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Abstract

Keratin 16 (KRT16 in human, Krt16 in mouse), a type I intermediate filament protein, is 

constitutively expressed in epithelial appendages and is induced in the epidermis upon wounding 

and other stressors. Mutations altering the coding sequence of KRT16 cause Pachyonychia 

Congenita (PC), a rare autosomal dominant disorder characterized by hypertrophic nail dystrophy, 

oral leukokeratosis, and palmoplantar keratoderma (PPK). PPK associated with PC are extremely 

painful and compromise patient mobility, making them the most debilitating PC symptom. In this 

study, we show that, although inherited in a recessive fashion, the inactivation of Krt16 in mice 

consistently causes oral lesions as well as PPK-like hyperkeratotic calluses on Krt16−/− front and 

hind paws, which severely compromise the animals’ ability to walk. Our findings call into 

question the view that PC-related PPK arise exclusively as a gain-of-function on the account of 

dominantly acting mutated keratins, and highlight the key role of modifiers in the clinical 

heterogeneity of PC symptoms.

Introduction

Keratin 16 (KRT16 in human, Krt16 in mouse), a type I intermediate filament protein, is 

constitutively expressed in a variety of epithelial appendages, including the tongue and the 

hair follicle, and in glabrous skin (Moll et al, 1982; Bernot et al, 2002; Swensson et al, 

1998). Upon stressful epithelial stimuli, such as wounding or chronic inflammation, Krt16 

and its binding partner Krt6 are selectively induced in the suprabasal layers of the epidermis 

(Paladini et al, 1996). Mutations in KRT16 are associated with the development of 

Pachyonychia Congenita (PC), a rare autosomal dominant disorder characterized by 
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hypertrophic nail dystrophy, palmoplantar keratoderma (PPK), and oral leukokeratosis 

(McLean et al, 1995). PC symptoms are highly variable in penetrance, age of onset, and 

severity, even between individuals with the same mutation (Leachman et al, 2005; Liao et al, 

2007; Fu et al, 2011). In patients carrying KRT16 mutations, palmoplantar keratoderma are 

the most prominent symptom and may sometimes appear as focal PPK (FPPK) with little or 

no nail involvement (Leachman et al, 2005; Liao et al, 2007; Shamsher et al, 1995; Smith et 

al, 2000; Smith et al, 2005). KRT16 mutation-linked PPK is typically non-epidermolytic 

(McLean et al, 1995; Liao et al, 2007; Shamsher et al, 1995), although blistering underneath 

and around PPK calluses has been linked to palmoplantar pain in PC patients (Dahl et al, 

1995). Previous mouse models harboring both dominant and recessive mutations in Krt6 and 

Krt75 recapitulate several PC-like symptoms (Wong et al, 2000, Wojcik et al, 2001; Wong 

et al, 2005; Chen et al, 2008), but have failed to phenocopy palmoplantar keratoderma, 

which are considered the most debilitating PC symptom as they are extremely painful and 

significantly impact patient mobility and quality of life (Leachman et al, 2005; Dahl et al, 

1995). In this study, we show that adult mice lacking Krt16 develop hyperkeratotic calluses 

on their front and hind paws that are strikingly similar to human palmoplantar keratoderma 

and significantly compromise the animals’ ability to walk.

Results

Failure to thrive and increased postnatal mortality in Krt16−/− mice

Krt16−/− mice were born alive at approximately Mendelian ratios and were initially visually 

indistinguishable from wild-type (WT) and Krt16+/− littermates (Figure S1A). However, 

34% of Krt16−/− mice died within the first 24 h after birth, as opposed to 6% of WT and 

11% of Krt16+/− mice (Figure 1A). Toluidine Blue dye exclusion assays performed on 

newborn pups ruled out any gross early postnatal skin barrier defects in Krt16−/− (Figure 

S1B). Newborn Krt16−/− mice weighed less than their littermates (Figure S1C) and 

subsequently continued to lag behind their littermates in size and in weight (Figure 1B–C). 

Such phenotypic changes coincided with the persistence of a markedly higher level of 

postnatal mortality, and over 60% of Krt16−/− mice died before weaning age. The Krt16−/− 

mice that did survive continued to grow and gained weight, but remained smaller and lighter 

than their littermate controls (data not shown).

