
 gels

Review

The Potential of Stimuli-Responsive Nanogels in
Drug and Active Molecule Delivery for
Targeted Therapy

Marta Vicario-de-la-Torre 1 and Jacqueline Forcada 2,*
1 Nutra Essential OTC, Alcobendas, Madrid 28108, Spain; martavicario@nutraessential.com
2 Bionanoparticles Group, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU,

Donostia-San Sebastián 20018, Spain
* Correspondence: jacqueline.forcada@ehu.es; Tel.: +34-943-018-182

Academic Editor: Gaio Paradossi
Received: 1 March 2017; Accepted: 28 April 2017; Published: 8 May 2017

Abstract: Nanogels (NGs) are currently under extensive investigation due to their unique properties,
such as small particle size, high encapsulation efficiency and protection of active agents from
degradation, which make them ideal candidates as drug delivery systems (DDS). Stimuli-responsive
NGs are cross-linked nanoparticles (NPs), composed of polymers, natural, synthetic, or a combination
thereof that can swell by absorption (uptake) of large amounts of solvent, but not dissolve due to the
constituent structure of the polymeric network. NGs can undergo change from a polymeric solution
(swell form) to a hard particle (collapsed form) in response to (i) physical stimuli such as temperature,
ionic strength, magnetic or electric fields; (ii) chemical stimuli such as pH, ions, specific molecules
or (iii) biochemical stimuli such as enzymatic substrates or affinity ligands. The interest in NGs
comes from their multi-stimuli nature involving reversible phase transitions in response to changes
in the external media in a faster way than macroscopic gels or hydrogels due to their nanometric
size. NGs have a porous structure able to encapsulate small molecules such as drugs and genes,
then releasing them by changing their volume when external stimuli are applied.

Keywords: stimuli-responsive nanoparticles; nanogels; drug delivery systems

1. Introduction

The introduction of therapeutic agents into the body using different administration routes must
overcome different and efficient immunological barriers. After administration, therapeutic effects of
the drugs are limited or reduced due to the bioavailability or partial degradation before reaching the
target site. Several therapeutic approaches (mainly nanosystems) have been developed to overcome
the biological barriers, increase drug bioavailability, and achieve a major effect in the desired target.
As many therapeutic effects of the drugs are limited or reduced due to the partial degradation
that occurs before they reach the desired target, the need of a suitable carrier is envisaged as a
solution. For the administration of therapeutics, the use of stimuli-responsive systems at the nanoscale
(nanocarriers) able to overcome and bypass the different biological barriers is considered an efficient
way to achieve this objective.

In recent years, great interest has been directed to environmentally responsive polymers capable of
undergoing structural changes in response to an external stimulus due to the possibility, by using these
polymers, of forming responsive polymeric nanoparticles, such as nanogels (NGs). Stimuli-responsive
nanogels are cross-linked colloidal particles, which can swell by absorption of large amounts of
solvent, but do not dissolve due to the constituting structure of the polymer network, physically or
chemically cross-linked. As other nanocarriers, such as liposomes, solid nanoparticles, and dendrimers,
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NGs have a size comprised in the colloidal scale, ranging from 1 to 1000 nm. Nanoparticles (NPs) are
solid and spherical structures, submicron-sized, prepared from polymeric materials and/or metallic
compounds. NPs can be classified as nanocapsules (the active agent forms a matrix combined with
the polymer-forming the NP) and nanospheres (the active agent constitutes the core surrounded by
polymeric material). On the other hand, NGs are considered as soft NPs mainly due to their high
water content that can fluctuate, modifying, in turn, the NG structure. In this sense, NGs can swell by
absorption (uptake) of large amounts of solvent (commonly, water) but they do not dissolve due to the
constituent structure of the polymeric tridimensional network, physically or chemically cross-linked.
The potential biotechnological applications of NGs are based in their multi-stimuli responsive nature
that allows NGs to change their inner structure reversibly. NGs respond to external changes by
suffering phase transitions in a faster fashion than macroscopic gels due to their nanosized scale,
and thus NGs achieve an efficient therapeutic delivery at the pathological areas. The most common
reversible phase transition behavior that NGs show is the ability to change their volume that goes
from a polymeric solution (swollen form) to a hard particle (collapsed form). Swelling and shrinking is
caused by conformational changes of the subchains between two nearby cross-linking points inside the
gel network. This behavior is governed by the balance and result of the competition between repulsive
intermolecular forces acting to expand the tri-dimensional polymer network of polymeric chains
loosely cross-linked forming the nanogel and attractive forces that act to shrink it: swelling occurs
when the ionic repulsion and the osmotic forces are higher than the attractive forces, i.e., hydrogen
bonds, van der Waals and hydrophobic interactions. NGs are environmentally sensitive to (i) physical
stimuli, such as temperature, ionic strength, magnetic or electric fields; (ii) chemical stimuli (pH, ions
presence, specific molecules) and (iii) biotechnological stimuli such as enzymatic substrates, affinity
ligands, cell receptors, etc.) [1].

NGs are considered versatile carriers for biomedical applications, especially for cancer therapy
because these multi-stimuli soft nanoparticles take advantage of the abnormalities present in tumors
such as a lower pH, an increased reductive environment and a higher temperature. In addition,
drug bioavailability is increased once it is included into the NGs [2]. On the other hand, conventional
antitumor pharmaceutical formulations show a low drug bioavailability and a short-half life after
administration, subsequently an increased frequency of administration and elevated doses are
necessary to achieve a therapeutic effect. Consequently, systemic toxicity and unwanted effects
appear in patients. Indeed, the effectiveness of conventional therapies is mainly determined by
the appearance of side effects. Therefore, drug delivery systems (DDS) and nanosized carriers in
particular, are positioning themselves as valid alternatives to prevalent cancer treatments leading to an
enhanced anti-tumor effect, reduced toxicity, and unwanted effects. Although the translation of basic
research to clinical assays and finally getting marketed formulations is a complex and time-consuming
process, the extensive research work developed over the last decades has reached the marketing of
several nano-medicines. As examples, Doxil® and Abraxane®, a Doxorubicin (Dox)-loaded PEGylated
liposomes (LPs) [3] and Paclitaxel albumin-stabilized NPs [4] respectively, are approved for U.S. Food
and Drug Administration (FDA) for cancer treatment.

In this sense, nanosized carriers (20–200 nm) show a superior therapeutic effect due to the
passive targeting, a phenomenon that gives the ability of nanocarriers to achieve the tumor site
showing an enhanced permeability and retention (EPR) effect. This phenomena is due to (i) the weak
lymphatic drainage in the tumor and (ii) the ability of nanocarriers to cross through the gap
junctions in the novel endothelium tumor blood vessels (neovascularization or angiogenesis) that are
abnormally large (compared to healthy tissues) in solid tumors and inflammatory tissues [5]. Innovative
trends in designing nanocarriers are focused on active targeting, where the nanosized carrier is
surface-functionalized to recognize specific receptors at the target site. One of the main advantages of
NGs is that they can be easily functionalized during synthesis, so both passive and active targeting
may enhance drug efficacy. Indeed, NGs, as other nanosized DDS, can also carry inorganic loads,
such as Ag, Au, or magnetic NPs that allow the diagnosis and the treatment in a single carrier,
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thus allowing to fit the therapy according to the patient requirements (personalized medicine) and
improving the effectiveness of the therapy that otherwise may not have been as successful [6,7].
Along this line, stimuli-responsive NGs are able to combine in a unique carrier responsiveness to
environmental factors, specificity for a particular receptor, a controlled release of the active agent
from their polymeric network, cyto- and bio-compatibility, stability, and prolonged blood circulation
times [8–12]. In addition, poly(ethylene glycol) (PEG) is usually added to NGs to extend their blood
circulation, enhancing stability, preventing protein binding, avoiding mononuclear phagocytic system
(MPS) and, protecting otherwise fragile molecules after administration [12].

Although stimuli-responsive NGs are mainly employed for cancer therapy, these versatile carriers
are useful for selectively targeting other diseases as is discussed in this review.

Despite the deeply and extensive work to boost NGs to clinical practice, several disadvantages
have been necessary to overcome and only a few NGs-based formulations have been tested in
clinical trials [13–15]. Although, NGs can be easily functionalized to target the site of action and
present a stimuli-responsive behavior “in vitro”, the “in vivo” correlation is difficult and needs further
optimization. Biodistribution and efficacy of NGs as DDS after administration is determined by
parameters such as particle size, stability of the loaded-nanogels, surface charge, and properties
from functionalized groups, ability to reach and deliver the cargo at the target site avoiding healthy
tissues and biodegradation [16–19]. Therefore, more studies involving the behavior of the NGs after
administration regarding these items are necessary. Moreover, biocompatibility and biodegradability
studies are required to determine the biodistribution and elimination of NGs-based formulations after
“in vivo” administration. For that reason, the present work attempts to briefly indicate the progress
made in synthesis, functionalization, “in vitro” features necessary for the NGs to be employed as DDS,
and “in vivo” efficacy studies of multifunctional nanogel formulations.

2. Approaches for the Production of Stimuli-Responsive Nanogels

As commented previously, an ideal drug delivery carrier should have a small particle
size, biocompatibility, biodegradability, high encapsulation efficiency, site-specific therapeutic
delivery and retention at the site of action for a long period of time, prolonged circulation time,
and avoidance of nonspecific interactions occurring with the environment (body inner structures).
In the case of polymeric nanocarriers, different synthetic processes can be used to produce these
particular nanoparticles, among them polymerization in dispersed media of the adequate monomers
under specific reaction conditions will give as a result new responsive polymeric nanoparticles
with potential applications in the biomedical field as delivery systems for active agents (drugs,
molecules, and metallic and magnetic nanoparticles, among others). Among the polymerization
methods commonly employed for the synthesis of NGs are emulsion polymerization, precipitation
polymerization, inverse microemulsion polymerization, anionic copolymerization, and cross-linking
between neighboring chains.

NGs can respond to external stimuli, and among them, the most studied one is temperature
because changes in temperature are common in pathological states and can be easily applied externally.
From a biotechnological point of view, these NGs are very interesting since they can undergo a
volumetric phase change releasing the cargo when a temperature change is produced. In this line,
the design and controlled production of thermo-responsive nanogels have received considerable
interest due to their unique feature to swell at low temperatures and be collapsed at high ones in
aqueous solutions, showing a volume phase transition temperature (VPTT) (see Figure 1). The adequate
monomer selection and a controlled polymerization process can lead to obtain thermo-responsive
and biocompatible NGs with VPTTs close to physiological temperature (in healthy and unhealthy
conditions) being very attractive for bio-applications, such as drug delivery.
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Among the responsive polymers employed in the synthesis of sensitive nanogels,
poly(alkylacrylamides), more specifically poly(N-isopropylacrylamide), (PNIPAM) is the
thermo-responsive polymer most frequently employed. Although there are studies that indicate
that PNIPAM entails a low toxicity grade, PNIPAM is more present in NGs synthesis destined
for biomedical application over the past few years [20]. Another thermo-responsive polymer,
poly(N-vinylcaprolactam) (PVCL), is considered adequate for delivery systems and to be used in
biomedical devices, due to its biocompatibility and VPPT in the physiological temperature region
(32–38 ◦C). This allows PVCL to be considered as an adequate material for the design of biomedical
devices and to be useful in drug delivery systems [1].

On the other hand, NGs able to respond to changes in pH (pH-sensitive NGs) are also promising.
These NGs can swell when the pH approximates the pKa of the ionic monomer incorporated by
copolymerization in the cross-linked chains constituting the particles. These nanogels are useful in
the case of releasing a biologically active compound in a physiological medium in which the main
characteristic is the change in pH. pH-sensitive nanogels are composed of cross-linked polyelectrolytes
with weakly acidic (i.e., carboxylic) and/or weakly basic (i.e., amino) group(s) which can be used either
as proton donors or receptors, or through a combination of both. The choice of polymer depends on the
physiological conditions of the target in which the delivery is needed. pH-responsive nanogels are able
to swell in response to small pH variations, showing a volume phase transition pH (VPTpH). Below this
transition pH, nanogel particles are swollen and above it, are collapsed. The volume change is ascribed
to the enhanced electrostatic repulsion among charges within the polymer network that appears due
to the ionization of ionizable groups varying the pH. Among the polymers employed in the synthesis
of pH-responsive NGs are poly-(acrylic) acids (PAA), methacrylic acid (MA), polyethylenimine
(PEI), poly(2-N,N-(diethylamino)ethyl methacrylate) (PDEAEMA) derivatives, etc. The biomedical
application of these NGs is focused on pH changes, a phenomenon that occurs regularly in the body at
both healthy and unhealthy conditions. The selection of the polymer depends on the pH of the target
site, i.e., gastrointestinal tract (with a pH gradient), inflamed tissues (a more acidic pH), cancer cells
and endolysosomes (acidic pH in comparison with healthy cells and cytoplasm, respectively) [21,22].

