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ABSTRACT Many important genes in agriculture correspond to transcription factors (TFs) that regulate a
wide range of pathways from flowering to responses to disease and abiotic stresses. In this study, we
identified 5776 TFs in hexaploid wheat (Triticum aestivum) and classified them into gene families. We
further investigated the NAC family exploring the phylogeny, C-terminal domain (CTD) conservation, and
expression profiles across 308 RNA-seq samples. Phylogenetic trees of NAC domains indicated that wheat
NACs divided into eight groups similar to rice (Oryza sativa) and barley (Hordeum vulgare). CTD motifs were
frequently conserved between wheat, rice, and barley within phylogenetic groups; however, this conser-
vation was not maintained across phylogenetic groups. Three homeologous copies were present for 58% of
NACs, whereas evidence of single homeolog gene loss was found for 33% of NACs. We explored gene
expression patterns across a wide range of developmental stages, tissues, and abiotic stresses. We found
that more phylogenetically related NACs shared more similar expression patterns compared to more distant
NACs. However, within each phylogenetic group there were clades with diverse expression profiles. We
carried out a coexpression analysis on all wheat genes and identified 37 modules of coexpressed genes of
which 23 contained NACs. Using gene ontology (GO) term enrichment, we obtained putative functions for
NACs within coexpressed modules including responses to heat and abiotic stress and responses to water:
these NACs may represent targets for breeding or biotechnological applications. This study provides a
framework and data for hypothesis generation for future studies on NAC TFs in wheat.
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Transcription factors (TFs), by virtue of their role in activating or
repressing gene expression, regulate many biological processes. They are
particularly important to agriculture because TFs have been identified to
be the causal genesunderlying agronomic traits includingflowering time,
nutrient content, and stress responses (Yan et al. 2003; Uauy et al. 2006;
Jensen and Skriver 2014). As such, identifying and characterizing the

TFs in crops provides an important first step to engineer strategies for
the improvement of agriculturally important traits.

Wheat is the most widely grown crop globally, providing roughly
20% of the daily calorific intake and 25% of protein intake worldwide
(www.fao.org/faostat). The economic importance of wheat is also great,
comprising over 40% of global cereal trade (FAO 2017). Twin pressures
of increasing global population and changing climatic conditions make
it ever more urgent that novel wheat varieties are developed that have
improved yield potential, end-use quality, and increased tolerances to
biotic and abiotic stresses, such as drought and heat.

Of the many TF families, the plant-specific NAC family has been
shown to regulate several biological processes in wheat. Named after the
first three such TFs identified [NAM, ATAF1/2 (Souer et al. 1996), and
CUC2 (Aida et al. 1997)], the NAC TF family is characterized by a
highly conserved NAC domain, typically at the N-terminal region,
often followed by an intrinsically disordered transcriptional regulatory
domain at the C-terminal region that is poorly conserved (Ernst et al.
2004; Olsen et al. 2005; Xie et al. 2000). The NAC domain is well
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characterized, and is required for protein–DNA interactions (Welner
et al. 2012; Xie et al. 2000) and protein dimerization (Ernst et al.
2004). In wheat, NAC TFs are known to be involved in processes
such as senescence and nutrient remobilization (Uauy et al. 2006;
Zhao et al. 2015) as well as responses to abiotic and biotic stresses,
ranging from stripe rust (Feng et al. 2014; Xia et al. 2010a,b; Wang
et al. 2015) to abiotic stresses including drought (Huang et al. 2015;
Tang et al. 2012; Xue et al. 2006; Mao et al. 2014, 2012) and salt
tolerance (Huang et al. 2015; Mao et al. 2014, 2012). The phylogenetic
relationships of NAC TFs in different species have been identified and
used to characterize evolutionarily-conserved groupings of NAC TFs
(Ooka et al. 2003; Pereira-Santana et al. 2015; Shen et al. 2009).
However, until recently, such an analysis was hindered in wheat
due to the lack of a high-quality reference genome sequence and a
comprehensive set of gene models.