Krt16 is essential for the structural integrity of dorsal tongue epithelium

Mice lacking the Krt16 binding partners, Krt6a and Krt6b, exhibit a more severe albeit 

similar growth retardation and early postnatal lethality phenotype (Wong et al, 2000; Wojcik 

et al, 2001). In Krt6a/b−/− mice, the formation of large hyperplastic lesions on the dorsal 

posterior tongue (akin to oral leukokeratosis, a PC symptom) is thought to occlude the 

laryngeal space, impair feeding, and lead to early death due to starvation. Such laryngeal 

obstruction, although extremely rare, has been reported in pediatric PC patients carrying 

KRT6a mutations (Smith et al, 2005; Haber and Drummond, 2011) and infants suffering 

from oral leukokeratosis often have trouble breastfeeding (Leachman et al, 2005).

When we examined the tongues of Krt16−/− mice at different ages, we also detected the 

presence of hyperplastic lesions, which are fully penetrant and become macroscopically and 
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microscopically visible by P3 (Figure 1D). These lesions were confined to the dorsal 

midline area of the posterior tongue and were smaller than those observed in Krt6a/b−/− 

mice (Wong et al, 2000). Surviving Krt16−/− mice no longer had visible lesions, but the 

tongue architecture remained severely compromised, showing a thickened epithelium and 

loss of the characteristic filiform papillae morphology (Figure S2A). Although no epithelial 

fragility was detectable by routine histology in P0 Krt16−/− tongues (Figure 1D), 

transmission electron microscopy revealed early stages of cell lysis in a subset of posterior 

filiform papillae (Figure S2B). Interestingly, Krt17 protein and to a lesser extent Krt17 

mRNA levels were significantly reduced in the tongue epithelium of Krt16−/− mice (Figure 

2A–B), and immunofluorescence staining for Krt17 was consistently absent from the 

anterior column of Krt16−/− filiform papillae, but not the fungiform papillae (Figure 2A). 

The expression of Krt5, Krt6 and Krt10 was normal in Krt16−/− filiform papillae (Figure 

2A–B), suggesting that the loss of Krt17 was not due to an overall change in the 

differentiation program in anterior column of filiform papillae. The constitutive as well as 

inducible expression of Krt17 in other tissues, including skin, was not affected (Figure 2A, 

Figure 4D). Our findings thus extend the notion that Krt6- and Krt16-containing filaments 

are essential for the maintenance of dorsal tongue epithelial integrity. Loss of Krt16 and 

concomitant reduction of Krt17 levels deplete most, but not all, of Krt6’s primary binding 

partners in tongue epithelium, leading to increased cell fragility and hyperplastic lesion 

formation, starvation, and a higher chance of postnatal death in Krt16−/− mice. Residual 

levels of Krt17 present in Krt16−/− tongue epithelium may explain the smaller lesions and 

lower number of early deaths in Krt16−/− mice as compared to Krt6a/b−/− mice (Wong et 

al, 2000; Wojcik et al, 2001). Despite their less severe nature, we cannot rule out the 

possibility that oral lesions in Krt16−/− mice are painful and thus impact feeding behavior.

Adult Krt16−/− develop palmoplantar keratoderma

Starting at 4–6 weeks of age, surviving Krt16−/− mice developed prominent, hyperkeratotic 

calluses on the glabrous parts of both front and hind paws (Figure 3A–C). The boundaries of 

these calluses did not directly correlate with the loss of endogenous Krt16, which is 

expressed in a patchy fashion throughout paw pad epithelia including the nail hyponychium, 

as shown by whole-mount X-gal staining (Figure 3A). Instead, consistent with focal 

palmoplantar keratoderma (FPPK) in human PC patients, calluses in Krt16−/− mice were 

restricted to areas subject to physical pressure, i.e. the heel and the wrist (Figure 3A). 

Occasionally, we observed generalized hyperkeratosis on front paw pads as early as 3 weeks 

of age (Figure S3A), and focal hyperkeratosis near the base of the tail. Importantly, nail 

morphology was not affected in Krt16−/− mice (Figure S3B).

The age of onset for callus formation on both front and hind paws was variable, and calluses 

differed in severity between animals (Figure 3A shows two representative examples of 

callus severity in Krt16−/−). 36% of Krt16−/− mice showed no alteration of their hind paw 

pads at all. Hind paw calluses also consistently formed after front paw pad calluses were 

already established. Visual changes in Krt16−/− front paw pads correlated with an expanded 

epidermal compartment (Figure 3B) that correlated with a 2-fold increase in proliferation 

(Figure 4C) in the absence of apoptotic cell death (Figure S3C). Areas adjacent to the callus 

showed a thickened epithelium, but no significant increase in proliferation (Figure 3B, 
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Figure 4C). Paw pad epithelia in younger mice with no obvious signs of callus formation 

were indistinguishable from controls (data not shown). Since palmoplantar keratoderma in 

humans greatly impair mobility, we asked whether callus formation in Krt16−/− mice 

negatively impacts the animals’ activity level in a behavioral assay. We found that adult 