Copolymerization leads to obtaining multi-sensitive NGs by incorporating polymers able to
respond to different stimuli. This is the case of pH- and temperature-responsive NGs obtained by
emulsion copolymerization of VCL with an ionizable comonomer (acrylic acid) as in the case of
the preparation of acid containing PVCL-based nanogels [23,24]. More recently, the synthesis of
poly(2-(diethylamino)ethyl) methacrylate (PDEAEMA)-based nanogels with dual pH and temperature



Gels 2017, 3, 16 5 of 37

sensitivities [25], as well as the synthesis of PDEAEMA/PVCL-based core-shell thermo- and
pH-responsive nanogels prepared by seeded batch emulsion polymerization [26], have been reported.

Apart from the different polymerization techniques used, there are other options for the
production of nanogels. Among them, autoclaving is an alternative approach for nanogels synthesis
when components that comprise the system withstand high temperatures while preserving their
functionality. Montanari et al. [27] suggested an innovative approach for obtaining sterilized nanogels
by using an autoclave. In this work, gellan- and hyaluronic acid-cholesterol derivatives were
first synthesized, dispersed in aqueous solutions and then, sterilized by autoclaving to achieve
preformed polymeric-based NGs. The temperature (121 ◦C) and pressure (1.1 bar) for 20 min in
an autoclave promoted the interactions between the hydrophobic domains of cholesterol moieties
and the hydrophilic chains of the polysaccharides. Particle size was close to 200 nm and 350 nm for
gellan- and hyaluronan-cholesterol based nanogels respectively and the mean size remained stable at
4 and 37 ◦C for 1 week and 1 month correspondingly. Furthermore, levofloxacin was added to the
aqueous suspensions to get drug-loaded NGs by autoclaving. There was a slight increase in size of
the levofloxacin-loaded NGs compared to blank ones (of about 30 nm) although the encapsulation
efficiency (EE) was low, close to 5% in gellan- and hyaluronan-cholesterol-based NGs. One of the most
remarking points of this study is that nanogels obtained by autoclaving showed properties such as
size and drug capacities comparable to nanohydrogels obtained by the sonication approach.

On the other hand, gamma radiation and e-beam sterilization are the most employed methods for
both the “in situ” formation and sterilization of nanogels. The synthetic “in situ” approach is based on
irradiation of semi-dilute aqueous solutions of preformed polymers. As a consequence, many radicals
are generated simultaneously along each polymer chain leading to intramolecular recombination and
the subsequent formation of nanogels [28–30]. Besides obtaining sterilized nanosystems, “in situ”
radiation methods achieve NGs without involving organic solvents, surfactants, cross-linkers or
chemical initiators.

2.1. Stimuli-Responsive Nanogels

As a consequence of the colloidal and morphological features of these stimuli-sensitive soft
nanoparticles, nanogels can contain active agents and release them by changing their volume when
changes in the media (external stimuli) occur. Taking advantage of biological stimuli such as pH and
temperature, NGs can release the drug in a controlled fashion at the site of action, thus providing
enhanced therapeutic outcomes.

The pH in blood and healthy tissues is close to 7.4 while in tumors or inflammatory tissues it drops
0.5–1 units. Moreover, a pH gradient is observed during cellular uptake, since the carriers first reach
the internal cell structures from endosome (pH about 6) to lysosome with a pH of 4.5 [31]. A redox
gradient is also present between the oxidizing extracellular environment and the reductive intracellular
medium. The most abundant reductive peptide, glutathione (GSH), is found to be 10–100-fold more
concentrated in the cytosol (1–10 mM) than in the extracellular fluids (10 µM) [32]. In addition,
cancer cells show higher GSH concentrations than healthy ones [33]. Relating to temperature, a local
hyperthermia appears in cancer cells and inflammatory diseases. Noteworthy, tumor diseases present
several of these altered conditions (pH, temperature, and GSH concentration), thus cancer cells are
interesting targets for the development of non-conventional therapies based on stimuli-responsive
NGs as drug delivery systems.

2.1.1. Thermo-Responsive Nanogels

Thermo-responsive nanogels undergo a volume change around the volume phase transition
temperature (VPTT), which can be tuned by changing their hydrophilic and hydrophobic
content [20,34] and, in the case of poly(N-vinylcaprolactam) (PVCL)-based NGs, the VPTT can also be
modified according to polymer chain length and concentration [35]. Furthermore, PVCL-based NGs
have demonstrated their suitability for biomedical applications compared to those based on PNIPAM,
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which have shown higher toxicity “in vitro” due to the formation of unwanted toxic amide compounds
after degradation in acidic conditions [20]. In addition, thermo-responsive PVCL oligomers have
antibacterial properties by inhibiting biofilm production and have shown efficacy in reducing virulence
of Escherichia coli [36].

Thermo-responsive NGs are employed in the treatment of different diseases, cancer being one of
the most targeted pathologies. Frequently, an external heating source is applied to enhance the
efficiency and selectivity of these nanocarriers. As an example, fragile molecules such as DNA
have been condensed with polyethylenimine (PEI) covalently bonded with PNIPAM to improve
transfection efficiency by accumulation when local hyperthermia is applied [37]. On the other hand,
5-Fluorouracil (5-FU) was loaded in biodegradable NGs based on chitosan and PVCL, a system that
showed non-toxicity and a controlled release above VPTT (38 ◦C) [38].

2.1.2. pH-Responsive Nanogels

pH-Sensitive NGs are cross-linked nanoparticles with acid or basic groups with a swelling
de-swelling behavior depending on pH. NGs with a volume phase transition pH (VPTpH) in the
physiologically relevant range are of great interest. Cationic NGs are in a collapsed state at pH values
above the pKa, but on decreasing the pH below the pKa, NGs are swollen due to the protonation of the
network and the electrostatic repulsion between positively charged groups. According to this behavior,
cationic NGs are key carriers, in cancer therapy especially, because unhealthy tissue and cells have
lower pH than healthy ones, the swelling of the nanogels at acidic pHs being interesting.

pH-responsive NGs can be produced by assembling natural based-polymers or by polymerization.
In the case of polymerizing methacrylic acid (MAA) with PEG diacrylate, nanogel particles with
VPTpH close to the pKa of MAA (4.7), have a decrease in the hydrodynamic diameter of 40 nm
or approximately 150 nm depending on the surfactant concentration used [39]. NGs based on
poly(2-N,N-(diethylamino)ethyl methacrylate) (PDEAEMA) with VPTpH in the physiological range
are very interesting nanoparticles. Indeed, the hydrophobicity of the NGs can be modulated by the
degree of protonation of the amine groups in the DEAEMA units and thus, the capture of molecules
and its release can be controlled by a variation of the pH of the medium [40]. PEG cross-linked acrylic
NGs were synthesized by inverse emulsion polymerization and loaded with curcumin (encapsulation
efficiency (EE) close to 70%). According to the cationic nature of the NGs, swelling occurs at a pH
above the pKa of the carboxylic groups of the acrylic acid and the release rate is faster at acidic pH [41].

On the other hand, pH-responsive NGs can be synthesized by assembling pH-responsive
natural polymers or by functionalizing natural polymers with pH-sensitive molecules. Chitosan,
a natural pH-responsive polymer, can enhance its pH-sensitivity by polymerizing with pH-responsive
monomers, thus leading to biocompatible and pH-activated NGs for tumor therapy [42,43]. Otherwise,
chitin was conjugated with poly(L-lactic acid) (PLA) and loaded with Dox for the treatment of hepatic
carcinoma. Chitin-PLA nanogel particles are swollen at a pH below the pKa of the polyelectrolyte (6.1)
and the swelling ratio decreases when Dox is conjugated due to a reduction in the number of reactive
functional groups in chitin-PLA NGs. Cell internalization of Dox-loaded chitin-PLA nanogels was
favored by pH differences in the intracellular media [44]. Combined amphiphilic polypeptide-based
block copolymers such as methoxy poly(ethylene glycol)-b-poly(L-glutamic acid), loaded with Dox,
were developed for lung cancer therapy. The ionization degree of poly-L-glutamic acid determines
the pH-dependent responses (ζ potential and Dox release) besides showing high anti-tumor efficacy,
low toxicity and favorable hemocompatibility [45].



Gels 2017, 3, 16 7 of 37

2.1.3. Light Responsive Nanogels

Light is an attractive resource as an external stimulus to obtain a controlled release of active
molecules, since it can be externally applied with high spatial and temporal precision. Furthermore,
there are several parameters (wavelength, light intensity, duration of exposure) to control in order
to get the desired effect in vivo. Light responsive nanogels are classified as (i) NGs fabricated from
light responsive polymers that contain photoactive groups such as azobenzene, spirobenzopyran,
triphenylmethane, or cinnamonyl and (ii) a hybrid system composed of NPs containing noble metals
such as Au and/or Ag. Light responsive NGs containing light responsive polymers are able to
change their size, shape, or ionic nature when irradiation is applied. For example, Patnaik et al. [46]
combined azobenzene with dextran moieties to form azodextran-based NGs by a self-assembly
physical procedure. On irradiation (trans–cis) isomerization of the hydrophobic azobenzene moiety
in the cross-linked side chain of hydrophilic dextran molecules results in weakening of hydrophobic
interactions, and in matrix relaxation, that entails size changes in the azodextran-based NGs. When a
365 nm wavelength is irradiated, these NGs undergo photoisomerization that leads to the collapse of
NGs and the content’s release. After loading with two model drugs (rhodamine and salicylic acid),
photoisomerization is able to control “in vitro” drug release according to the pH and salt concentrations
of the media. However, these light responsive NGs are rarely used as drug delivery systems because
they need a UV or visible short wavelength light that entails major drawbacks. For example, these kinds
of light are strongly absorbed by skin and tissue and therefore cannot be used for deep-tissue triggering
as it will damage tissues even at much lower power [47].

On the other hand, the second light responsive NGs category is hybrid NGs containing metallic
NPs and a polymer sensitive to temperature changes. In these cases, Ag and Au particles are mainly
used, that absorb NIR (near infrared) light (650–900 nm) to generate NIR heat that is minimally
absorbed by skin and tissues. In addition, Au NPs are considered the most useful for drug delivery
because they have no toxicity and are the most stable metal at the nanoscale [48]. For example,
Kawano et al. [49] fabricated a NIR light-responsive drug delivery platform based on Au-Ag-nanorods
(Au-Ag NRs) and PNIPAM polymer by a process combining colloid-template polymerization and
silica etching. When irradiation is applied by a NIR laser, NIPAM-coated gold nanorods demonstrated
photothermal phase transition and accumulation in local targeted sites that were irradiated “in vivo”.

Additionally, more works involving multi responsive NGs are describe throughout the text.

2.1.4. Magnetic Nanogels

Superparamagnetic iron oxide nanoparticles (SPIONs) (≤10 nm in diameter size) have been
extensively evaluated as DDS, diagnosis, therapeutic and contrast agents in magnetic resonance
imaging (MRI) due to their ability to respond when a magnetic field of moderate intensity is
applied. This response disappears when the magnetic stimulus is removed avoiding aggregation and
residual magnetization. Coating magnetic NPs with biocompatible compounds (citric acid, dextran,
and polymers) improves NPs stability preventing agglomeration [50,51]. Indeed, the incorporation
of magnetic properties to NGs provides a magnetic response that creates new opportunities for
therapeutic and diagnostic fields. Besides magnetic NPs, nanogels can also incorporate into their
structure other inorganic moieties such as Au, Ag, or fluorescent quantum dots (QDs) NPs, forming
hybrid NGs that can be used for imaging, diagnostic and therapeutic “in vivo” applications [52,53].

The most widespread and innovative approach is to use novel magneto-nanogel formulations for
multipurpose applications by combining magnetic NPs with multi-responsive polymer-based NGs
(Figure 2) [54].
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Figure 2. Schematic representation of a multi-stimuli nanogel particle with encapsulated magnetic
nanoparticles sensitive to pH, temperature, and magnetic field. (Reprinted with permission from
reference [54]. Copyright 2016 Wiley).

2.2. Targeted Nanogels

Although nanosized carriers enhance effectiveness by EPR effect in tumors and inflammatory
diseases, usually active targeting is required to achieve an improved therapeutic efficacy and
importantly to reduce drug toxicity. Nanogels can be easily functionalized with specific targeting
groups to provide a selective delivery of the active agent in the target cells, organs, or tissues.
The targeting groups should (1) provide binding or anchoring of the carriers to the target site and
consequently; (2) improve the internalization of the NG and the specific delivery of the cargo and
(3) do not cause adverse effects. There are several targeting groups that can be used for an effective
targeted therapy such as receptors, ligands, nucleic acids, peptides, and hormones [55–59].