Recent advances in wheat genomics now provide the opportunity to
characterize TF families much more completely in wheat (Uauy 2017).
In this study, we used the recently published high-quality TGAC gene
models (Clavijo et al. 2017) to annotate all characterized TF families in
wheat, and compare their abundance with other previously character-
ized crop species and wild relatives of wheat. We focused on the NAC
TF family to understand the evolutionary relationships within the fam-
ily itself and global expression patterns using large-scale RNA-seq
studies (Borrill et al. 2016; Clavijo et al. 2017) and coexpression net-
works. The analyses presented in this study allow novel hypotheses to
be generated to predict TF function and pave the way for future func-
tional characterization.

MATERIALS AND METHODS

Annotation of TFs
Wedownloaded theprotein sequences for the genemodelsproduced for
the TGAC wheat assembly (Clavijo et al. 2017) from EnsemblPlants
release-32 (Bolser et al. 2015) (http://plants.ensembl.org/index.html).
These contained 249,547 transcripts corresponding to 195,864 genes of
which 104,091 were high and 91,773 low confidence. We used these
sequences to identify putative TFs using three methods for both high-
and low-confidence genes. The use of these gene models as the starting
point for TF annotation means that any TFs without a gene model in
the TGAC wheat assembly were not considered in this analysis.

BLAST-based approach:Wedownloaded the protein sequences of TFs
annotated in PlantTFDBv3.0 (Jin et al. 2014) for Aegilops tauschii,
Hordeum vulgare,Oryza sativa subsp. japonica,O. sativa subsp. indica,
Triticum urartu, and T. aestivum (from ESTs Unigene Build #63). We
performed a blastp analysis of these protein sequences against the
TGACwheat protein sequences downloaded from EnsemblPlants with
the parameter -max_target_sequations 10 to retrieve the top 10 hits.
We combined the BLAST results from each of the six species and
removed duplicate genes.

Ensembl orthologs-based approach:Weused EnsemblPlants Biomart
to download wheat orthologs to the TFs in five species (A. tauschii,
H. vulgare, O. sativa subsp. japonica, O. sativa subsp. indica, and
T. urartu), which were available on EnsemblPlants and annotated in
PlantTFDBv3.0. For O. sativa subsp. japonica (before downloading
wheat orthologs) we converted the MSU nomenclature rice gene iden-
tifiers from PlantTFDB to RAP rice gene identifiers, which were com-
patible with EnsemblPlants using the RAPD converter http://rapdb.
dna.affrc.go.jp/tools/converter/run. This step retained 1816 RAP genes
out of 1859 MSU genes originally identified by PlantTFDB.

TGAC functional annotation approach: We searched the functional
annotation available for the TGACwheat assembly (Clavijo et al. 2017)
for all genes with PFAMs associated with TFs. The PFAMs associated
with TFs were obtained from PlantTFDB.

Generating a combined list of TFs
Togenerate a reliable list ofTFs forwheat,we combined the lists of genes
identified by the blastp, Ensembl ortholog, and functional annotation
approaches. This included 9416 genes (13,325 transcripts). This listmay
include genes that arenotTFs inwheat due tochanges to their sequences
from their orthologs in the othermonocot species or because genes with
certain combinations of PFAMdomains are knownnot to act asTFs (Jin
et al. 2014). Therefore, we ran the 13,325 transcripts identified through
the PlantTFDBv3.0 prediction server http://planttfdb_v3.cbi.pku.edu.
cn/prediction.php in batches of 1000 genes. This resulted in the anno-
tation of, in total, 7415 genes (10,303 transcripts), of which 5776 genes
(8609 transcripts) were from high-confidence genemodels. PlantTFDBv3.0
also assigned TFs to TF families.

NAC TF homeologs and orthologs
From the list of TFs identified, we extracted genes that were
classified as NACs by PlantTFDBv3.0. For further analysis, we
selected only NACs with high-confidence gene models (453/574).
For these 453 high-confidence NAC genes, we downloaded in-
formation about wheat homeologs from EnsemblPlants Biomart
and grouped them into triads (A, B, and D genome homeologs).
Homeologs were calculated by EnsemblPlants using a pipeline
based on Vilella et al. (2009) with updated information available
from http://plants.ensembl.org/info/genome/compara/homology_
method.html. Rice (O. sativa subsp. japonica) and barley orthologs
were identified by reciprocal BLAST of coding sequences. If the
reciprocal BLAST did not identify the same pair of genes in both
directions, they were not considered orthologs.