Krt16−/− mice are significantly less active than control animals and spent more time resting 

than walking (Figure 4A, Figure S3D). Several anomalies, including the patchy expression 

of Krt17 (which is absent from control mouse paw pad epidermis) and focal toluidine blue 

dye penetration (Figure 4B and 4D) suggested a disruption of the outside-in epidermal 

barrier in Krt16−/− front paw calluses, which may lead to secondary infections as implied by 

the presence of prominent hyper-pigmentation in those areas (Figure 3A). Krt17 expression 

is induced in response to barrier breach (DePianto et al, 2010; McGowan and Coulombe, 

1998) and a mutation in the barrier protein filaggrin has been shown to intensify PC-related 

symptoms in a human patient with a coincident Krt16 mutation (Liao et al, 2007; Gruber et 

al, 2009). Filaggrin expression is normal in Krt16−/− paw pad epithelia, as reported for PC 

plantar lesions (Wollina et al, 1991), but is reduced in established front paw calluses (Figure 

4D), confirming that Krt16−/− glabrous skin, while initially intact, is eventually unable to 

fend off the continuous physical pressure generated by walking and/or cleaning behavior, 

resulting in hyperproliferation and a focal loss of barrier protection. In humans, PPK are 

very painful. The cause of the pain is unknown, but clinical observations have noted the 

formation of blisters underneath or adjacent to calluses (Dahl et al, 1995), as well as 

secondary infections following fissuring of the hyperkeratotic tissue (Leachman et al, 2005). 

Alternatively, it is possible that PPK calluses exert an increased pressure on nerve endings in 

plantar skin, especially while walking. While an objective assessment of the level and type 

of pain or its source in Krt16−/− mice is beyond the scope of this study, we hypothesize that 

Krt16−/− mice experience substantial discomfort as a direct result of palmoplantar lesions 

and thus exhibit a significant decrease in their overall mobility.

Discussion

Here, we show that the loss of Krt16 function in mice causes the development of prominent 

calluses on the plantar side of front and hind paws, which significantly compromise mobility 

and eventually lead to overt loss of barrier properties. While the molecular mechanism of 

PPK pathogenesis in PC is still unclear, this symptom is currently thought to develop as a 

consequence of intermediate filament network disruption by dominantly-acting mutations in 

relevant keratins (Fu et al, 2011). To our surprise, deletion of Krt16 produced spontaneously 

arising PPK-like lesions in mice, suggesting that PPK pathogenesis in PC is more complex 

than previously appreciated and may represent, at least in part, a loss of function phenotype. 

Almost all human PC patients harboring KRT16 mutations report PPK (Leachman et a, 

2005, Liao et al, 2007, Fu et al, 2011). However, many mutations in KRT16 only elicit 

milder overall PC phenotypes, often diagnosed as FPPK because of the limited and at times 

absent nail involvement (Liao et al, 2007; Shamsher et al, 1995; Smith et al, 2000; Smith et 

al, 2005). In particular, this is seen with small deletions in KRT16, which are thought to 

cause exclusion of the mutant form of KRT16 from filament assembly (Smith et al, 2000; 

Wilson et al, 2009; Cao et al, 2011). These findings together with our data suggest that both 

the dominant negative disruption of intermediate filaments as well as the exclusion of 
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keratins from the network can contribute to PPK pathogenesis. Nail dystrophy, on the other 

hand, was not observed in Krt16−/− mice, and may depend more heavily on the dominant 

negative interference of keratin filaments. Accordingly, the deletion of individual or even 

multiple keratins leads to no or very minor nail defects in mice (Wong et al, 2000; Wojcik et 

al, 2001; Wong et al, 2005; this study), whereas a dominant mutation in Krt75 elicits the 

characteristic nail overgrowth in mouse (Chen et al, 2008). In humans, where all known PC-

causative keratin mutations are dominant, nail involvement is highly penetrant. These 

observations in humans, mouse models, and now our findings in Krt16−/− mice showcase 

how a combination of loss and gain of function phenotypes can contribute to the complex 

overall clinical presentation of PC. Furthermore, our data substantiate the hypothesis that 

FPPK and PC can share a common pathogenesis (Wilson et al, 2009; Bowden 2010), since 

Krt16−/− mice developed FPPK along with oral lesions, another PC-like symptom. We also 

noticed differences in disease onset, phenotype severity, and change in barrier permeability 

in Krt16−/− mice, supporting the idea of keratin, non-keratin and/or environmental modifiers 

in PPK pathogenesis (Smith et al, 2000). It will be interesting to examine whether the 

mechanism(s) by which loss of Krt16 results in the development of PPK overlap(s) with the 

pathogenesis of other keratoderma, e.g. striate PPK (Desmoplakin) or diffuse PPK (KRT1, 

Desmoglein).