One of the most employed targeting groups is folic acid (FA) which binds selectively to folate
receptors (FR), overexpressed in many human tumors [60]. Nevertheless, the addition of FA produces
a slight decrease in NGs water solubility due to the incorporation of hydrophobic groups [61], so PEG
is usually added as a linker to overcome this issue besides providing an increased drug-loaded NGs
bioavailability [62]. Following this line, Nukolova et al. [63] used diblock copolymer poly(ethylene
oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) to form NGs conjugated with an optimal number
of folate molecules (FA-NGs mean size 110.2 nm). FA-NGs were loaded with cisplatin or Dox with
no significant changes in size or stability when the ratio drug/polymer was as much as 1/2 and the
relation folate/polymer was 0.1/0.3 µmol folate/mg polymer. After lyophilization and re-dispersion,
drug-loaded NG slightly increased their size (152 nm). In any case, both loaded-FA-NGs released
the drugs faster at pH 5.5 than at physiological pH due to the protonation of the carboxylic groups
from PMAA in acidic media. To determine the effectiveness of the FA group, FA-NGs were incubated
with human ovarian cancer cells, A2780, that overexpressed the FR. The uptake of FA-NGs by this
cancer cell line exceeded the uptake of untargeted NGs, as expected. Furthermore, FA-NGs selectively
recognized FR-positive cells and were successfully internalized or membrane-bonded to these cells.
Besides showing no toxicity after IV injection in mice suffering ovarian cancer, cisplatin-loaded FA-NGs
inhibited tumor growth, did not produce body weight loss and increased mice lifespan demonstrating
a superior anti-tumor activity compared to untargeted NGs.

In recent years, hyaluronic acid (HA) has emerged as a promising candidate for targeting and
intracellular delivery of therapeutic agents because HA interacts with cells via CD44 receptor [64],
which is present at normal levels in epithelial, hematopoietic and neuronal cells, among others.
Moreover, CD44 is significantly overexpressed in carcinomas such as lymphoma, breast, colorectal
and lung [65]. Adding a moiety of HA to NGs may increase nanocarrier selectivity and enhance
the effect of the drug [66]. Park et al. [67] prepared NGs based on low molecular weight HA
chemically modified by acetylation. Authors synthesized three NGs, Ac-HALM-1, Ac-HALM-2,
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Ac-HALM-3 with different degrees of acetylation: 0.84, 2.09, and 2.86 acetyl groups per 1 unit of
HA, respectively. Dox was loaded in these NGs and a higher degree of acetylation improved the EE
(59.25%, 83.46% and 93.10% for Ac-HALM-1, Ac-HALM-2, Ac-HALM-3, correspondingly). Similarly,
the degree of substitution of HA-NGs resulted in a lower burst effect in the “in vitro” Dox release
studies. These results are attributed to the degree of substitution of HA since the presence of acetyl
groups makes more hydrophobic cores increasing NGs hydrophobicity and thus, assisting Dox
encapsulation and release. The specific interaction between Dox-HA-NGs and tumor cell line HeLa
was also monitored. The Dox-loaded HA-NG selectively bound to HeLa cancer cells overexpressing
CD44 receptor. The specificity of these systems was clear when Dox-HA-NGs were co-incubated
with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the
inhibition produced by free HA.

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma.
To target the DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively
bind to ASGP-R [68,69]. According to this concept, NG based on PVCL and MAA were conjugated
with galactose and synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 ◦C
and 102.4 nm in the collapsed state at 37 ◦C). NGs’ biodegradability comes from the initiator,
N,N-bis(acryloyl) cystamine, a disulfide-bond containing cross-linker, which after GSH exposure
allows the disintegration and shape irregularity of NGs. To achieve a therapeutic anti-cancer
effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was pH-dependent,
thus increasing the release rate when decreasing the pH due to the protonation of both MAA segments
and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2
cells that overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory
concentration (IC50) for free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in
HepG2 cells indicating that Dox is efficiently released from NGs in liver cells. Otherwise, the IC50 for
free Dox and Dox-targeted NGs was 0.8 and 0.4 µM, correspondingly in HeLa cells suggesting that
galactose-functionalized NGs had excellent selectivity for ASPG-R and suitable controlled drug release
in tumor hepatic cells [70].

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that
sense, as the knowledge about biomarkers and tumor cell characteristics is rapidly growing
nano-medicine is also improving. In fact, NGs can be considered as emerging therapies successfully
directed to patient requirements.

2.3. Multi-Responsive Nanogels

The multi-modality trend provides a whole approach by combining MRI, visible targeting,
targeted thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement
in the therapy.

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA
as main thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as
cross-linker. Besides pH of the solution, ionic strength of the medium determines the swelling
behavior of these PDEAEMA-based NGs. According to PDEAEMA properties, an increase in pH
of the solution led to a reduction of the VPTT showing values physiologically relevant (38 ◦C and
pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive NGs based on PNIPAM and
hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel (EE close to 72%).
Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase in size
of the NGs and subsequently, swelling and drug release are favored [71].



Gels 2017, 3, 16 10 of 37

Gels 2017, 3, 16 8 of 32 

 

incubated with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the 
inhibition produced by free HA.  

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma. To target the 
DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively bind to ASGP-R 
[68,69]. According to this concept, NG based on PVCL and MAA were conjugated with galactose and 
synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 °C and 102.4 nm in the collapsed 
state at 37 °C). NGs’ biodegradability comes from the initiator, N,N-bis(acryloyl) cystamine, a disulfide-bond 
containing cross-linker, which after GSH exposure allows the disintegration and shape irregularity of NGs. To 
achieve a therapeutic anti-cancer effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was 
pH-dependent, thus increasing the release rate when decreasing the pH due to the protonation of both MAA 
segments and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media 
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2 cells that 
overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory concentration (IC50) for 
free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in HepG2 cells indicating that Dox is 
efficiently released from NGs in liver cells. Otherwise, the IC50 for free Dox and Dox-targeted NGs was 0.8 and 
0.4 µM, correspondingly in HeLa cells suggesting that galactose-functionalized NGs had excellent selectivity for 
ASPG-R and suitable controlled drug release in tumor hepatic cells [70].  

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that sense, as the 
knowledge about biomarkers and tumor cell characteristics is rapidly growing nano-medicine is also improving. 
In fact, NGs can be considered as emerging therapies successfully directed to patient requirements.  

2.3. Multi-Responsive Nanogels 

The multi-modality trend provides a whole approach by combining MRI, visible targeting, targeted 
thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement in the therapy. 

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA as main 
thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Besides pH 
of the solution, ionic strength of the medium determines the swelling behavior of these PDEAEMA-based NGs. 
According to PDEAEMA properties, an increase in pH of the solution led to a reduction of the VPTT showing 
values physiologically relevant (38 °C and pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive 
NGs based on PNIPAM and hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel 
(EE close to 72%). Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase 
in size of the NGs and subsequently, swelling and drug release are favored [71]. 

 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a 
buffered solution (ionic strength of 150 mM). pH 6.0 ( ); pH 6.5 ( ), pH 6.9 ( ), pH 7.5 ( ) and 
pH 7.9 ( ). (Reprinted with permission from reference [25]. Copyright 2014 Wiley). 

The introduction of disulfide-functionalized linkages to use redox potential for releasing the drug and 
controlling the biodegradability of the NGs can be combined with pH-responsive polymers to enhance drug 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a
buffered solution (ionic strength of 150 mM). pH 6.0 (

Gels 2017, 3, 16 8 of 32 

 

incubated with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the 
inhibition produced by free HA.  

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma. To target the 
DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively bind to ASGP-R 
[68,69]. According to this concept, NG based on PVCL and MAA were conjugated with galactose and 
synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 °C and 102.4 nm in the collapsed 
state at 37 °C). NGs’ biodegradability comes from the initiator, N,N-bis(acryloyl) cystamine, a disulfide-bond 
containing cross-linker, which after GSH exposure allows the disintegration and shape irregularity of NGs. To 
achieve a therapeutic anti-cancer effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was 
pH-dependent, thus increasing the release rate when decreasing the pH due to the protonation of both MAA 
segments and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media 
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2 cells that 
overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory concentration (IC50) for 
free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in HepG2 cells indicating that Dox is 
efficiently released from NGs in liver cells. Otherwise, the IC50 for free Dox and Dox-targeted NGs was 0.8 and 
0.4 µM, correspondingly in HeLa cells suggesting that galactose-functionalized NGs had excellent selectivity for 
ASPG-R and suitable controlled drug release in tumor hepatic cells [70].  

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that sense, as the 
knowledge about biomarkers and tumor cell characteristics is rapidly growing nano-medicine is also improving. 
In fact, NGs can be considered as emerging therapies successfully directed to patient requirements.  

2.3. Multi-Responsive Nanogels 

The multi-modality trend provides a whole approach by combining MRI, visible targeting, targeted 
thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement in the therapy. 

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA as main 
thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Besides pH 
of the solution, ionic strength of the medium determines the swelling behavior of these PDEAEMA-based NGs. 
According to PDEAEMA properties, an increase in pH of the solution led to a reduction of the VPTT showing 
values physiologically relevant (38 °C and pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive 
NGs based on PNIPAM and hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel 
(EE close to 72%). Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase 
in size of the NGs and subsequently, swelling and drug release are favored [71]. 

 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a 
buffered solution (ionic strength of 150 mM). pH 6.0 ( ); pH 6.5 ( ), pH 6.9 ( ), pH 7.5 ( ) and 
pH 7.9 ( ). (Reprinted with permission from reference [25]. Copyright 2014 Wiley). 

The introduction of disulfide-functionalized linkages to use redox potential for releasing the drug and 
controlling the biodegradability of the NGs can be combined with pH-responsive polymers to enhance drug 

); pH 6.5 (

Gels 2017, 3, 16 8 of 32 

 

incubated with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the 
inhibition produced by free HA.  

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma. To target the 
DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively bind to ASGP-R 
[68,69]. According to this concept, NG based on PVCL and MAA were conjugated with galactose and 
synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 °C and 102.4 nm in the collapsed 
state at 37 °C). NGs’ biodegradability comes from the initiator, N,N-bis(acryloyl) cystamine, a disulfide-bond 
containing cross-linker, which after GSH exposure allows the disintegration and shape irregularity of NGs. To 
achieve a therapeutic anti-cancer effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was 
pH-dependent, thus increasing the release rate when decreasing the pH due to the protonation of both MAA 
segments and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media 
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2 cells that 
overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory concentration (IC50) for 
free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in HepG2 cells indicating that Dox is 
efficiently released from NGs in liver cells. Otherwise, the IC50 for free Dox and Dox-targeted NGs was 0.8 and 
0.4 µM, correspondingly in HeLa cells suggesting that galactose-functionalized NGs had excellent selectivity for 
ASPG-R and suitable controlled drug release in tumor hepatic cells [70].  

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that sense, as the 
knowledge about biomarkers and tumor cell characteristics is rapidly growing nano-medicine is also improving. 
In fact, NGs can be considered as emerging therapies successfully directed to patient requirements.  

2.3. Multi-Responsive Nanogels 

The multi-modality trend provides a whole approach by combining MRI, visible targeting, targeted 
thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement in the therapy. 

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA as main 
thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Besides pH 
of the solution, ionic strength of the medium determines the swelling behavior of these PDEAEMA-based NGs. 
According to PDEAEMA properties, an increase in pH of the solution led to a reduction of the VPTT showing 
values physiologically relevant (38 °C and pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive 
NGs based on PNIPAM and hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel 
(EE close to 72%). Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase 
in size of the NGs and subsequently, swelling and drug release are favored [71]. 

 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a 
buffered solution (ionic strength of 150 mM). pH 6.0 ( ); pH 6.5 ( ), pH 6.9 ( ), pH 7.5 ( ) and 
pH 7.9 ( ). (Reprinted with permission from reference [25]. Copyright 2014 Wiley). 

The introduction of disulfide-functionalized linkages to use redox potential for releasing the drug and 
controlling the biodegradability of the NGs can be combined with pH-responsive polymers to enhance drug 

), pH 6.9 (

Gels 2017, 3, 16 8 of 32 

 

incubated with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the 
inhibition produced by free HA.  

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma. To target the 
DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively bind to ASGP-R 
[68,69]. According to this concept, NG based on PVCL and MAA were conjugated with galactose and 
synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 °C and 102.4 nm in the collapsed 
state at 37 °C). NGs’ biodegradability comes from the initiator, N,N-bis(acryloyl) cystamine, a disulfide-bond 
containing cross-linker, which after GSH exposure allows the disintegration and shape irregularity of NGs. To 
achieve a therapeutic anti-cancer effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was 
pH-dependent, thus increasing the release rate when decreasing the pH due to the protonation of both MAA 
segments and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media 
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2 cells that 
overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory concentration (IC50) for 
free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in HepG2 cells indicating that Dox is 
efficiently released from NGs in liver cells. Otherwise, the IC50 for free Dox and Dox-targeted NGs was 0.8 and 
0.4 µM, correspondingly in HeLa cells suggesting that galactose-functionalized NGs had excellent selectivity for 
ASPG-R and suitable controlled drug release in tumor hepatic cells [70].  

