantly among ovarian low-malignant 

potential tumor and low-grade and high-grade ovarian carcinoma samples (Figure 2). 

Although the differences in median PAX2 mRNA expression levels between low-malignant 

potential tumors and low-grade ovarian serous carcinomas were not statistically significant 

(1837.38 [mean, 3602.4] vs. 183.12 [mean, 442.8], respectively [p=0.086]), the median 

mRNA expression of PAX2 was significantly lower in the high-grade ovarian serous 

carcinomas (median, 3.72; mean, 148.3) than in either the ovarian low-malignant potential 

tumors or the low-grade ovarian carcinomas (p=0.015).

PAX2 protein was expressed in the nuclei of low-malignant potential tumors and low-grade 
ovarian serous carcinomas

Using Western blot analysis, we evaluated PAX2 protein expression in 3 serous ovarian low-

malignant potential tumors, 10 low-grade and 10 high-grade serous carcinomas. Sixty-seven 

percent of low-malignant potential tumors (2/3) and 50% of low-grade samples (5/10) 

demonstrated strong PAX2 expression. Protein extracted from high-grade ovarian 

carcinomas showed no evidence of PAX2 expression (Figure 3). Figure 3 only showed the 

part of the Western blot result of 2 low-malignant potential tumors, 7 low-grade, and 7 high-

grade ovarian serous carcinoma samples. The specificity of the PAX2 antibody to detect 

PAX2 protein on the Western blot was confirmed on a Western blot analysis of a cell line 

expressing PAX2 protein and a PAX2 knockdown of the same cell line (data not shown). 

Protein expression results were further validated using IHC studies with a large sample size. 

Overall, tumor sections were found either to lack nuclear staining or to have strong nuclear 

staining. No sections expressed weak or moderate strength staining. The number of PAX2–

positive tumor cells varied from 1-100%. Of all low-malignant potential tumor sections, 

12%, 29%, and 18% had between 1-25%, 25-50%, and 75-100% positivity, respectively. 

Within the low-grade carcinoma sections, 13%, 25%, and 25% had 1-25%, 25-50%, and 

75-100%, respectively. Two, five, and three percent of the 263 high-grade carcinomas had 

≤1%, 10-50%, and 75-100% PAX2 nuclear staining expressed. Ovarian low-malignant 

potential tumors that stained positive for PAX2 expressed robust nuclear staining, as did 

sections of low-grade ovarian carcinomas (Figure 4). Generally, most high-grade ovarian 

carcinomas showed no nuclear staining or only had extremely faint cytoplasmic expression. 

The low-malignant potential tumors and low-grade carcinomas had significantly more 

sections that expressed strong nuclear staining than high-grade carcinomas (p<0.001) (Table 

2). Additionally, strong, robust PAX2 staining was noted in all sections of normal fallopian 

tube and ciliated epithelial inclusions, but absent in normal ovarian surface epithelia and 

benign ovarian cysts (Figure 5).
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Discussion

Molecular differences between low-grade and high-grade ovarian carcinomas and their 

association with ovarian tumors of low-malignant potential have been examined in a few 

previous studies.(17-20) High-grade ovarian serous carcinomas were demonstrated to have 

p53 mutations and higher expression of bcl-2 and c-kit than low-grade carcinomas, which in 

many cases have BRAF and KRAS mutations.(18, 21) Also, significantly higher levels of 

estrogen receptor, progesterone receptor, and E-cadherin were found in ovarian low-grade 

carcinomas than in high-grade carcinomas, as reported in one study.(21) Moreover, low-

malignant potential tumors were found to coexist in 60% of ovarian low-grade ovarian 

serous carcinomas but in only 2% of high-grade carcinomas,(4) and approximately 70-80% 

of patients with ovarian tumors of low-malignant potential who have a relapse, the disease 

will recur as low-grade ovarian carcinoma.(22-24)

In the current study, we used gene expression profiling to provide further genetic and 

molecular evidence to differentiate tumors of low-malignant potential and low-grade from 

high-grade tumors by unsupervised clustering analysis, and have identified a list of 

differentially expressed genes. The expression of the four most differentially expressed 

genes, PAX2, SOSTDC1, BST2, and ISG15, were further validated by real-time quantitative 

RT-PCR using the original RNA samples. The role of PAX2 in ovarian cancer is unknown. 