Phylogenetic tree generation and NAC
group assignment
We aligned the NAC protein sequences with Clustal Omega v1.2.0
(Sievers et al. 2011) using default settings. We kept only the NAC
domain from the start of subdomain A to the end of subdomain E
(Ooka et al. 2003; Uauy et al. 2006) to create phylogenetic trees for
wheat, barley, and rice NACs. After manual inspection, we found that a
few regions within the NAC domain alignment were poorly conserved
with amino acids only present in a few sequences. For this reason, we
only retained amino acid positions that were present in $ 10% of
sequences. We removed any sequences that did not contain any
NAC domain sequence. We used RAxML v8.2.1 (Stamatakis 2014)
to create maximum likelihood phylogenetic trees using the auto setting
to detect the best protein model, 100 maximum likelihood searchers,
and 100 rapid bootstraps.

Thebarley andriceNACshadalreadybeenassigned togroups a–h in
Christiansen et al. (2011) and Shen et al. (2009), respectively. Wheat
genes that were phylogenetically grouped with barley or rice genes with
a group classification were assigned to the appropriate group. In cases
where the specific barley or rice ortholog belonged to a group dissimilar
to the rest of the clade, the wheat genes were not assigned to a group
(23 genes). In total, 430 wheat genes were assigned to a group. Figures
with the groups alongside the NAC phylogeny were created using iTOL
(Letunic and Bork 2016). We reran RAxML to make an individual
phylogeny for groups a–h for wheat NACs and, separately, wheat,
barley, and rice NACs.
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CTD motif discovery
We carried out de novo analysis of motifs in the a–h NAC TF groups
using the MEME program (version 4.9.1) (Bailey et al. 2009). For each
group, a maximum of 10 motifs were identified that occurred in all
sequences and were between 5 and 20 residues long. From these motifs,
we considered the most significant motif for further analysis, as well as
additional significant motifs that shared sequence similarities with pre-
viously defined motifs (Ooka et al. 2003; Pereira-Santana et al. 2015;
Shen et al. 2009).

To complement the de novo analysis, we screened all the wheat,
barley, and rice NACs for motifs that were previously characterized
(Ooka et al. 2003). A background amino acid frequency for wheat was
obtained from the full set of peptide sequences from the TGAC gene
models. We converted the motifs i–xiii from Ooka et al. (2003) into
Regex expressions, and then converted into MEMEmotif format using
IUPAC2MEME (v 4.9.1) from the MEME suite (Supplemental Mate-
rial, Table S1). Using these motifs and the wheat amino acid back-
ground frequencies, we searched all genes in the set with FIMO (v
4.9.1) from the MEME suite. In some cases, the Ooka groupings con-
tained more than onemotif (groups ii, iv, and ix; Table S1). Genes were
considered part of group ii or group iv if at least one of the motifs was
present.However, as themotifs from group ix were already split to form
groups x and xi, only genes that contained both ix motifs were assigned
to the ix group. Plots of the CTD motifs alongside the NAC phylogeny
were created using iTOL (Letunic and Bork 2016).

Gene expression analysis
Wedownloaded count and transcript permillion (tpm) gene expression
values for previously mapped RNA-seq samples from www.wheat-
expression.com (Borrill et al. 2016; Clavijo et al. 2017). We excluded
samples from cytogenetic stocks (e.g., nullitetrasomic lines) and from
synthetic hexaploid wheat. This resulted in 308 RNA-seq samples from
15 individual studies being included in our analysis. We collated per
transcript expression levels into per gene expression levels using the R
package tximport v1.0.3 (Soneson et al. 2015). We filtered the data to
only keep genes whose expression was over 0.5 tpm in at least three
samples to eliminate very low-expressed genes. We also filtered the data
to exclude low-confidence genes. We generated plots of phylogenetic
trees with heatmaps of gene expression using the R package ggtree
v1.4.20 (Yu et al. 2017).