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that sense, as the 
knowledge about biomarkers and tumor cell characteristics is rapidly growing nano-medicine is also improving. 
In fact, NGs can be considered as emerging therapies successfully directed to patient requirements.  

2.3. Multi-Responsive Nanogels 

The multi-modality trend provides a whole approach by combining MRI, visible targeting, targeted 
thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement in the therapy. 

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA as main 
thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Besides pH 
of the solution, ionic strength of the medium determines the swelling behavior of these PDEAEMA-based NGs. 
According to PDEAEMA properties, an increase in pH of the solution led to a reduction of the VPTT showing 
values physiologically relevant (38 °C and pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive 
NGs based on PNIPAM and hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel 
(EE close to 72%). Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase 
in size of the NGs and subsequently, swelling and drug release are favored [71]. 

 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a 
buffered solution (ionic strength of 150 mM). pH 6.0 ( ); pH 6.5 ( ), pH 6.9 ( ), pH 7.5 ( ) and 
pH 7.9 ( ). (Reprinted with permission from reference [25]. Copyright 2014 Wiley). 

The introduction of disulfide-functionalized linkages to use redox potential for releasing the drug and 
controlling the biodegradability of the NGs can be combined with pH-responsive polymers to enhance drug 

), pH 7.5 (

Gels 2017, 3, 16 8 of 32 

 

incubated with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the 
inhibition produced by free HA.  

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma. To target the 
DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively bind to ASGP-R 
[68,69]. According to this concept, NG based on PVCL and MAA were conjugated with galactose and 
synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 °C and 102.4 nm in the collapsed 
state at 37 °C). NGs’ biodegradability comes from the initiator, N,N-bis(acryloyl) cystamine, a disulfide-bond 
containing cross-linker, which after GSH exposure allows the disintegration and shape irregularity of NGs. To 
achieve a therapeutic anti-cancer effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was 
pH-dependent, thus increasing the release rate when decreasing the pH due to the protonation of both MAA 
segments and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media 
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2 cells that 
overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory concentration (IC50) for 
free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in HepG2 cells indicating that Dox is 
efficiently released from NGs in liver cells. Otherwise, the IC50 for free Dox and Dox-targeted NGs was 0.8 and 
0.4 µM, correspondingly in HeLa cells suggesting that galactose-functionalized NGs had excellent selectivity for 
ASPG-R and suitable controlled drug release in tumor hepatic cells [70].  

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that sense, as the 
knowledge about biomarkers and tumor cell characteristics is rapidly growing nano-medicine is also improving. 
In fact, NGs can be considered as emerging therapies successfully directed to patient requirements.  

2.3. Multi-Responsive Nanogels 

The multi-modality trend provides a whole approach by combining MRI, visible targeting, targeted 
thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement in the therapy. 

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA as main 
thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Besides pH 
of the solution, ionic strength of the medium determines the swelling behavior of these PDEAEMA-based NGs. 
According to PDEAEMA properties, an increase in pH of the solution led to a reduction of the VPTT showing 
values physiologically relevant (38 °C and pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive 
NGs based on PNIPAM and hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel 
(EE close to 72%). Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase 
in size of the NGs and subsequently, swelling and drug release are favored [71]. 

 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a 
buffered solution (ionic strength of 150 mM). pH 6.0 ( ); pH 6.5 ( ), pH 6.9 ( ), pH 7.5 ( ) and 
pH 7.9 ( ). (Reprinted with permission from reference [25]. Copyright 2014 Wiley). 

The introduction of disulfide-functionalized linkages to use redox potential for releasing the drug and 
controlling the biodegradability of the NGs can be combined with pH-responsive polymers to enhance drug 

) and pH

7.9 (

Gels 2017, 3, 16 8 of 32 

 

incubated with free HA and the interaction between drug-loaded NGs and cancer cells was reduced due to the 
inhibition produced by free HA.  

Asialoglycoprotein receptor (ASGP-R) is dramatically increased in hepatocellular carcinoma. To target the 
DDS to tumor hepatocytes surfaces, nanocarriers include carbohydrates able to selectively bind to ASGP-R 
[68,69]. According to this concept, NG based on PVCL and MAA were conjugated with galactose and 
synthesized by emulsion polymerization (138.4 nm in the swollen state at 25 °C and 102.4 nm in the collapsed 
state at 37 °C). NGs’ biodegradability comes from the initiator, N,N-bis(acryloyl) cystamine, a disulfide-bond 
containing cross-linker, which after GSH exposure allows the disintegration and shape irregularity of NGs. To 
achieve a therapeutic anti-cancer effect, multi-responsive NGs were loaded with Dox. Dox release “in vitro” was 
pH-dependent, thus increasing the release rate when decreasing the pH due to the protonation of both MAA 
segments and Dox at acidic pH. Additionally, Dox release from NGs was enhanced in an enriched media 
containing 10 mM GSH, as expected. The efficiency targeting the tumor cells was assessed in HepG2 cells that 
overexpress ASGP-R, and HeLa cells as negative control. The half maximal inhibitory concentration (IC50) for 
free Dox and Dox-loaded targeted NGs was 0.7 and 1.08 µM, respectively in HepG2 cells indicating that Dox is 
efficiently released from NGs in liver cells. Otherwise, the IC50 for free Dox and Dox-targeted NGs was 0.8 and 
0.4 µM, correspondingly in HeLa cells suggesting that galactose-functionalized NGs had excellent selectivity for 
ASPG-R and suitable controlled drug release in tumor hepatic cells [70].  

Functionalized NGs can selectively deliver the drug in the target cells/tissues/organs. In that sense, as the 
knowledge about biomarkers and tumor cell characteristics is rapidly growing nano-medicine is also improving. 
In fact, NGs can be considered as emerging therapies successfully directed to patient requirements.  

2.3. Multi-Responsive Nanogels 

The multi-modality trend provides a whole approach by combining MRI, visible targeting, targeted 
thermo- and pH-sensitive chemotherapy and optic sensors, leading to an improvement in the therapy. 

Dual stimuli-sensitive NGs were synthesized by emulsion polymerization employing PDEAEMA as main 
thermo- and pH-responsive polymer and ethylene glycol dimethacrylate (EGDMA) as cross-linker. Besides pH 
of the solution, ionic strength of the medium determines the swelling behavior of these PDEAEMA-based NGs. 
According to PDEAEMA properties, an increase in pH of the solution led to a reduction of the VPTT showing 
values physiologically relevant (38 °C and pH 7.1) (Figure 3) [25]. On the other hand, pH- and thermo-sensitive 
NGs based on PNIPAM and hydroxyethyl acrylamide (HEAA) were loaded with the antitumoral drug Paclitaxel 
(EE close to 72%). Regarding HEAA monomer, at acidic pHs amine groups are protonated leading to an increase 
in size of the NGs and subsequently, swelling and drug release are favored [71]. 

 

Figure 3. Average hydrodynamic particle size as a function of temperature at different pH and in a 
buffered solution (ionic strength of 150 mM). pH 6.0 ( ); pH 6.5 ( ), pH 6.9 ( ), pH 7.5 ( ) and 
pH 7.9 ( ). (Reprinted with permission from reference [25]. Copyright 2014 Wiley). 

The introduction of disulfide-functionalized linkages to use redox potential for releasing the drug and 
controlling the biodegradability of the NGs can be combined with pH-responsive polymers to enhance drug 

). (Reprinted with permission from reference [25]. Copyright 2014 Wiley).

The introduction of disulfide-functionalized linkages to use redox potential for releasing the
drug and controlling the biodegradability of the NGs can be combined with pH-responsive polymers
to enhance drug targeting. Biocompatible polymers based on alginate were functionalized with
MAA and a cystamine derivative as cross-linker to provide a pH/redox dual responsiveness.
Dox was efficiently loaded and the release was dependent on both pH and presence of a reducing
agent [72]. On the other hand, NGs with a dual pH/redox sensitivity based on the pH-responsive
pentamethyldiethylenetriamine, cross-linked with a cystamine derivative and Dox-loaded, enhanced
cell inhibition in human colon carcinoma cells HT-29 [73].

As discussed, Dox has been successfully included in several kinds of multi-stimuli NGs and one
polymer used frequently is PVCL. PVCL functionalized-microgels with undecenoic acid (diameter size
close to 250 nm and Dox EE about 40%) were synthesized by precipitation polymerization. Authors
tuned hydrodynamic size, VPTT, and VPTpH by varying undecenoic acid concentration. At basic
pH, carboxyl groups from undecenoic groups are negatively charged increasing the hydrophilicity
and stability of microgel particles. As undecenoic concentration increases, the higher is the number
of carboxyl groups and subsequently, hydrogen bonds between polymer chains and water augments
resulting in an increase in VPTT. Accordingly, Dox-loaded microgels showed a slow release at
physiological pH while the release was faster at a more acidic pH due to protonation-deprotonation
behavior of undecenoic acid [74].

The presence of magnetic NPs in pH- and thermo-responsive NGs has also been analyzed with
promising therapeutic outcomes, specifically when these systems act as non-viral vectors [75]. Even,
as previously discussed, a single nanocarrier can include magnetic NPs, stimuli-responsive polymers,
and targeting ligands able to respond to various stimuli at the same time (Figure 4).
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Aguirre et al. synthesized cationic and biodegradable PVCL&PDEAEMA-based core-shell
nanogels using dextran-based macro-cross-linkers by means of a batch seeded emulsion polymerization
process. Polyplexes were formed with these NGs and siRNA, taking advantage of the electrostatic
attractions between the positively charged core-shell NGs and the negatively charged siRNA in
simulated physiological conditions. siRNA release from these NGs was dependent on the pH of the
release medium and the cross-linking density of the PVCL shell. These core-shell biodegradable NGs,
responsive to pH and temperature changes, provide novel possibilities as gene delivery carriers [77].

3. Technological Aspects of Nanogels

To be considered as a real possibility for biomedical applications, NGs must maintain their
properties and the payload both in aqueous media and after applying a technological process such as
lyophilization and sterilization.

3.1. Encapsulation Efficiency and Drug Loading

Nanogels show a high versatility regarding encapsulation of bioactive substances since one system
can include molecules with a different nature. Bioactive molecules can be incorporated in NGs by three
main mechanisms: (i) physical entrapment; (ii) covalent interactions, and (iii) controlled self-assembly.
Drug loading (DL) is often reported in terms of weight percent of the drug loaded per unit of nanogel
while encapsulation efficiency (EE) is reported as weight percent of the drug encapsulated in the
nanogel particles. An EE value between 5% and 25% is considered reasonable for nanosized drug
delivery carriers [78] although NGs allow much higher drug loading (up to 50% of weight) [79].

Physical entrapment is one of the most employed procedures to encapsulate active substances
into polymer network structures. Generally, drug loading occurs spontaneously in NGs avoiding drug
exposure to any adverse conditions. NGs can be synthesized in the absence of the active compound and
the drug loading process can be done efficiently later or even when the NGs are swollen and equilibrated
in water (equilibrium swelling method), preventing the active agent losing its pharmacological activity.
After reaching equilibrium, the bioactive is absorbed into the polymer network and DL is determined by
the driving forces involving non-covalent interactions such as hydrophobic interactions and H-bonding
between the active agent and the polymeric network. Moreover, cross-linking density in the network
determines the EE (encapsulation efficiency) and DL [80].

Nanogels can encapsulate both lipophilic and hydrophilic compounds since their core-shell
structure can include guest hydrophobic molecules in the hydrophobic core while aqueous agents
can be located in the surface of the polymeric network. In the case of hydrophobic molecules,
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especially poorly soluble anticancer drugs, NGs increase the drugs’ solubility and stability,
thus mproving their efficacy. For example, monomethyl oligo(ethylene glycol) acrylate (OEGA)
an ortho ester-containing acrylic monomer, and 2-(5,5-dimethyl-1,3-dioxan-2-yloxy) ethyl acrylate
(DMDEA) using bis(2-acryloyloxyethyl) disulfide (BADS) as a crosslinker were used to synthesize
temperature- and pH-sensitive NGs. Hydrophobic drugs such as Placitaxel and Doxorubicin (Dox)
were loaded in this polymeric network by interactions with the hydrophobic ortho ester units from the
copolymers. In addition, heating above VPTT promoted dehydration of the OEG chains resulting in a
more hydrophobic nature and thus, improving encapsulation efficiency of both drugs, but especially
Placitaxel which has a more hydrophobic nature [81].

Nevertheless, active substances can also be loaded in NGs during synthesis taking advantage of
the easy, simple, and organic solvent-free process that helps maintain the pharmacological activity of
the active compounds resulting in covalently bonded systems [82].

