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Abstract: The effects of three hydrophilic polymers, namely, carboxymethyl cellulose sodium
(CMC-Na), polyvinyl alcohol (PVA) and poloxamer-188 (PXM-188) on the solubility and dissolution
of diflunisal (DIF) in complexation with β-cyclodextrin (βCD) or hydroxypropyl β-cyclodextrin
(HPβCD), were investigated. The kneading method was used at different drug to cyclodextrin weight
ratios. Increases in solubility and drug release were observed with the DIF/βCD and DIF/HPβCD
complexes. The addition of hydrophilic polymers at 2.5, 5.0 and 10.0% w/w markedly improved the
complexation and solubilizing efficiency ofβCD and HPβCD. Fourier-transform infrared (FTIR) showed
that DIF was successfully included into the cyclodextrin cavity. Differential scanning calorimetry
(DSC) and X-ray diffractometry (XRD) confirmed stronger drug amorphization and entrapment in
the molecular cage of cyclodextrins. The addition of PVA, CMC-Na or PXM-188 reduced further the
intensity of the DIF endothermic peak. Most of the sharp and intense peaks of DIF disappeared with
the addition of hydrophilic polymers. In conclusion, PXM-188 at a weight ratio of 10.0% w/w was the
best candidate in enhancing the solubility, stability and release of DIF.

Keywords: diflunisal; β-cyclodextrin; hydroxypropyl β-cyclodextrin; hydrophilic polymers;
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1. Introduction

The major challenges of BCS class II (low solubility and high permeability) drugs are poor aqueous
solubility and dissolution [1–4]. Various techniques have been introduced to overcome the limitation
of BCS Class II drugs, which include salt formation, lipid-based formulations, particle size reduction,
solid dispersions and complexation with cyclodextrins or its derivatives [5–9]. Complexation of
poorly soluble drugs with cyclodextrins has become one of the important approaches in formulation
development [10–12]. Cyclodextrins exhibit basket-like structure with an outer hydrophilic surface,
whereas the inner cavity is lipophilic. The whole molecule appears as a cone/torus shape due to
limited rotation of bonds connecting the glucopyranose units, providing the opportunity to lodge
a variety of suitably sized lipophilic drugs within the cavity [13]. Favorable modifications to the
physicochemical properties of poorly soluble drugs, namely, solubility, stability, dissolution rate and
bioavailability, could be achieved via complexation with cyclodextrins [14]. Although alpha, beta and
gamma cyclodextrins (consisting of six, seven and eight glucopyranose units, respectively) are available,
βCD is the most extensively used, which could be attributed to the factors of price, cavity dimensions,
approval status and availability [15,16]. Diflunisal is chemically 5-(2′, 4′-difluorophenyl) salicylic acid
(C13H8O3F2). It is considered a new salicylic acid synthetic analog, in which the difluorophenyl group
(at the C5 position of salicylic acid) is responsible for imparting lipophilic character to the molecule [17].
In the literature, the majority of the work was done on the analytical characterization of diflunisal, such
as nuclear magnetic resonance studies and ion-selective electrode potentiometry [18–20]; however,
Zugasti et al. (2009) developed a diflunisal binary system through a coevaporation technique by
using a single ratio [21]. Solubility enhancement of DIF via the formation of solid dispersion with
polyethylene glycol, inclusion complexes with polyethylene glycol (PEG) and poly e-caprolactone
(PCL), solid dispersion with Eudragit RS 100 and RL 100, coprecipitates with PVP K30, βCD inclusion
complex, DIF-pyrazinamide and nicotinamide co-crystal were reported [22–27]. Enhancement in
solubility and dissolution of DIF could ameliorate the bioavailability of DIF.

The addition of hydrophilic polymers was found to improve the solubilization and complexation
efficiency of cyclodextrins [28]. In view of the favorable effect as a result of incorporation of hydrophilic
polymers, PVA, CMC-Na, and PXM-188, were used for diflunisal in the present study. These hydrophilic
polymers could ameliorate the solubilizing and complexation efficiency of cyclodextrins and their
derivatives [29–31].