Recently, Tong et al. identified PAX2 expression in secondary Müllerian structures in the 

ovary as well as epithelial cells of the fallopian tube but not in ovarian surface epithelium or 

surface epithelium-derived inclusion cysts by immunohistochemistry.(10) They found that 

21 out of 30 high-grade ovarian carcinomas were positive for PAX2 staining unlike our low 

incidence of PAX2 expression in high-grade ovarian carcinoma. Thus, we further validated 

the expression of PAX2 at the mRNA and protein levels and demonstrated its significantly 

higher expression in ovarian tumors of low-malignant potential and low-grade ovarian 

serous carcinomas than in high-grade carcinomas. We were not able to detect the PAX2 

protein in any of the 10 high-grade ovarian carcinoma protein lysates by Western blot. 

Furthermore, immunohistochemical analysis of 263 high-grade ovarian carcinoma samples 

(either from individual slides or tissue arrays) detected only 24 high-grade ovarian serous 

carcinoma samples with positive staining for PAX2. This discrepancy may due to the 

difference in the number of samples being tested.

PAX2 is a member of the paired box (PAX) gene family, which consists of 9 genes that have 

been subclassified into 4 groups (PAX1/PAX9, PAX 2/PAX5/PAX8, PAX4/PAX6, and PAX 3/

PAX7) based on genomic structure, sequence similarities, and expression patterns in 

developing tissues and organs.(25) Each PAX gene encodes a protein that is hypothesized to 

modify downstream gene transcription by binding to enhancer DNA sequences. These 

transcription factors regulate tissue development and aid with cell-lineage specification, 

proliferation, migration, and survival.(26) The structural variations between the various PAX 

transcription factors relate to a conserved paired-box DNA-binding domain that may or may 

not have an associated octapeptide or homeodomain. PAX genes influence embryogenesis, 

and expression levels usually attenuate during terminal differentiation of most organ 

systems. (25, 26)
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PAX2, specifically, encodes a transcription factor crucial to the organogenesis and 

development of the central nervous system, eyes, ears, mammary glands, and urogenital 

tract.(10, 15, 27) Mutations in PAX2 have been associated with renal-coloboma syndrome, 

and unattenuated PAX2 expression has been found in various cancers, including ovarian, 

renal, prostate, and breast cancers, Wilms tumor, and Kaposi sarcoma.(15, 16, 28-31) The 

significance of PAX2 in renal development and in the etiology of renal disease, such as renal 

cell carcinoma and nephrogenic adenomas, has been widely studied.(16, 27, 32)

Since PAX2 expression may indicate cell-lineage, our findings would suggest that tumors of 

low-malignant potential and low-grade carcinomas may not originate from the ovarian 

surface epithelia or inclusion cysts, as traditionally believed, but from secondary Müllerian 

epithelium. Expression of PAX2 in fallopian tube fimbria and ciliated epithelial inclusions 

but not in normal ovarian surface epithelia supports the possibility that low-malignant 

potential tumor arises from ciliated epithelial inclusion. The differential PAX2 expression 

also supports the hypothesis that tumors of low-malignant potential and low-grade 

carcinoma exist along a disease continuum and that some low-grade carcinoma cases may 

arise from low-malignant potential tumors. The expression of PAX2 in a limited number of 

high-grade samples suggests that some high-grade cases may also develop from low-

malignant potential and low-grade lineage, but the majority of these cases may originate 

along a different development path.

Increased PAX2 expression levels might explain the decreased proliferative growth and 

increased chemoresistance of low-grade ovarian carcinoma. The signaling pathway for 

PAX2 is currently unknown. PAX2 is located on chromosome 10q24 and is associated with 

cell survival and self-sufficiency.(26) Studies have found that inhibition of PAX2 expression 

decreases proliferation of renal cancer cells.(16, 33) Additionally, Muratovska et al. 

downregulated PAX2 expression in ovarian cancer cell lines treated with PAX2 small 

inhibitory double-stranded RNA (siRNA) and demonstrated a decrease in cell proliferation 

in vitro, further suggesting a function of PAX2 in inhibiting cell apoptosis.(34) Furthermore, 

deregulated PAX2 function has been found to block caspase-2 associated apoptosis(32). 