On the other hand, charged molecules such as siRNA or DNA, can establish electrostatic
interactions with positively charged functional groups from NGs resulting in the formation of
polyplexes and improving bioactive stability after encapsulation [68]. For example, after loading
siRNA, dextran-based NGs showed a charge reversal from positive zeta potential values (+21.1 mV)
to negatively charged polyplexes (−20.1 mV) [83]. Even, hemocompatibility studies demonstrated
that negatively charged dextran-based polyplexes modified with poly(ethylene glycol) (PEG) showed
minimal interactions with human blood cells “in vivo” [84].

After administration, NGs can safely carry the payload “in vivo”, move within the cells and
release the contents in the desired place.

3.2.Sterilization of Nanogels

While developing new controlled drug delivery systems, sterilization of these vehicles is becoming
especially important. Currently, several researches are focused on the effect of sterilization on both
drug and carrier [85–88]. According to Pharmacopeias, the objective of sterilization is to destroy
or eliminate unwanted living micro-organism contamination providing a Sterility Assurance Level
(SAL) equal or better than 10−6 (probability of finding a non-sterility unit of less than 1 in 1 million).
Sterilization of NGs designed for biomedical purposes must also be considered, since parenteral
administration is one of the most common dosage routes for anticancer therapy.

The sterilization methods currently used for pharmaceutical products are dry and moist heat,
chemical cold sterilization that employs ethylene oxide and other gases, filtration, and radiation.
Sterilization of the final formulation is the most employed method. Nevertheless, if the pharmaceutical
product cannot be sterilized during fabrication, aseptic processing will be required with the special
complications derived from handling and transfer of materials in a sterile environment [89].

Among the variety of sterilization methods, membrane filtration is a useful procedure for
sterilization of light or heat sensible nanosystems without adverse effects for the nanosystem
properties [90]. However, in the case of particles with a broad size distribution, sterilization by
filtration might not be the most adequate method because membrane pore size cannot be tailored for
filtration particles of different sizes [91]. In addition, rigid or inflexible particles can lead to clogging
of the sterilization membranes [92]. Despite the flexibility of nanogel particles, solid content loss can
occur when passing through the standard filtration sterilization membranes (0.22 µm pore size).

When the nature of the active ingredient and its delivery system allows it, autoclaving is a
non-toxic and safe for the environment method to sterilize. As previously described, autoclaving is a
technique also used for NGs formation. The effect of high-temperature sterilization on a covalently
linked system based on a protein, methemoglobin (Hb), and poly(acrylic) acid (PAA) was analyzed
by activity and circular dichroism studies. The optimal PAA (450,000 MW) concentration to form
nanogel networks was observed to be 0.2%. After sterilization in an autoclave (120 ◦C, 1.03 bar, 45 min),
the peroxidase-like activity was evaluated in (i) free Hb; (ii) a physical mixture of Hb and PAA and
(iii) the Hb-PAA network. Results showed a decreased peroxidase-like activity after sterilization
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with no significant differences among the three samples. In contrast to thermal denaturation,
the pH-responsiveness was improved in the Hb-PAA nanogels with a narrower pH range than
in the case of free Hb and the mixture Hb/PAA [93]. Although there are other studies in which NGs
are sterilized by autoclaving [94,95], more data related to their stability before and after sterilization
are necessary to determine the effect of heat in these nanosystems.

Radiation technique has become a useful method for “in situ” preparation and final sterilization
of pharmaceutical products. The irradiation doses for biomedical applications are between 10–30 kGy
depending on the size of the product. Irradiation doses are chosen according to the pharmaceutical
product, the initial bioburden, SAL and radiosensitivity of the microorganisms [96,97]. Sterile
pH-responsive and reproducible NGs composed of poly(vinylpyirrolidone) (PVP), PAA and
oligonucleotides have been obtained by beam irradiation (40 kGy) by several research groups [98–100].
These NGs have shown absence of toxicity “in vitro”, and the ability to cross cellular membranes and
reach the perinuclear area of the cytoplasm is potentially useful for biomedical applications [101].
pH-responsive NGs were prepared by gamma radiation-induced polymerization of acrylic acid (AA)
in an aqueous solution of PVP. Gamma radiation (20 kGy) promoted hydrogen-bonding interactions
between the AA molecules (proton donating carboxylic groups) and PVP (proton-accepting non-ionic
polymer). Particle size, swelling behavior and physic-chemical properties, such as viscosity, depend
on dose and exposure to irradiation temperature as well as on atmospheric composition during the
process. Furthermore, PVP molecular weight and total concentration of the sample are directly related
to the formation and mean size of polymeric nanoparticles. For example, nanogel particles were able
to swell from 83 nm at pH = 4 to 446 nm at pH = 7 when a 1.5% mixture of PVP (1,300,000 Da)/AA in
a molar ratio 35/65, at 35 ◦C and 20 kGy was used during the procedure. Regarding gamma radiation,
it was observed that the higher the irradiation dose, the higher the cross-linking degree and the lower
the swelling behavior of the nanogel particles [102].

Taking into account the key role of sterilization in intravenously administered NGs, further
studies to determine the unwanted effects of the sterilization methods on the structural changes of
polymeric NPs and the active ingredient included are required as well as the development of strategies
to overcome these drawbacks [103].

4. Biocompatibility and Biodegradability in Nanogels

As model nanocarriers, NGs must remain chemically unaltered, protecting and releasing the
active agents after reaching the target site. Likewise, essential properties of NGs are biocompatibility,
not causing harmful side effects derived from their use, and biodegradability—the property of
disappearing from the body once the active ingredient is released and its action is fulfilled.

4.1. Cytocompatibility Assays in Nanogels

Polymeric NGs synthesis implies using monomers, initiators, and surfactants that can have toxic
characteristics. To provide information about their biocompatibility and the most safe and effective
concentrations, “in vitro” studies are necessary [104–107].

Cell viability is analyzed using tests such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay, AlamarBlue, and trypan blue analysis. The MTT test, one of the most employed
techniques, is a colorimetric test based on the selective ability of viable cells to reduce MTT into an
insoluble compound, formazan.

As nanogels are being developed mainly as nanocarriers for cancer therapy, carcinoma cell
lines are commonly employed in the cytocompatibility and cytotoxicity studies. For instance, lung
cancer cells A549 were employed to test the toxicity of core-shell NGs based on linear PEG and/or
non-linear polymers with oligo(ethylene glycol) (OEG) side chains by the MTT technique. Besides
the good stability in physiological media and the ability to overcome freeze-thawing processes due
to the presence of the side chains of OEG, these nanogel particles showed good “in vitro” tolerance
in the range of concentrations from 0.5 mg/mL to 2 mg/mL. The lowest cell viability, close to 60%,
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was observed with the linear PEG-based NGs, without OEG shell at 2 mg/mL, probably due to their
different morphology, less prone to hydrolysis [108].

Multifunctional biodegradable chitin-based NG were developed by controlled regeneration
chemistry followed by sonication with an average diameter size <100 nm. These pH-responsive NGs
were conjugated with QDs for drug delivery with simultaneous imaging and biosensing. MTT studies
showed that these chitin-based NGs had no toxicity in six different cell lines: L929 (mouse fibroblast
cell line); NIH-3T3 (mouse embryonic fibroblast cells); KB (oral cancer cell line); VERO cells (kidney
epithelial cell line of the African Green Monkey); MCF-7 (human breast cancer cells), and PC3 (prostate
cancer cell line). Furthermore, chitin-based NGs were distributed into cytoplasm and perinuclear
region of cells and showed good hemocompatibility [109].

Cytotoxicity studies in NGs composed by OEG and pyridylsulfide encapsulating Dox,
with different cross-linking densities, were performed by Thayumanavan and co-workers [97].
Dox-loaded NGs showed cytotoxicity in MCF-7 cells after 72 h, although these cytotoxicity values
were lower compared to free Dox. Furthermore, cell uptake showed a significant accumulation in the
cytoplasm and was significantly improved when Dox was loaded in NGs.

Imaz and Forcada [110] synthesized NGs based on the biocompatible polymer PVCL.
The main monomer, VLC (N-vinylcaprolactam), was copolymerized with a sugar-based comonomer,
3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-a-D-glucofuranose (3-MDG). These NGs had VPTTs
that ranged from 31 ◦C to 36 ◦C. The biocompatibility of the synthesized NGs was analyzed in
embrionary rat neuronal cells by fluorescence measurements at different particle concentrations (1%,
0.3%, and 0.1%) for 24 and 72 h. NGs had good “in vitro” tolerance with cell viabilities higher than
80% when cells were exposed for 24 h to 0.3% and 0.1% particle concentration. As expected, toxicity
increased as contact time increased (Figure 5).
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Figure 5. Cell viabilities of 16-day “in vitro” cultured rat primary neuronal cells after incubating for
(a) 24 and (b) 72 h at three concentrations of nanoparticles (1%, 0.3%, and 0.1%). (Reprinted with
permission from reference [110]. Copyright 2010 Wiley).

Core-shell NGs based on PNIPAM were conjugated with a surface peptide, erythropoietin,
producing hepatocellular A2 receptor (EphA2) to target ovarian cancer. NG (about 54 nm mean
diameter size) efficiently encapsulated siRNA (EE of 93% ± 1%). Targeted-nanogels showed good cell
viability in two ovarian cancer cell lines, Hey and BG-1 (analysis performed by trypan blue and Tox8
assays). Cell uptake was also determined in (a) Hey cells that had a high expression of EphA2 receptor
and (b) BG-1 cells which had a low one. Uptake of NGs was EphA2 receptor expression-dependent
with a higher fluorescence levels in Hey cells compared to BG-1 cells. Additionally, authors observed
that while naked siRNA was unable to penetrate cell membranes, gene silencing was efficiently
achieved after adding peptide-functionalized NGs, suggesting that NGs play a protective effect and
avoid siRNA degradation/denaturalization during cellular processes thus leading to an enhanced
therapeutic effect [48].
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More recently, thermo-responsive PVCL-based, pH-responsive PDEAEMA-based, and dually
thermo- and pH-responsive PDEAEMA/PVCL-based core-shell NGs were synthesized using different
dextran-methacrylates as macro-cross-linkers that provided biocompatibility and biodegradability
properties. Dox was encapsulated in NGs by electrostatic interactions with high efficiency. “In vitro”
studies in two cell lines; cervical cancer cell (HeLa) and breast cancer MDA-MB-231, showed that bare
NGs were non-toxic and the toxicity of Dox loaded-NGs was lower than that of free Dox. To evaluate
the responsiveness to environment changes, Dox release from NGs was analyzed at an acidic pH (5.2)
and at neutral pH (7.4) with promising results. On the other hand, cellular uptake studies exhibited
that Dox-loaded NGs were located at endosomes or lysosomes and Dox molecules were gradually
released to the cytoplasm. These NGs were proved to meet the requirements for an ideal nanocarrier
in HeLa and MDA-MB-231 cell lines [26].

4.2. Biocompatibility Studies in Animals

Taking into account the “in vitro” biocompatibility and cytotoxicity results obtained, the next step
for nanogels to be considered as suitable nanocarriers is to display good “in vivo” tolerance [111–114].

Tamura et al. [18] synthesized by emulsion polymerization NGs based on PEG and EGDMA and
determined their feasibility as nanocarriers for systemic administration. The cross-linking degree in
PEGylated NGs varied depending on the EGDMA feed concentration (1, 2, and 5 mol %, in terms of
cross-linking density. Size, zeta potential, and swelling ratio were dependent on pH and cross-linking
density, as expected. The higher the cross-linking density the lower the swelling ratio due to the highly
cross-linked structure of the polyamine cores that limit the water uptake. By cytotoxicity studies,
PEGylated NGs with the highest cross-linking degree showed the lowest cytotoxicity in colon cells.
Then, biocompatibility was evaluated in healthy mice after intravenous injection. The acute toxic effect
derived from the polyamine cores of the PEGylated NG decreased from a median lethal dose (LD50)
of 20 mg/kg with a cross-linking density of 1 mol % to >200 mg/kg when the cross-linking density
increased to 5 mol %.

From a technological point of view, dextran is a saccharide widely employed in drug development
processes, as it is a molecule approved for medical use by the FDA. Dextran based-nanogels have
been evaluated in terms of biosafety with good results after IV administration [83,115]. The acute
and long-term toxicity of fluorescent dextran-PAA based-NGs (of about 180 nm) were assayed after
intradermal injection in mice. Biomarkers related to liver and kidney functions were analyzed from
blood mice 1 and 30 days after NGs injection. Blood biochemistry did not show any difference in
the indices studied (total protein, albumin, globulin, alanin transaminase, urea, etc.) and NGs were
eliminated by urine in a few days. Nevertheless, there was a passing increase of the proteins alanin
transaminase and aspartame transaminase, involving transient and slight liver damage 24 h after
injection. Animal body weight, behavior, and clinical signs did not change significantly in the treated
group compared with the untreated [116].