Coexpression analysis
We carried out coexpression analysis using the R package Weighted
Gene Correlation Network Analysis (WGCNA) v1.51 (Langfelder
and Horvath 2008). We used the function pickSoftThreshold to
calculate that a soft-threshold power of six was appropriate for a
signed hybrid network for our 308 samples. Due to the large number
of genes in our analysis (91,403), we used the blockwiseModules
method to calculate the coexpression network in two blocks using
the parameters maxPOutliers = 0.05, mergeCutHeight = 0.15, deep-
Split = 2, minModuleSize = 30, networkType = “signed hybrid,”
maxBlockSize = 46,000, corType = “bicor,” corOptions = “use =
“p,” and maxPOutliers = 0.05.”

GO enrichment analysis
Weused the R package GOseq v1.26.0 (Young et al. 2010) to determine
whether GO terms were enriched within each coexpression module.
We used Revigo (Supek et al. 2011) to summarize GO term enrichment
for GO terms overrepresented with a Benjamini–Hochberg adjusted
P-value , 0.05.

Data availability
The supplemental materials contain the following data: Table S1, NAC
protein CTDmotifs identified byOoka et al. (2003); Table S2, wheat TF
family genes with gene model confidence levels; Table S3, wheat TF
distribution across chromosomes; Table S4, wheat, barley, and rice
NAC orthologs; Table S5, CTD motifs per gene for wheat, barley,
and rice; Table S6, de novomotif discovery in NAC groups; Table S7,
gene and TF module allocation by WGCNA coexpression analysis;
Table S8, most overrepresented biological process GO terms in
coexpression modules; Figure S1, maximum likelihood phylogeny
of wheat, barley, and rice NAC TF proteins constructed using the
NAC domain; Figure S2, extended version of Figure 3, showing
conserved CTDs in wheat, rice, and barley NAC TFs; Figure S3,
extended version of Figure 4, showing gene expression of wheat
NAC TFs in the context of the phylogeny.

Interactive trees for Figure 2, Figure 3, Figure S1, and Figure S2 are
available at http://itol.embl.de/shared/sophie_harrington

RESULTS

Wheat TFs identified in the TGAC assembly
In total, we annotated 5776 high-confidence genes as TFs in wheat,
which is a threefold increase compared to the previous wheat TF
annotation available from PlantTFDB (Table 1). We identified on av-
erage 5.1 times more TFs than in other diploid Triticeae species. How-
ever, only 3.1 times more TFs were identified for rice, as would be
expected for a comparison between a diploid and hexaploid species.
The incomplete nature of the Triticeae species’ genomes compared to
the highly contiguous genome assemblies of ricemay explain the higher
than expected ratio tomonocots other than rice. The annotation of low-
confidence genes was also carried out and a complete set of TFs in
wheat is available in Table S2.

We found that distributionofTF familieswas similar betweenwheat,
barley, and rice (Figure 1), with the largest families in all three species
being bHLH and the smallest being STAT. In general, wheat had ap-
proximately three timesmore genes in each family than rice (Figure 1D,
blue line). The only exceptions were the B3 andHB-other gene families,
which were enriched in wheat with five times as many genes as in rice
(x2 test P , 0.001 and P = 0.048, respectively). The FAR1 family was
the only family underrepresented in wheat with only 2.5 times as many
genes as in rice (x2 test P = 0.037). Compared to barley, most TF
families had more members in wheat (Figure 1D, red line), which
may be due to the incomplete nature of the barley genome.

We found that TFs were not distributed equally across all chromo-
somes, with group 1 and group 6 having an average of 223 and 206 TFs
per homeolog, whereas group 3 and 5 had 300 and 304 TFs per
homeolog, respectively (Table S3). Individual TF families differed from
the global averages; for example NAC TFs were most frequent on
chromosome groups 2 and 7 and least frequent on groups 1 and 6,
whereas WRKY TFs were most frequent on groups 1 and 3 and least
frequent on groups 4 and 6. We also found that, in general, slightly
different numbers of each TF family were found on each homeolog.

The NAC TF family in wheat, barley, and rice
We decided to focus our analysis on the NAC family of TFs, which is
known to be involved in a range of agronomically relevant processes
including abiotic and biotic stress responses. In total, we identified
453 NACs with high-confidence gene models using the PlantTFDBv3.0
classifications. We grouped the NACs into homeologous groups and
identified their barley and rice orthologs by reciprocal blast (Table S4).
Due to the hexaploid nature of wheat, genes are expected to be found as
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homeologous triads. We found that, of the 146 homeologous triads of
NAC TFs, 58% had a single copy of each homeolog, while 33% of triads
had a single copy of two homeologs with one homeolog absent. The
remaining 9% of triads had variable numbers of homeologs retained.
Therefore, in most cases, a single copy of each NAC TF has been
retained, although one homeologous copy has been lost in one-third
of triads.