PAX2 overexpression has also been implicated in the resistance of renal cell carcinoma to 

cisplatin-induced apoptosis, and inhibition of PAX2 resulted in increased cisplatin 

sensitivity.(35) Our identification of increased PAX2 expression in low-grade ovarian serous 

carcinoma may also explain the relative chemoresistance of these carcinomas to traditional 

chemotherapy. The differences in treatment response and chemosensitivity between low- 

and high-grade ovarian carcinomas indicate that treatment may need to be individualized 

based on tumor grade. Chemosensitivity of low-grade tumors to current chemotherapeutic 

agents may improve with the development of targeted therapies to PAX2.

In summary, we show for the first time that higher expression of PAX2 in tumors of low-

malignant potential and low-grade ovarian serous carcinomas than in high-grade 

carcinomas. Identification of higher PAX2 expression in low-malignant potential tumors and 

low-grade ovarian cancer enhances the current literature hypothesizing differential 

development pathways between low- and high-grade ovarian carcinomas with low-

malignant potential tumors potentially developing along a disease continuum to low-grade 

cancers. Additional studies are being conducted to evaluate the mechanism of PAX2 
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function in ovarian carcinomas and the potential use of this gene as a therapeutic target that 

could enable individualized treatment options to be created for patients with ovarian tumors 

of low-malignant potential and low-grade carcinomas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Gene expression cluster analysis of RNA extracted from samples of 3 normal human ovarian 

surface epithelia, 10 low-grade, and 10 high-grade ovarian serous carcinomas.
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Figure 2. 
Comparison of PAX2 mRNA expression between 8 tumors of low-malignant potential and 

17 low-grade and 23 high-grade ovarian carcinoma samples. The box is bounded by the 25th 

and 75th percentile with the median expression level depicted by the line in the box. 

Outlying values are drawn individually. Expression of PAX2 in high-grade is significantly 

lower than either low-malignant potential or low-grade tumors (p = 0.015).
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Figure 3. 
Western blot examination of PAX2 protein expression.
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Figure 4. 
A. Examples of PAX2 immunohistochemistry staining of individual paraffin sections from 

low-malignant potential tumors and low-grade and high-grade ovarian serous carcinomas 

(200× magnification) B. PAX2 immunohistochemistry staining of high-grade ovarian 

carcinoma paraffin tissue array sections. a, 200× magnification. b, 40× magnification. c, 

200× magnification.
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Figure 5. 
PAX2 immunohistochemistry of A. normal human ovarian surface epithelial and benign 

ovarian cyst (BC) which have no PAX2 staining (100× magnification); B. fallopian tube 

fimbria (FF) demonstrating robust staining (200× magnification) and C. Ciliated epithelial 

inclusion (CEI) demonstrating robust staining (100× magnification).
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Table 1

Validated genes with significant differential expression in low-grade versus high-grade ovarian serous 

carcinomas by real-time quantitative RT-PCR.

Gene ID Symbol Entrez Gene Name Fold Change* (array data) Fold Change (qRT-PCR)

213456_at SOSTDC1 sclerostin domain containing 1 6.9 38.0

206228_at PAX2 paired box 2 4.2 3.9

201641_at BST2 bone marrow stromal cell antigen 2 -3.4 -4.1

205483_s_at ISG15 ISG15 ubiquitin-like modifier -4.3 -4.7

*
positive sign means up-regulation in low-grade and negative sign means down-regulated in low-grade.
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Table 2

PAX2 Immunohistochemistry Nuclear Staining

Sample Number of samples with nuclear staining (%) p-value (compared to high-grade)

Low-malignant potential, n=17 10 (58.8) <0.001

Low-grade, n=16 10 (62.5) <0.001

High-grade, n=263 27 (10.3) -----
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