An “in vivo” tolerance study was performed in healthy volunteers that applied themselves
by a cutaneous route, a Poloxamer 407 (PEG-PPO-PEG) thermo-responsive nanogel loaded with
paromomycin. Previous to biosafety studies, paromomycin-loaded NGs showed suitable properties to
be administered on the skin “in vitro”. Paromomycin-loaded NGs had a size close to 30 nm, an acidic
pH similar to the skin (pH 5.8–6.3), a thermo-responsive pseudoplastic behavior (viscosity decreases
when temperature increases) and a proper spreadability. Cytotoxicity assays in RAW and VERO cells
demonstrated a good cytocompatibility (cell viability ≥ 80%). “Ex vivo” measurements in mice and
pig ear skin confirmed two-times more antileishmanial effects in the paromomycin-loaded NG than
the paromomycin solution. After that, volunteers with healthy skin applied paromomycin-loaded
NGs once a day for 3 days in a controlled ambient chamber (25 ◦C and 45% of relative humidity).
Then, abnormalities in the epidermal permeability barrier structure were assayed by transepidermal
water loss measurements with no significant differences between the paromomycin-loaded NGs and
the untreated control sites, demonstrating that this poloxamer-based nanogel had an appropriate
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“in vivo” tolerance. Furthermore, this formulation may be consider as a potentially useful system
for leishmaniosis therapy requiring a dose almost 20 times lower than in the currently topical
treatments [117].

Biosafety and biocompatibility analysis in animals are of great importance and although they
are becoming more present, further “in vivo” tolerance studies are necessary, particularly in humans,
to allow verification of the effectiveness of these systems “in vivo”, thus promoting clinical studies.

4.3. Biodegradation Mechanisms in Nanogels

Degradation of polymeric networks depends on the polymers as well as the cross-linking agents
employed during the synthesis of NGs. Network structure can be disintegrated by incorporating labile
cross-linking points into the NGs, yielding freely soluble polymer chains. In this sense, biodegradation
mechanisms can be governed by enzymatic activity and physiological/external changes.

An interesting approach is the synthesis of enzymatically degraded NGs. The enzymes
responsible for their degradation can be included in the polymeric network. After enzyme uptake
in the inactive form by NGs, the enzymes are activated under physiological conditions leading to
degradation of the network [118,119]. Aguirre et al. [120] synthesized enzymatically degradable
PVCL-based NGs by batch emulsion polymerization using dextran-methacrylate derivatives as
macro-cross-linkers. Dextranase, an enzyme that degrades dextran by cleaving linkages between
the glucose monosaccharide’s that compose dextran polysaccharides, was absorbed into the NGs
efficiently (95% of enzyme uptake using 100 U dextranase/g NG) in the inactive form (pH = 8 and
20 ◦C). Then, the enzyme was activated by increasing temperature (37 ◦C) and acidifying the media
(pH = 6). Enzymatic degradation was governed by the degree of substitution (number of methacrylate
groups per dextran chain) and dextran molecular weight of the macro-cross-linker used during NGs
synthesis. In the case of slightly cross-linked nanogel particles (low degree of substitution and low
molecular weight macro-cross-linker) dextranase released reducing sugars from dextran chains causing
de-swelling of nanogel particles. Otherwise, highly cross-linked particles (high degree of substitution
and high molecular weight macro-cross-linker) were swollen. In this case, dextranase was not able to
release reducing sugars due to the high cross-linking density of the polymeric network, but cleaved
some glucopyranosyl bonds modifying the network structure (Figure 6).
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Copyright 2013 RSC).
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On the other hand, network disintegration can appear when external stimuli such as a significant
difference in the pH or in the redox potential, enzymatic activity and even light irradiation are
applied [121–124]. In many cases, NGs degradation triggers the release of the active ingredient
incorporated in the polymeric network [125–127]. As previously discussed, pH in healthy cells is
higher than in tumor cells and, this difference is also evident between endosomal and extracellular pH
environments. As occurs with the pH, GSH concentration in cytoplasm is higher than in extracellular
environment and similarly, the redox potential is also increased in some cancer types [32]. To take
advantage of these tumor tissues properties, several works have been aimed at the development
of stimuli-responsive NGs that can release the active ingredient by degradation, mimicking the
intracellular/tumor cells environment [128,129]. Redox/pH dual stimuli NGs, using MAA as main
monomer and N,N-bis(acryloyl)cystamine as disulfide-functionalized cross-linker, were prepared
by distillation-precipitation polymerization. NGs had a unimodal size distribution (240 nm in the
dried state) and entrapped Dox by electrostatic interactions with a high loading efficiency (95.7%).
Degradation behavior of these NGs was monitored by turbidity and GPC measurements. After the
addition of a reductive agent, dithiothreitol (DTT), the turbidity of the NGs dispersion lead to a
clear solution within 30 min and the degraded polymers had a low molecular weight. Under acidic
pH (pH = 5) and at different GSH concentrations, 2 mM, 5 mM, and 10 mM, Dox release increased
from 57%, 78%, and 95% respectively in 24 h. Otherwise, at pH = 7.4 and without reducing agents,
mimicking blood circulation, Dox release from NGs was about 15% in 24 h indicating a low drug
leakage in physiological pH conditions and decreased systemic toxicity. In addition, Dox-loaded NGs
efficiently killed glioma tumor cells [72]. Regarding the enzymatic activity, Dox was also loaded into
pH-responsive NGs based on chitin and poly(caprolactone). Degradation was studied in the presence
or absence of lysozyme, an enzyme that cleaves the glycosidic linkages of chitin. After 30 days, around
80% and 70% of Dox-loaded chitin-poly(caprolactone) NGs were degraded with and without lysozyme,
respectively. The pH-responsive behavior was supported by “in vitro” studies in which Dox release
was significantly faster at acidic pH compared to physiological conditions. Glioma cancer cells uptake
Dox-loaded NGs, and Dox release took place in the cytoplasm according to the acidic pH and the
reduced intracellular microenvironment of glioma cancer cells [130].

Nanogels are also being developed as non-viral gene vectors due to their capacity to protect
the active agent from degradation and release it in a controlled fashion. Following the approach of
releasing the cargo as a consequence of NGs degradation, the vesicular stomatitis virus matrix protein
gene was loaded into PEI nanogels. To reduce the PEI high toxic effect, short PEI chains were coupled
into a longer one using heparin as biodegradable cross-linker, thus developing biodegradable NGs
by amide bond formation between the amine groups of branched PEI and the carboxyl groups of
heparin. The biodegradable cationic NGs showed a mean particle size and zeta potential of 75 nm and
27 mV, respectively. Biodegradation was studied “in vivo” after IV injection of heparin-PEI NGs in rats.
Twenty-four hours after administration, NGs were excreted through urine in the form of low molecular
weight PEI chains due to the quick degradation of heparin by physiological enzymes. Indeed, these
nanosystems efficiently inhibited colon cancer cells and the growth of colon carcinoma “in vivo” [131].

However, biodegradation can be hampered in some types of NGs due to the covalent bonds
established between polymer segments according to the synthesis process employed [132].
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5. Biotechnological Uses of Nanogels

Design and production of new nanogels based on more complex nanostructures is not only
dependent on a deeper knowledge of how these nanocarriers interact with biological systems, but also
on the requirements established by the specific biotechnological applications. Rapid developments
occur almost on a daily basis and they have been directed to achieve new nanogels for controlled and
targeted drug delivery for the treatment of several diseases. Main research works involving NGs as
therapeutic carriers for active substances are collected in Table 1.

5.1. Nanogels for Cancer Therapy

The high incidence, rapid evolution and the high mortality derived from cancers are the main
causes of developing novel therapies to improve traditional tumor treatments. The evolution in
the knowledge about proteomic [133], therapeutic targets [134], improved diagnostic strategies,
and emerged therapies [135] have led to a hopeful reduction in the cancer rate incidence [136].

Among these approaches, nanosized carriers are considered to be one of the most promising
strategies. Nanogels are becoming popular among other DDS to overcome the drawbacks in tumor
therapies due to the ability of stimuli-responsive polymer-based NGs to respond to external changes.
In addition, as previously discussed, surface-decorated NGs enhance drug therapeutic effects [137,138].
So, NGs have been prepared to passively (EPR effect) and actively target tumor cells/tissues/organs
showing promising results “in vitro” and “in vivo” [63,81,139]. Dox is one of the most employed
drugs to study the suitability of the carrier. In fact, several formulations based on Dox-loaded LPs
are currently on the market [140]. It is worth noting that Thermo-Dox, an intravenously injected
formulation based on temperature-sensitive LPs loading Dox, is in clinical trials [141]. According to
Thermo-Dox specifications, an external heat source must be applied to produce changes in the LPs
structure and create openings that release Dox directly in the target tumor. Phase III OPTIMA trial,
approved by the FDA, will evaluate the efficacy of Thermo-Dox LPs combined with hyperthermia
therapy in primary liver cancer [142]. Following this research line, Dox has been also loaded in
NGs to achieve a controlled release in the target site according to triggered stimuli from tumor
cells/tissues [143–146]. For example, Yang et al. [147] developed HA-based NGs to target cancer cells
since CD-44 and CD168 receptors (natural receptors for HA) are overexpressed in many tumors.
By methacrylation strategy, HA was functionalized and linked to di(ethylene glycol) diacrylate
(DEGDA) by radical copolymerization to obtain polymeric NGs with a stable mean diameter size
(78 ± 2 nm). This nanosystem showed a pH-dependent zeta potential value, being strongly negative at
neutral pH (−45.0 mV) and increasing on acidifying the medium (−12 mV at pH 4.2). HA-based NGs
were enzymatically degraded by physiological enzymes, hyaluronidases and lipases. In combination
with enzymatic activity and acidic pH, Dox loaded with high efficiency in the NGs network
(close to 62%), is released in a faster fashion than in neutral pH and in the absence of enzymes. Cells
with high CD44 and CD-168 receptor expression (A549 and H22 cells) showed a higher Dox uptake
than NIHT3T3 cells (low CD44 and CD168 expression) suggesting a receptor-dependent cellular uptake.
After IV injection in H22 tumor-bearing mice, “in vivo” near-infrared (NIR) fluorescence imaging
technique pointed out that Dox-loaded NGs are accumulated at the tumor site. This accumulation
effect was visible for at least 144 h post-injection. Finally, Dox-loaded HA-based NGs efficiently
inhibited tumor growth in mice (91% of tumor growth inhibition in animals treated with Dox-loaded
NGs versus 75% in animals treated with free Dox) due to (i) the higher uptake by tumor cells and (ii)
the superior Dox accumulation in the tumor site (Figure 7).
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Figure 7. (1) In vivo near-infrared (NIR) fluorescence imaging of fluorescent Dox-loaded HA-based NG
IV administered in induced tumor mice by injection of H22 tumor cells. The fluorescence intensities
are represented by different colors according to color histogram. Red circles on the images display
the localization of the tumor; (2) Tumor growth inhibition in H22 tumor-bearing mice that received
as treatment Dox-loaded HA-NGs, free Dox, unloaded HA-NGs and saline solution; (3) Uptake of
Dox-loaded HA NGs by cells with high CD44 and CD168 receptor expression (A) A549 and (C) H22 and
low receptor expression cells (B) NIH3T3. Fluorescent HA NGs are green-colored in the confocal laser
scanning microscope images indicating uptake by HA-receptor cells. The scale bar = 10 µm, (D) Flow
cytometry analysis of HA NGs incubated with A549, NIH3T3 and H22 cells for 4 h; (4) Biodistribution
of Dox for Dox-loaded HA NGs in H22 tumor-bearing mice at various time points after intravenous
injection. (Reprinted with permission from reference [147]. Copyright 2015 Elsevier).
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Table 1. Stimuli-responsive nanogels and their main uses in biomedical applications.