To understandmore about NAC evolution in wheat, we generated a
phylogenetic tree for wheat, barley, and rice NACs using their NAC
domains (Figure 2).We used the closest related barley and riceNACs to
assign wheat NACs into eight main groups (a–h) as proposed by Shen
et al. (2009) (see Figure S1). In total, 430 NACs were assigned to groups
while 23 NACs could not be assigned to a group (either the NAC group
was different for a particular protein compared to the rest of the clade
or there was no clear rice or barley ortholog). As expected, each group
had in general three times more genes in wheat than in rice and barley.
However, wheat has a reduced group f with only 13 genes compared to
the 10 genes found in rice (x2 P = 0.001), but not compared to barley.
Groups e, g, and h are significantly enlarged in wheat compared to
barley (x2 P = 0.04, P = 0.04, and P , 0.001, respectively); however,
the numbers of genes in each of these groups is lower in barley than in
rice, which suggests that this trend is due to the incomplete barley
genome rather than a true enrichment in wheat.

We also investigated the less well characterized CTD, which is
proposed to be a transcriptional activator or repressor (Tran et al.
2004; Yamaguchi et al. 2010; Kim et al. 2007).We found that previously
identified CTD motifs (Ooka et al. 2003) were generally conserved
between homeologs and were often conserved in specific clades within
phylogenetic groups of wheat, barley, and rice NACs (Figure 3, Figure
S2, and Table S5, http://itol.embl.de/shared/sophie_harrington). We
found that 10 out of the 13 motifs previously identified were present
in wheat, rice. and barley NACs. In general, each motif was predom-
inantly found in one or two groups (e.g., motifs ii, v, and vi were only in
group a; motif vii in groups b and g; and motif viii in group b). How-
ever, motif xiii was found in proteins belonging to all groups. The
presence of motifs was not equally distributed between the groups, with
relatively few motifs in e, g, and h, and high frequency of motifs in c, d,
and f.De novomotif discovery identified significantmotifs shared by all
genes within each group (Table S6). Of these motifs, six had been
previously identified as NAC CTD motifs (Ooka et al. 2003; Pereira-
Santana et al. 2015; Shen et al. 2009), while three represent novelmotifs.

NAC expression patterns relate to
phylogenetic position
To explore the expression patterns of NAC TFs, we used publicly
available gene expression data for 15 studies comprising 308 individual

RNA-seq samples (Borrill et al. 2016; Clavijo et al. 2017). These samples
included diverse developmental stages, tissues, and stress conditions
including both biotic and abiotic stresses. We filtered the NAC genes
to retain only genes expressed at over 0.5 tpm in at least three samples.
Within the phylogenetic groups a–h there were 430 NACs, of which
356 passed this threshold. In most groups, the vast majority of NAC
genes were expressed; however, in group h, only 50% of NACs were
expressed in the conditions represented by the 308 RNA-seq samples.

We found that, in general, homeologs shared similar expression
patterns across samples (Figure 4 and Figure S3). Gene expression
patterns were more similar for genes found within the same phyloge-
netic group compared to genes in other groups. However, within each
phylogenetic group, gene expression patterns were more highly con-
served within closely related clades than across the whole group. These
conserved expression clades often showed expression specific to par-
ticular tissues or environmental conditions. For example, in group
d 18 genes form a subclade that is predominantly expressed in the grain
and the endosperm (Figure 4D, uppermost genes), and in group c
20 genes form a clade that shows strong expression in spikelets, which
is not seen in other group c genes (Figure 4C, middle). We did not
observe a correlation between expression patterns and the presence of
specific CTDs (data not shown).