We only observed occasional and locally restricted areas of cell lysis in established Krt16−/− 

front paw calluses (Figure 3B, arrowhead and inset), but never in hind paw calluses or 

uninvolved skin, despite the global expression pattern of Krt16 in glabrous tissue. 

Expression of other structurally important keratins in the suprabasal layer, such as Krt1 and 

Krt10, was also generally intact (Figure 4D) and likely contributes to the maintenance of 

cellular integrity in the absence of Krt16. Thus, we speculate that Krt16 has an additional 

function in glabrous skin, separate from its role of structural support. Several studies have 

already implicated Krt16 and other type 1 keratins, such as Krt10 and Krt17, as significant 

players in epidermal homeostasis (Paladini et al, 1996; DePianto et al, 2010; Takahashi et al, 

1994; Reichelt and Magin, 2002; Kim et al, 2006). A key feature of Krt16 expression in the 

skin is its selective induction following injury, UV exposure, or in chronic disease states 

(e.g. psoriasis) (Paladini et al, 1996; Del Bino et al, 2004; Leigh et al, 1995). Glabrous skin 

is a specialized tissue designed to withstand and adapt to significant mechanical trauma 

(Swensson et al, 1998; Bowden et al, 1987). It will be worth investigating the function of 

constitutive Krt16 expression in this unique environment, and whether the underlying 

mechanism bears any relationship to the role(s) fulfilled by Krt16 when induced by injury 

and other relevant stressors.

Materials and Methods

Generation of Krt16−/− mice

C57 Bl/6 ES cells in which the Krt16 coding sequence has been replaced with a lacZ-loxP-

NeoR-loxP cassette were created by Velocigene using funds provided by the trans-NIH 

Knock-Out Mouse Project (KOMP), and obtained from the KOMP repository (supported by 

the NCRR-NIH). ES cells were injected into C57 Bl/6cBrd/cBrd albino blastocysts 

(distributed by the NCI, Frederick, MD). A high coat color male chimera was bred to C57 
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Bl/6cBrd/cBrd albino females and 100% germline transmission was observed. Krt16+/− F1 

offspring were born at the expected 50:50 ratio and inter-crossed to generate Krt16−/− mice. 

All experiments involving mice were reviewed and approved by the Johns Hopkins 

Institutional Animal Care and Use Committee. Mouse lines were maintained under specific 

pathogen-free conditions (SPF), and fed chow and water ad libitum. All experiments were 

performed using littermate controls (wild-type or Krt16+/−).

Histopathology and immunofluorescence

Whole tongues and paws were fixed overnight in Bouin’s (Sigma) or 4% para-

formaldehyde/PBS. Tissue was then either rinsed and embedded in Sakura Tissue-Tek 

O.C.T. (VWR, Radnor, PA), or dehydrated and processed for routine paraffin embedding. 

Sections were cut at 5μm and stained with hematoxylin/eosin (H&E) according to standard 

protocols. For immunofluorescence, frozen sections or rehydrated paraffin-embedded 

sections were washed in PBS, blocked in 5% NGS, 0.1% Triton-X100 for 1 h at room 

temperature, incubated in primary antibody solution (2.5% NGS, 0.1% Triton-X100) for 1 h 

at room temperature, washed in PBS, incubated in secondary antibody (2.5% NGS) for 1 h, 

counterstained with DAPI, mounted, and imaged using an inverted Zeiss fluorescence 

microscope with ApoTome attachment. Antibodies used were directed against: Krt17 

(1:1000; McGowan and Coulombe, 1998), Krt6 (1:250; McGowan and Coulombe, 1998), 

Krt10 (1:500; Covance, Princeton, NJ), filaggrin (1:500; Covance, Princeton, NJ), Ki67 

(Sp6 clone,1:200; ThermoFisher, Pittsburgh, PA), and AlexaFluor488 (1:1000; Invitrogen, 

Carlsbad, CA). TUNEL staining was performed as described (McGowan et al., 2002).