Nanogels Based on Synthesis Process Drug Stimuli-Responsiveness Therapeutic Field Reference

Methacrylate hyaluronic acid and di(ethylene glycol)
diacrylate (MAHA-DEGDA)

Radical
copolymerization Doxorubicin Physiological enzymes and pH Chemotherapy [142]

4-Methoxybenzoic
acid-poly[(2-(pyridin-2-yldisulfanyl)-co-[poly(ethylene
glycol)]-poly(N-isopropyl methacrylamide
(MBA-PDA-PEG-PNIPAM)

Free radical
polymerization

Silicon phthalocyanine
photosensitizer, Pc4

pH, temperature and redox
potential Chemotherapy [148]

Hyaluronic acid (HA) Emulsion Graphene and
Doxorubicin conjugates

Light, temperature, and redox
potential

Optical imaging and
thermo-chemotherapy [149]

Poly(ethylene glycol)-Hyaluronic acid with Ag-Au
Nanoparticles (Ag-Au@PEG-HA)

Precipitation
polymerization Temozolomide Temperature and light Optical imaging and

chemo-photo-thermal-therapy [76]

Poly(N-isopropyl methacrylamide-methacrylic
acid-quaternary ammonium alkyl halide with Fe3O4
nanoparticles P(NIPAM-MAA-DMAEMAQ) and
poly(N-isopropyl methacrylamide)-methacrylic
acid-hydroxyl ethyl methacrylate-quaternary ammonium
alkyl halide with Fe3O4 nanoparticles
P(NIPAAm-MAA-HEMA-DMAEMAQ)

Free radical
polymerization

Doxorubicin and
methotrexate

pH, temperature and magnetic
field Chemotherapy [150]

4-Vinylphenylboronic acid-2-(dimethylamino)ethyl acrylate
with Ag Nanoparticles (Ag@P(VPBA-DMAEA)

Emulsion
polymerization Insulin Glucose and light Diabetes treatment [151]

Glycol chitosan-sodium
alginate-poly(L-glutmate-co-N-3-L-glutamylphenylboronic
acid) (GC/SA-PGGA)

Isotropic gelation
method and
electrostatic
interactions

Insulin Glucose Diabetes treatment [152]

Poly(N-isopropyl methacrylamide)-dextran-maleic
acid-phenylboronic acid P(NIPAM–Dex–PBA) Polymerization Insulin pH, temperature and glucose Diabetes treatment [153]

Hydroxypropylmethylcellulose/poly-(acrylic acid)
(HPMC/PAA)

Surfactant free
polymerization Insulin pH Diabetes treatment [154]

Poly(ethylene glycol)-poly(aspartic acid) (PEG-PAsp) Self assembling and
cross-linking Insulin pH Diabetes treatment [155]

Boronic acid-Fe2O3 Nanoparticles-poly(vinyl
alcohol)-b-poly(N-vinylcaprolactam) PVOH-b-PNVCL

Micelle
thermo-formation Tamoxifen pH, temperature, glucose and

magnetic field
Thermo-chemotherapy and optical
imaging [156]

Dextran-(2-[methacryloyloxy]-ethyl) trimethylammonium
chloride DEX-NGs

Inverse miniemulsion
photopolymerization siRNA Physiological stimuli (natural

pulmonary surfactant) Pulmonary diseases [157]

Dextran-Lysozyme (Ab-NG-DEX) Enzymatic reaction Antibody ICAM-1 and
dexamethasone

Physiological stimuli (intercellular
adhesion molecule-1) Acute pulmonary inflammation [158]
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Table 1. Cont.

Nanogels Based on Synthesis Process Drug Stimuli-Responsiveness Therapeutic Field Reference

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene
oxide)-Polyvinyl alcohol with Fe3O4 nanoparticles
(F-127-PVA)

Self-assembly Ethosiximide Magnetic field and temperature Epilepsy [159]

Poly(N-isopropyl methacrylamide and N-vinylpirrolidone
(PNIPAM-VP)

Free radical
polymerization

N-hexylcarbamoyl-5-
Fluorouracil Temperature Brain tumors [160]

Polysorbate 80-coated chitosan Ionic gelation Methotrexate Surface modification Brain tumors [161,162]

Polyvinylpyrrolidone-poly(acrylic acid) (PVP/PAAc) g radiation-induced
polymerization Dopamine pH Parkinson disease [163]

Poly(ethylene glycol) and polyethylenimine PEG-PEI Emulsification-solvent
evaporation Oligonucleotides Surface functionalization Brain diseases [164]

Cholesterol-Polylysine Emulsification-solvent
evaporation

Nucleoside reverse
transcriptase inhibitors Surface functionalization

Human Immunodeficiency Virus
(HIV)-associated encephalitis and
neurodegeneration

[165]

Cholesterol-bearing pullulan (CHP) Self-assembly CHP nanogel
membrane Natural-based nanogels Bone regeneration [166]

Cholesterol-bearing pullulan (CHP) Self-assembly Prostaglandin E1 Natural-based nanogels Wound healing [167]
Cholesterol-bearing pullulan (CHP) Self-assembly W9-peptide Natural-based nanogels Bone regeneration [168]

Cholesteryl group- and acryloyl group-bearing pullulan
(CHPOA) Self-assembly

Human bone
morphogenetic protein
2 and recombinant
human fibroblast
growth factor 18

Natural-based nanogels Bone regeneration [169]
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Taking advantage of the coexistence of an increased temperature and the differences in pH
and redox gradients that appear in cancer cells or tissues, multi-functional NGs (responsive
to temperature, pH, and reducing ambient) have been designed to enhance therapy in tumor
diseases. In combination with this approach, designing targeted NGs led to a programmable
drug release at the specific target site. In that sense, He et al. [148] synthesized triple responsive
expansile NGs (TRN) sensitive to temperature, pH, and reducing ambient. A copolymer of
poly[(2-(pyridin-2-yldisulfanyl)-co-[poly(ethylene glycol)]] (PDA-PEG) reacted with PNIPAM by
free radical polymerization and copolymers were modified by adding cysteamine (that provides
responsiveness to redox potential). In addition, authors also targeted this TRN by adding
4-methoxybenzoic acid (MBA), a specific ligand for sigma-2 receptor that is present in head and
neck tumor cells, among others. TRN behavior was unexpected because instead of shrinking, particle
size remarkably expanded when temperature increased from 30.5 to 47 ◦C and MBA cross-linking
density increased from 20% to 40%, respectively. Likewise, particle size of TRN was pH-dependent
showing an expanded size upon the decrease of the pH from neutral to lysosomal values. Significantly,
after 2 h of exposure to cytosol reducing conditions (10 mM DTT) at body temperature, nanogel
particles swelled from 108 to 1200 nm. To study the ability of this TRN as a novel approach for cancer
therapy the silicon phthalocyanine photosensitizer, Pc4, was loaded into the TRN. Pc4 is a highly
hydrophobic molecule that can kill cancer cells by dividing the mitochondria. However, to avoid
toxicity and adverse effects and increase drug efficacy, releasing Pc4 specifically to the mitochondria
of cancer cells is mandatory, including Pc4 into the network at 30% of cross-linking MBA density,
the VPTT of the TRN dropped to 37 ◦C. “In vitro” Pc4 release rate from TRN was faster at acidic pH
(30.7% Pc4 released in 24 h at pH 5.0 compared to 13.6% after 3 days in buffer solution at pH 7.4)
suggesting that size enlargement correspond with a quick drug release. Confocal images assured
that MBA-targeted TRN were taken by cells expressing sigma-2 receptor via endocytosis and TRN
expanded inside cell lysosomes. In a mice model of head and neck tumor, MBA-Pc4-TRN was retained
in tumor sites and liver, 72 h after vein tail injection. However, 96 h post-injection liver showed much
less fluorescence while tumor sites still retained the luminescence (Figure 8).
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(red) in lysosome and mithocondria at 2, 3 and 21 h respectively for (A); (B) and (C). Scale bar in
(C) is 10 µm. (F) Biodistribution of MBA-Pc4-TRN before and 72 h after injection in induced tumor mice;
(G) “Ex vivo” images 96 h after MBA-Pc4-TRN according to color scale. (Reprinted with permission
from reference [148]. Copyright 2014 Elsevier).
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In addition, NGs, as other systems, can include not only the active substance, but also an imaging
agent combining dual effects, therapeutic and imaging, in one carrier [7,170,171]. This feature is
essential in the treatment of cancer, especially to improve therapies avoiding harmful side effects.
Noteworthy, the “in vivo” localization of nanocarriers allows determination of the efficacy of the
therapy and modifies it according to the specific patient requirements. Taking advantage of the
physico-chemical drug properties, the increased temperature of local media (cancer cells) and external
heat and light sources, and specific receptor binding, a HA-based nanogel containing graphene
(an efficient agent in killing tumor cells) and Dox conjugates was developed. Functionalized graphene
linked Dox by ester linkages, and the conjugates were coated by disulfide-cross-linked HA molecules.
Almost 100% of Dox was released in 48 h when NGs were exposed at pH 5.0, 10 mM GSH concentration,
and laser irradiation, responsible for initiating a single oxygen generation from graphene that breaks
disulfide bonds from HA network. “In vitro” and “in vivo” studies show a high efficacy of the
HA-based NGs killing tumor cells and inhibiting tumor growth. HA-based NGs are uptaken via
CD44-receptor by A549 cells and the “in vivo” assays display a combined therapeutic effect of
graphene and Dox located specifically at tumor sites with no adverse effects on healthy organs
due to the stimuli-responsive “multi-drug” release [149]. A similar approach in multi-modality was
followed by Zhou’s group, developing several types of thermo-responsive NGs for drug release and
imaging [172–174]. For example, a hybrid nanogel (<100 nm) based on PEG bonded to HA, as targeting
molecule, and containing Ag-Au NPs (10 ± 3 nm) was synthesized by precipitation polymerization
(Figure 4). The hybrid NGs efficiently encapsulated the antitumor drug temozolomide (from 35.2%
to 46.5%) due to the formation of hydrogen bonds between the ether oxygens of PEG and the amide
groups from the drug. An increased temperature produced a shrink of the network due to the
transition from hydrophilic to hydrophobic PEG chains. As a consequence, temozolomide is expelled
and diffused across the network in a temperature-dependent manner. In addition, these hybrid NGs
emit strong fluorescence that allows a combined therapy based on temperature increase (i) of the local
environment or (ii) caused by an exogenous stimulus (NIR irradiation) [76].

Cancer therapy can also be improved by reducing the frequency of administrations. For this
purpose, the simultaneous delivery of Dox and methotrexate triggered by acidic pH and increased
temperature was successfully achieved from superparamagnetic NGs based on copolymers of PNIPAM
and MAA derivatives encapsulating iron oxide NPs (<30 nm) [150].

As result of several efforts and intensive research, the multi-stimuli responsive NGs have emerged
with promising “in vitro” and “in vivo” results as novel platforms for antitumor agent delivery. In spite
of the fact that the translational to clinical application is complicated, especially when synthesis and
functionalization are complex and arduous, multi-responsive NGs enhance the efficacy of tumor
therapy. Indeed, multi-functional stimuli-responsive NGs allow diagnostic and targeted drug release
in a single carrier. Therefore, multi-stimuli NGs are remarkably attractive for developing innovative
nano-medicines for cancer treatments.

5.2. Nanogels for Chronic Diseases

Diabetes is one of the most common chronic diseases and there is an increased demand for
improving the therapeutic regimen, elaborating noninvasive glucose monitoring as well as finding
new ways for insulin administration [175,176]. From a technological point of view, the development
of glucose sensitive nanogels can overcome the challenges associated with diabetes treatment.
Indeed, to achieve near normo-glycemia values, NGs can release insulin in a controlled fashion
by glucose-responsive swelling/shrinking mechanisms [177,178].

Glucose-responsive systems can be divided into three classes: glucose oxidase (GOx), lectin,
and phenylboronic acid (PBA)-modified systems. Briefly, GOx is an enzyme that consumes glucose
to gluconic acid which causes a decrease in the pH of the microenvironment allowing the release
of encapsulated agents [179]. Among lectins, Concavalin A (ConA) is the glucose-responsive
carbohydrate more linked to polymer structures. In the presence of glucose, ConA is dissociated
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from the network to bind glucose and subsequently, active agents are released. Nevertheless,
these systems have shown low stability during storage restricting the practical applications [180].
The last glucose-responsive system was based on polymers functionalized with PBA. PBA have
two forms in equilibrium in water, one hydrophobic and a charged one. In the presence of glucose,
this equilibrium is broken because the charge compound of PBA forms a reversible complex with
glucose, and subsequently the release of the active agents takes place. NGs functionalized with
modified-PBA have been widely studied for insulin release due to their good stability during
storage and the high specificity of the PBA for glucose molecules [181]. Wu et al. [151] developed
a nanosystem that integrates glucose detection and a self-regulated insulin delivery. These authors
reported the synthesis of multifunctional NGs containing Ag NPs (10 ± 3 nm) in the core and a shell
composed of poly(4-vinylphenylboronic acid-co-2-(dimethylamino)ethyl acrylate (p(VBPA-DMAEA))
as glucose-detection system. NGs (<200 nm in a swollen state) have a VPTpH close to physiological
pH at 37.2 ◦C (size of about 120 nm, in the collapsed state). According to the authors, when NGs
are in an enriched-glucose medium, PBA is dissociated to bind glucose allowing expansion of the
polymer chains. As a consequence of the glucose-induced volume located at the shell of the nanogel,
the optical properties in the Ag NPs core change, converting the glucose concentration modification in
the local media into optical signals. This behavior is selective to glucose molecules and insulin release
is determined by glucose concentration. “In vitro” studies have shown that the higher the glucose
levels, the higher the insulin released from NGs. In addition, this mechanism is reversible and when
glucose is removed from the media, NGs recover both their initial structure and fluorescence.