To explore the patterns ofNACTFexpression in a global context,we
carried out coexpression analysis usingWGCNAacross all gene families
using the 308 RNA-seq samples. We could assign 61,325 genes (out of
91,403) to37coexpressionmodules (clusters),which ranged in size from
46 to 11,082 genes with a mean size of 1546 genes (Figure 5A and Table
S7). In total, 3446 TFs (out of 5776) were assigned tomodules and these
made up on average 5.9% of genes within each module (Figure 5B). In
total, 259 NACs (out of 453) were assigned to 23 of the 37 modules
(Figure 5C). NAC TFs were overrepresented (x2 P , 0.05) within
modules 1, 6, 20, 29, and 34, respectively, as 11, 12, 17, 31, and 21%
of all TFs in those modules were NACs compared to an average across
all modules of 8%. We carried out GO term enrichment on all genes
within these modules and found that these modules are enriched for
phosphorylation (module 1), exocytosis and cell wall organization
(module 6), protein export from the nucleus and response to water
(module 20), photosynthesis (module 29), and regulation of photope-
riodism and flowering (module 34) (Table S8). In general NACs within
coexpressed modules were from several phylogenetic groups (Figure
5D). However, certain modules, e.g., 17, 20, 26, and 29, contained genes
from only one group (b, d, c, and a, respectively). These modules were
enriched for GO terms related to response to heat and abiotic stress
(module 17), protein export from nucleus and response to water (mod-
ule 20), protein phosphorylation and system development (module 26),
and photosynthesis (module 29). This indicates that some phylogenet-
ically related NACs share similar expression profiles and may be

n Table 1 Comparison of TFs identified in monocot species

Transcription Factor

Species Ploidy Transcriptsa Genes Families

Oryza sativa subsp. indica 2· 1891 1891 56
Oryza sativa subsp. japonica (MSU) 2· 2408 1859 56
Hordeum vulgare 2· 2621 1198 56
Aegilops tauschii 2· 1439 1439 55
Triticum urartu 2· 888 888 50
Triticum aestivum (ESTs Unigene #63) 6· 1940 1940 56
Triticum aestivum (TGAC assembly high-confidence genes) 6· 8609 5776 56

EST, expressed sequence tag.
a
Values are from PlantTFDB for all species except the T. aestivum TGAC assembly, which is from this study.
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involved in regulating similar biological processes. Interestingly,
module 20 and 29 were both enriched in NACs compared to other
TFs and specifically in NACs from groups d and a, respectively. This
indicates that NACs may play a relatively major role in the regulation
of these processes given their overrepresentation compared to other
TFs in these coexpressed modules.

DISCUSSION
The availability of a more complete genome sequence for wheat has
allowed the comprehensive analysis of wheat TF families. We identified
5776 TF genes, which is 1.5–3-fold higher than has previously been
reported for wheat [3820 in wDBTF (Romeuf et al. 2010), 2407 in
WheatTFDB (Chen et al. 2015), and 1940 in PlantTFDB (Jin et al.

Figure 1 Comparison of genes identified per transcription factor family in wheat, barley, and rice. The number of genes in each family for (A)
wheat, (B) barley, and (C) rice. (D) The ratio of wheat to barley (red) and wheat to rice (blue). In (D), the expected ratio (3:1) is indicated by a black
line. Barley and rice data were obtained from PlantTFDBv3.0.
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2014)]. We found that, overall, wheat has 5.1 times more TFs than in
other diploid Triticeae species. Compared to rice, wheat has 3.1 times
more TFs as would be expected for a hexaploid species. The incomplete
nature of the genomes of other monocots may explain the higher than
expected ratio (3:1) of wheat TFs to monocots other than rice. Each
family is present in wheat in similar proportions to those found in other
monocots. In the future, it will be of value to compare the TF families
found in the Chinese Spring reference sequence, used in this study, to
TFs found in other wheat varieties. TFs are likely to vary in number and
sequence between varieties; for example the MADS box TF VRN-A1
varies in copy number, which influences flowering time (Díaz et al.
2012). Global comparisons will become possible as additional varieties
are sequenced and a wheat pan genome is established [reviewed in
Uauy (2017)]. A gold standard RefSeqv1.0 assembly will shortly be-
come available for the wheat genome alongside new gene models. This
new annotation may alter the exact numbers of TFs; however, the
TGAC gene models are highly complete and we do not expect large
changes. The TFs identified in this study, and most genome-wide stud-
ies, are in silico predictions based on gene sequence and domain con-
tent: therefore, further biological experiments will be required to
confirm their sequence, gene structure, and function as TFs.