Whole-mount Xgal and barrier function assays

Whole paws were fixed for 1 h in 4% paraformaldehyde/PBS at 4°C, washed in PBS, and 

permeabilized via 3×15 min washes in PBS containing 2mM MgCl2, 0.01% sodium 

deoxycholate, and 0.02% NP-40. The tissue was then transferred to scintillation vials 

containing a 1mg/ml X-gal solution (30mM K4Fe(CN)6, 30mM K3Fe(CN)6, 2mM MgCl2, 

0.01% sodium deoxycholate, 0.02% NP-40, PBS) for 30 min at 30°C. Samples were 

photographed immediately. Toluidine Blue dye staining, to assess outside-in barrier 

function, was carried out on newborn pups and adult paws as described (Hardman et al, 

1998).

Behavioral assays to assess mobility

Individual mice were allowed to acclimate for 30 min and then placed into a rectangular 

plexiglas chamber with a stainless steel floor. To eliminate outside positional cues, the 

chamber was uniformly illuminated and its sides masked with cardboard. Mobility was 

monitored over a time frame of 30 min for infrared beam-breaking activity and the data was 

recorded using the Optimax software (Columbus Instruments, Columbus, OH). Results 

represent an average of three separate experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Failure to thrive, high postnatal mortality, and posterior tongue lesions in Krt16−/− 

mice
(a) High postnatal mortality in Krt16−/− mice. 34% of Krt16−/− mice die within 24 h after 

birth; only a third survive past weaning. (b) Krt16−/− mice weigh significantly less than 

control littermates. Error bars = SEM. (c) P17 Krt16−/− mice are smaller than littermates 

and a white-yellow plaque covers the posterior dorsal area of their tongues (arrowhead). (d) 

H&E-stained sections of posterior tongues at P0 and P7. Krt16−/− mice show no obvious 

defects at birth. By P7, the architecture of filiform papillae (fp) is markedly disrupted, and 

massive hyperkeratosis leads to macroscopically visible plaques. Note the paucity of cell 

lysis in the suprabasal layer. Dotted line = epithelial/muscle junction. Scale bar, 50μm.

Lessard and Coulombe Page 9

J Invest Dermatol. Author manuscript; available in PMC 2012 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Krt17 levels are selectively reduced in Krt16−/− filiform papillae
(a) Immunofluorescent stainings in P0 and P7 tongue cross-sections show a reduction of 

Krt17 in Krt16−/− filiform papillae (white arrowheads), but not in fungiform papillae 

(yellow arrowhead). Constitutive expression of Krt17 in hair follicles at P0 is not affected. 

Krt6 and Krt10 are unchanged in both filiform papillae in Krt16−/− tongues and skin (white 

arrowheads). Scale bars, 50μm. (b) Whole tongue lysates show a universal reduction in 

Krt17 expression in Krt16−/− tongue epithelium. Krt5 expression is unaltered. To a lesser 

extent, Krt17 mRNA levels are also reduced (data not shown).
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Figure 3. Krt16−/− mice develop palmoplantar keratoderma
(a) Adult Krt16−/− mice develop PPK-like lesions in their front and hind paws. Callus 

formation is common in areas of high physical impact (arrowheads), despite the global 

Krt16 expression pattern in glabrous skin (see Xgal stain). Note the presence of focal 

hyperpigmentation in front paw calluses. (b) H&E-stained cross-sections of front paws, 

showing expansion of the epidermis and massive hyperkeratosis in Krt16−/− mice. 

Occasionally, focal suprabasal lysis is observed in Krt16−/− calluses (arrowheads). sc = 

stratum corneum, epi = epidermis. Scale bars, 100μm (calluses), 50μm (insets). (c) 

Hyperkeratosis without lysis in Krt16−/− hind paw epidermis. Note the change in shape and 

arrangement of suprabasal nuclei. sc = stratum corneum, sb = suprabasal layer, b = basal 

layer. Scale bar, 50μm.
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Figure 4. Krt16−/− calluses - impaired mobility, hyperproliferation, and compromised epidermal 
barrier function
(a) Krt16−/− mice are less active than controls in a behavioral assay (experimental time 

frame of 30 min). Asterisks = p-value < 0.002, Student’s T-test. (b) Toluidine Blue dye 

penetration in adult front paws highlights focal loss of epidermal barrier function in weight 

bearing areas (arrowheads). (c) Krt16−/− front paw calluses show a 2-fold increase in 

proliferation and a more modest increase in uninvolved areas adjacent to established 

calluses. Asterisk = p-value < 0.03, Student’s T-test. (d) Basal/suprabasal induction of Krt17 

and marked reduction of barrier protein filaggrin in Krt16−/− front paw calluses. Krt1 

expression is patchy in areas subject to barrier breach, but otherwise normal. Dotted line = 

epidermal/dermal junction. Scale bar, 50μm.
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