On the other hand, studies performed in diabetic animal models have demonstrated that NGs
based on polymers functionalized with PBA derivatives can release insulin in a controlled fashion
according to glucose blood levels. Actually, after administration, NGs can maintain low glucose levels
for longer compared with free insulin [152,153] (Figure 9).
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Figure 9. Schematic picture of glucose sensitivity of a double-layered nanogel composed by
glycol chitosan/sodium alginate(SA)-poly(L-glutmate-co-N-3-L-glutamylphenylboronic acid) (PGGA)
encapsulating insulin and releasing it in the presence of glucose by complexation between PBA
derivative and glucose. (Reprinted with permission from reference [152]. Copyright 2015 RSC).

Additionally, pH-responsive NGs have been also proposed as an approach for insulin orally
administered. At stomach pH (1.2–2) insulin release is significantly lower compared to the delivery at
physiological pH due to the pH-dependent swelling/shrinking behavior of the polymeric nanosystems.
These systems are composed of polymers such as hydroxypropylmethylcellulose/PAA (HPMC/PAA)



Gels 2017, 3, 16 25 of 37

and PEG-poly(aspartic acid), that exhibit a pH-responsive swelling behavior attributed to the ionization
of the acid groups [154,155].

Recently, glucose-responsive NGs have proven to be suitable for tumor drug delivery.
Liu et al. [156] synthesized superparamagnetic NGs sensitive to glucose, pH, and temperature.
Stimuli-responsive hybrid NGs were based on poly(vinyl alcohol)-b-poly(N-vinylcaprolactam)
(PVA-b-PVCL) copolymers and boronic acid functionalized γ-Fe2O3 NP via boronate/diol bonding.
Tamoxifen, which has a hydrophobic nature, was loaded in the NGs and located in the hydrophobic
domain of PVCL. Drug-loaded NGs (mean diameter size of 580 nm and drug loading efficiency close
to 24%) controlled tamoxifen release at different pHs, glucose concentrations and after exposure to a
magnetic field “in vitro”. Besides showing good cytocompatibility, tamoxifen-loaded NGs significantly
enhanced inhibition on cell proliferation at acidic pH, close to tumor cells, and at increased glucose
concentration in human melanoma cells. Taking into account the circadian rhythms, authors suggest
that these nanosystems may be considered as an approach to improve therapeutic efficacy of orally
administered drugs.

NGs have also shown a high potential for the treatment of pulmonary disorders. In a
study performed by De Backer et al. [157], cationic NGs based on (2-[methacryloyloxy]-ethyl)
trimethyalammonium chloride and dextran were allowed to complex with siRNA. After studying
the interactions between the siRNA-loaded NGs and the negatively charged pulmonary surfactants,
authors concluded that surfactants potentiate siRNA delivery from dextran NGs. These systems,
administered with synthetic surfactants have been proposed as a novel option for the treatment of
pulmonary diseases caused by surfactant dysfunctions. The effectiveness of these targeted NGs loaded
with dexamethasone has been successfully evaluated for pulmonary inflammation in a mice model.

Biocompatible NGs composed of lysozyme and dextran were conjugated with Anti-ICAM-1,
an antibody of the cell adhesion glycoprotein, ICAM-1, located in pulmonary endothelium.
ICAM-1-NGs were found in a significantly higher concentration in lungs after IV injection compared
to spleen and liver accumulation. In addition, pro-inflammatory cytokine levels in the lungs were
reduced in the endotoxemic mice pre-treated with targeted NGs loaded with dexamethasone [158].

Huang et al. synthesized biocompatible NGs composed by PVA and F-127 (PEO-PPO-PEO triblock
copolymer) by a self-assembling procedure. NGs encapsulated both magnetic NPs and ethosuximide,
an anti-epilepsy drug. The thermo-responsive NGs had a 71 nm diameter size in the swollen state
at 25 ◦C and 22 nm in the shrinkage state at 45 ◦C. By applying a magnetic field, NGs released
ethosuximide instantaneously due not only to the shrinkage of the particles but also by the occurrence
of disruptive changes in the structure as a consequence of the increased temperature after magnetic
exposure. To test these nanosystems, rats suffering epilepsy were intravenously injected ethoxumide
loaded-NGs and then received a high frequency magnetic field. Epileptic episodes were decreased by
at least 60% after magnetic field exposure reporting promising results for epilepsy therapy [159].

These works open new opportunities in the field of the treatment of chronic diseases providing
proof of concept that multi-stimuli responsive NGs lead to an improvement in therapeutic outcomes.

5.3. Nanogels for Neurodegenerative Diseases

Considering the progressive evolution in a continuously aging population, an effective therapy
involving neurodegenerative pathologies, such as Alzheimer and Parkinson, remains a challenge.
After systemic administration, the most important factor limiting the access of the drugs to reach
the specific site of action is the blood brain barrier (BBB). Drug delivery in the brain is hampered
by the structure of the BBB made up of highly differentiated cells with intercellular tight junctions
that hinder the access of both small and high molecular weight molecules [182]. Although invasive
methods effectively overcome the BBB, they carry a high risk for the patients and costs for hospital
stays. In particular, invasive strategies include intracerebral injections, implants or drug delivery
by disruption or alteration of the BBB causing neurotoxicity due to the entry of endogenous
substances [183]. Non-invasive drug delivery strategies imply the nasal route, the hydrophobization of



Gels 2017, 3, 16 26 of 37

small molecules to passively cross through the BBB and the use of nanocarriers [184–186]. Progress in
the development of novel particulate DDS resulted in enhanced nano-formulations that cross the BBB
ensuring sufficient brain accumulation without administrating elevated drug doses [187,188]. In order
to achieve a proper drug concentration in the brain, nano-formulations should be positively charged
and decorated with brain-specific vectors to establish both electrostatic and specific interactions with
brain endothelium cells [189]. In this sense, NGs have been successfully developed for the treatment
of neurodegenerative diseases. For example, to enhance the permeability through the BBB, Soni et
al. [160] hydrophobized 5-FU and, after that, loaded it in the hydrophobic core of nanogels based
on PNIPAM and PVP and synthesized using N,N′-methylenebisacrylamide as cross-linker. NGs
containing 5-FU had a diameter size of 50 nm and EE close to 80%. 5-FU-loaded NGs were coated
with polysorbate 80 in order to lead the uptake by endothelial brain cells after interaction with the
low-density lipoprotein receptor [190]. Mice received an injection of 5-FU-labeled NGs coated and
uncoated with polysorbate 80. Radioactivity studies showed that at 1% of polysorbate 80, the maximum
possible accumulation of NGs in the brain was observed. Nevertheless, the effect of polysorbate 80 is
controversial. For example, methotrexate was loaded in NGs based on the natural polymer chitosan,
and then, decorated with polysorbate 80. Pharmacokinetic studies in rats indicated an increased drug
concentration in the brain when methotrexate-loaded NGs are injected compared with the free drug,
although any additional effect, such as the amount of the drug delivered to the brain, comparing the
surface-decorated or bared NGs was remarkable [161,162].

Sterile PVP-PAA NGs synthesized by gamma irradiation (diameter size 572 nm) were loaded
with dopamine (EE, 72%). Dopamine-loaded NGs were administered by intraperitoneal injection in
rats suffering reserpine-induced Parkinson disease. Dopamine was efficiently delivered from NGs
across the BBB at an optimized dose (12 mg/kg) and consequently, the catalepsy state improved in the
Parkinson induced experimental rats [163].

Vinogradov and co-workers [164] developed NGs of PEG and PEI and those that formed
complexes with oligonucleotides (ODN) by electrostatic interactions (particle diameter size
less than 100 nm). NGs were decorated with insulin and transferring molecules to provide
brain-binding specificity. Besides being nontoxic, ODN were efficiently delivered from nanogels
in an “in vitro” model of BBB. After intravenous administration in mice, ODN-loaded NGs were
found to be accumulated in the brain by over 15-fold when compared with the free ODN, while
free-ODN concentration was 2- and 3-fold higher in liver and spleen, respectively. Very recently,
NGs decorated with a brain-specific peptide, BP2, were synthesized using biodegradable and
biocompatible natural-based materials, polylysine and cholesterol for the treatment of Human
Immunodeficiency Virus (HIV)-associated encephalitis and neurodegeneration. Cationic BP2-NGs
(diameter size 32–35 nm) were intravenously injected in mice reaching a brain accumulation 2.5–3-fold
higher than with non-vectorized NGs [165].

The development of these novel drug-loaded nano-formulations can be considered as the further
step to adequate therapies for neurodegenerative diseases by decreasing the toxicity and improving
efficacy by brain-specific accumulation.

5.4. Nanogels and Tissue Engineering

Pullulan is a polysaccharide industrially obtained from starch and is widely used in research due
to properties such as film-forming and high compatibility among others. Pullulan can be modified
by adding cholesterol moieties, and the functionalized molecules are able to form NGs (of about
30 nm diameter size) by self-assembly in water. The size and density of nanogel particles can be
controlled by changing the degree of substitution of the cholesterol molecules in the NGs. Cholesterol
bearing pullulan (CHP) NGs have a high biocompatibility and they can be used for bone regeneration
purposes [191–193].

The potential of CHP NGs as guided bone regeneration was tested by Miyahara et al. [166].
Acryloyl-modified cholesterol-bearing pullulan NGs were mixed with thiol-modified PEG to form a
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membrane-shaped nanogel which was applied on the bone of rats that suffered from induced bone
defects. The animal group treated with the CHP NGs-based membrane developed new bone instead
of calcified areas and newly-formed bone appeared at an earlier time point compared to the collagen
group (control group). According to the authors the particularity of these NGs is to store endogenous
molecules, both hydrophilic and hydrophobic inside the network, and exchange them in a controlled
fashion with the extracellular media. Furthermore, CHP NGs containing a lipophilic compound,
prostaglandin E1, was tested in a rat model of skin defects with promising wound healing results [167].

Besides encapsulating hydrophobic molecules such as prostaglandins, CHP NGs can increase
the stability of encapsulated peptides and protect them from aggregation “in vivo”. For example,
W9-peptide accelerates bone formation “in vivo” [194]. W9-peptide is an antagonist of (i) the activator
of nuclear factor-kB ligand (RANKL) and (ii) the inflammatory cytokine tumor necrosis factor
(TNF)-a. These molecules are involved in inflammatory disorders and osteoclastogenesis. CHP NGs
(1.4 cholesterol moieties per 100 anhydrous pullulan glucoside units) successfully complexed
W9-peptide, leading to the formation of stable nanogel particles (of about 40 nm diameter size).
In a mice low dietary Ca bone destruction model, subcutaneous injections of W9-peptide-CHP
NGs inhibited bone loss suggesting the suitability of the CHP NGs as carriers for peptides [168].
Bone tissue engineering was also achieved by combining CHP NGs and two growth factors in a hybrid
hydrogel network. The stability of the growth factors was improved inside the system and in addition,
CHP NGs gradually released the bioactives, improving the healing and the osteo-inductive activity in
the bone [169].

Previous studies have demonstrated that copolymerization of pullulan and responsive polymers
lead to stimuli-responsive NGs with a high biocompatibility [126,129]. Nevertheless, more research
is necessary to develop multi-responsive NGs as useful tools for innovative clinical applications in
regenerative medicine.

6. Conclusions

The treatment for current diseases requires the development of systems designed to protect
and deliver the active agent close to the target site in a controlled fashion. In this sense, NGs are
emerging tools as suitable nanocarriers with a multifunctional and responsive nature for simultaneous
imaging of tumors and drug delivery. NGs also show great use in gene therapy to protect the
active substance improving the therapeutic effect. The design of NGs has been directed to obtain
nanoparticles able to respond to environmental stimuli, such as a gradient in pH, temperature changes,
ligand molecules, or even by applying an external factor as in the case of hybrid systems combining
magnetic nanoparticles and stimuli-responsive NGs.

The tolerance of NGs intended for biomedical applications is a critical issue as NGs can travel
throughout the body to target tissues. Polymers employed in the synthesis of NGs must have good
tolerance, being biocompatible and biodegradable. Polymerization processes are daily evolving
to obtain multifunctional and biocompatible NGs that can respond to environmental changes.
The development of biocompatible NGs by using biocompatible polymers is also a critical point
in reaching the clinic. In fact, there are a number of interesting nanocarriers under investigation with
associated toxicity that prevents their translation to biomedical practice. To assure elimination as
well as a high tolerance, several NGs have been synthesized with biocompatible and biodegradable
materials. Furthermore, according to the great number of works regarding multi-stimuli NGs in
recent years reported in the literature, it is encouraging to expect important progress in translational
research focused on using NGs in biomedical applications. Following this line, this review is devoted
to the most promising NGs reported in the literature, which can be actually or potentially used in
biomedical applications.
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