The NAC family is one of the largest TF families and has been
characterized previously in other species (Ooka et al. 2003; Christiansen
et al. 2011; Nuruzzaman et al. 2010; Peng et al. 2015; Saidi et al. 2017; Le
et al. 2011). However, this is the first study to identify the NAC genes in
hexaploid wheat and characterize their global expression patterns. We
found that NAC TFs were located across all chromosomes, but were
most frequently found on chromosome group 2 (on average 39 NACs
per homeolog) with relatively few NACs on group 1 (on average
seven NACs per homeolog). The uneven distribution of NACs across

chromosomes has also been observed in rice (Nuruzzaman et al. 2010)
and maize (Peng et al. 2015). In wheat, three homeologous copies of
each gene (triads) would be expected due to its hexaploid genome. We
found that, for most NACs, a complete triad (single copy of each
homeolog) has been retained, although in one-third of triads one
homeologous copy has been lost. This study of the NAC TFs is one
of the first analyses in wheat of a whole gene family using a highly
complete reference sequence, therefore further work will be required to
find out whether the NACs are representative of homeolog conserva-
tion throughout the genome. However, unequal preservation of home-
ologs is supported by the analysis across all TF families in which the
numbers of each TF family found per homeolog are frequently different
(Table S3). This suggests that some gene loss or gainmay have occurred
in specific homeologs in many TF families. It is also possible that some
gene loss may be explained by varietal differences or the incomplete
nature of the reference sequence.

We found that wheat NAC TFs belong to eight main phylogenetic
groups, similar to Arabidopsis, rice, and barley. Wheat has a reduced f
group with only 13 genes compared to the 10 genes found in rice, but
not compared to barley, suggesting that group f NACs were reduced in
number in the ancestral Triticeae. This family-specific reduction re-
quires further investigation to determine its biological relevance.

The DNA- and protein-bindingNAC domain of NACTFs has been
studied over the past two decades (Xie et al. 2000; Welner et al. 2012;
Ernst et al. 2004); however, the function of the CTD remains poorly
understood. We detected previously identified CTD motifs in wheat,
rice, and barley NAC TFs and also identified three novel CTD motifs.
These motifs were in general restricted to one or two NAC groups. The
presence of these motifs was typically conserved within closely related
clades of rice, barley, and wheat orthologs. This is expected given the

Figure 2 Maximum likelihood phylog-
eny of 667 NAC proteins from wheat,
rice, and barley. The phylogeny was
constructed using only the NAC do-
main. NAC groups a–h were assigned
according to rice and barley orthologs.
In cases where the group assigned to a
rice or barley gene conflicted with the
overall tree topology, no group was
assigned (black branches). Details of in-
dividual genes are presented in Figure
S1 and Table S4.
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high overall sequence similarity between orthologs in these species.
However, the conservation of CTD motifs extends beyond the imme-
diate orthologs in these species. For instance, motifs iii and xiii in group
c are conserved across several discrete clades that contain rice, barley,
and wheat members. This evolutionary conservation inside otherwise
nonconserved regions indicates that CTD motifs may have important
biological functions. The de novo identification of CTD motifs that
match those identified in studies of other plant species also highlights
the conservation of motifs within angiosperms and indeed the plant
kingdom as a whole (Pereira-Santana et al. 2015; Shen et al. 2009;
Ooka et al. 2003). These motifs are, thus, good candidates for further

investigation into the role of the NAC CTD and the specific function of
these motifs.

In this study, we also combined global gene expression data from
308 RNA-seq samples with TF annotations. We found that, within the
phylogenetic groups a–h, there are variations in expression patterns,
although there are clades of genes that have extremely similar patterns.
These genes with conserved expression patterns in particular tissues
may represent good candidates to explore for functional roles in those
tissues. In rice, for example, the use of coexpression as a guide to
putative function has been successful in identifying several TFs regu-
lating grain filling (Xu et al. 2016; Fu and Xue 2010), suggesting that

Figure 3 Conserved domains in the
CTD of NAC transcription factors arranged
by phylogenetic position. Known CTD
motifs are shown alongside the wheat,
barley, and rice NAC TFs for each group
a–h (A–H), colored in accordance with Fig-
ure 2. Branches corresponding to wheat
NAC TFs are solid black; those for rice
and barley NAC TFs are dashed. Motifs
are shown as boxes, matching (left to right)
motifs i–xiii from Ooka et al. (2003). Motifs
that are present in each protein (P-value,
0.05, q-value, 0.05) are shown by a solid-
colored box, while absent motifs are
shown by an empty outlined box. Genes
with no significant motifs are shown with
empty space. Barley and rice genes are
indicated by the presence of a star to
the right of the CTD motifs. Details are
presented in Table S5, and the full phy-
logenetic tree is presented in Figure S2.
CTD, C-terminal domain; TF, transcrip-
tion factor.
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this method might also prove useful in wheat. Sequenced mutant pop-
ulations (Krasileva et al. 2017) and gene editing methods (Wang et al.
2014; Liang et al. 2017; Zhang et al. 2016) provide a direct route for
hypothesis testing.

We produced coexpression modules that can be used to inform a
range of further studies. Focusing on wheat NAC TFs, we found several
examples where GO term enrichment of coexpressed genes supports
known TF function. For example, TaNAC-S was found to be coex-
pressed with genes related to photosynthesis (module 2) according to
GO term enrichment. It has previously been shown that TaNAC-S
overexpression delays senescence and increases the expression of
Rubisco, which is a central enzyme for carbon fixation in photosynthesis

(Zhao et al. 2015). TaNAM1 and TaNAM2 were found in module 9,
which is enriched for protein ubiquitination-related genes. TaNAM
genes are known to increase protein content in the grain by increasing
the remobilization of nitrogen from vegetative tissues (Waters et al.
2009). The ubiquitin pathway has previously been linked to se-
nescence (Vierstra 2003), and several e3 ubiquitin ligases are down-
regulated in TaNAM1 and TaNAM2 mutants (Pearce et al. 2014)
indicating that these genes may act through the ubiquitin pathway
to bring about protein degradation for remobilization during senes-
cence. Several NAC TFs including TaNAC2 and TaNAC4 have been
reported to be responsive to both abiotic and biotic stresses (Xia et al.
2010a; Mao et al. 2012; He et al. 2015), and their coexpression with

Figure 4 Relationship between phylo-
genetic position and NAC gene expres-
sion across 308 RNA-seq samples from
diverse tissues, developmental stages,
and stress conditions. The origin of each
sample is indicated by the colored bar
under each heatmap. Each panel (A–H)
represents NAC genes belonging to
that group according to the classifica-
tion in Figure 2. Dendrograms indicate
the maximum likelihood phylogeny of
genes within each group. Genes that
did not meet the minimum expression
criteria (. 0.5 tpm in at least three sam-
ples) do not have expression data repre-
sented (white rows). All remaining
expression data (tpm) was normalized
per gene to range from 0 to 1. An ex-
tended version of the figure with the full
phylogenetic trees is available as Figure
S3. RNA-seq, RNA sequencing; tpm,
transcripts per million.
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genes involved in protein phosphorylation (module 1) may provide a
putative mechanism as to how they regulate responses to multiple
stresses. These examples indicate that our coexpression modules cat-
egorize known genes with appropriate GO terms. GO term enrich-
ment may also be predictive of the functions of novel genes (Eisen
et al. 1998). For example, in Arabidopsis thaliana, a zinc finger TF
(AtZFP2) was predicted to regulate abscission due to its expression

within a group of genes that had GO terms associated with cell wall
modifying proteins, extracellular regulators, and TFs. AtAFP2 was
subsequently demonstrated to regulate abscission in overexpression
lines (Cai and Lashbrook 2008).

Previously characterizedwheatNACTFswere only identified in five
coexpression modules out of the total 23 modules in which NAC TFs
were expressed.This indicates thatNACTFsmay still playunrecognized

Figure 5 Distribution of genes and
transcription factors (TFs) across mod-
ules. (A) Number of genes (log10), (B)
percentage of genes that are TFs, (C)
percentage of TFs that are NAC TFs,
and (D) number of NACs from each
phylogenetic group.
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roles in wheat. This study provides the framework for further investi-
gations of NAC TF function in this important crop species.
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