PVA maintains a higher concentration of the free drug at the target site, either by augmenting the
drug solubility or by shifting the equilibrium between the free drug [D] and [D]–PVA–CD complex
towards the former [32]. CMC-Na was reported to enhance the solubilizing efficiency of CDs, thus,
improving the complexation efficiency between drug and carrier, as supported by previous data [33].
On the other hand, PXM-188 presents significant improvement in the dissolution profile by impeding the
crystalline state of the drug, resulting in an amorphous form of the drug [34]. The purpose of the study
was to investigate the effect of carboxymethyl cellulose sodium (CMC-Na), polyvinyl alcohol (PVA) and
Poloxamer-188 (PXM-188), on the complexation efficiency of β-cyclodextrin (βCD) and hydroxypropyl
β-cyclodextrin (HPβCD), in enhancing the solubility and release of a BCS Class II drug, diflunisal
(DIF). The kneading method was used in the preparation of the inclusion complexes. The binary and
ternary systems were characterized using scanning electron microscopy (SEM), Fourier-transform
Infrared (FTIR), differential scanning calorimeter (DSC) and X-ray powder diffraction (XRD).

2. Materials and Methods

2.1. Materials

Diflunisal was supplied by AK Scientific (Union city, San Francisco, USA). Beta-cyclodextrin
(βCD) and hydroxypropyl β-cyclodextrin (HPβCD) were provided by Roquette (Lestrem, France).
Carboxymethyl cellulose sodium (CMC-Na) and Poloxamer-188 (PXM-188) were purchased from
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Sigma-Aldrich (St. Louis, MO, USA). Polyvinyl alcohol (PVA) was purchased from Daejung (Siheung,
Korea). All other materials were of analytical reagent grade and used as received.

2.2. Phase Solubility Study

Phase solubility study was conducted according to the method of Higuchi and Connors [35].
Diflunisal in excess amounts was added to 10 mL of aqueous solutions of varying concentrations of
βCD or HPβCD with hydrophilic polymers (0, 2.5, 5.0 and 10.0% w/v). The suspensions were placed
in a shaking water bath at a temperature of 37 ◦C for 72 h to reach equilibrium. After centrifuging at
6000 rpm for 30 min, the samples were filtered. The concentration of DIF in the sample was analyzed
using a UV spectrophotometer (UV-1700, Shimadzu, Kyoto, Japan) at 251.5 nm after suitable dilution.
The stability constant (Ks) and complexation efficiency (C.E) were calculated using the following
equations [36].

Ks =
slope

So(1− slope)
(1)

where So is the equilibrium solubility of DIF in water; slope is obtained from the plot of DIF
concentration against βCD or HPβCD concentrations with or without polymers.

C.E =
slope

1− slope
(2)

2.3. Preparation of Binary Complexes

The binary inclusion complexes comprising DIF and βCD or HPβCD at 1:1, 1:2 and 1:4 weight
ratios were prepared. The drug and cyclodextrins were kneaded in the presence of water and methanol
(1:1) for 45 min followed by drying at 45 ◦C for 24 h. The dried mass was passed through a sieve
(number 60) and stored in an air-tight container.

2.4. Preparation of Ternary Complexes

PVA, CMC-Na or PXM-188 at concentrations of 2.5, 5.0, 10.0% w/w at dry weight of inclusion
complexes were added to binary complexes comprising of DIF and βCD or HPβCD at a 1:2 ratio.
The mixtures were kneaded in the presence of water: methanol (1:1) for 45 min, followed by drying
at 45 ◦C for 24 h. The dried mass was then passed through a sieve (number 60) and stored in an
air-tight container.

2.5. Solubility Studies

The cyclodextrin complexes were added into 20 mL distilled water in glass vials and vortex
mixed for 3 min. Then, the vials were placed in a shaking water bath at 30 ◦C for 72 h. The samples
were filtered through a 0.45 µm membrane filter and analyzed using UV-spectrophotometer (UV-1700,
Shimadzu, Kyoto, Japan) at 251.5 nm after suitable dilution [37]. Each measurement was repeated
in triplicate.

2.6. In Vitro Diflunisal Dissolution Studies

The in vitro dissolution studies were conducted using USP dissolution apparatus II (PTWS 3CE,
Pharmatest, Hainburg, Germany) paddle method (USP XXXII, 2009). The dissolution medium was
comprised of 900 mL of distilled water maintained at 37.0 ± 0.5 ◦C with a paddle speed of 100 rpm.
The quantity of sample equivalent to 10 mg of the drug was weighed accurately and added into each
dissolution vessel. Samples of 5 mL were withdrawn at preset time intervals of 2.5, 5.0, 10.0, 15.0,
30.0, 45.0 and 60.0 min, and refilled with fresh dissolution medium. The drug concentration in the
sample was analyzed using a UV spectrophotometer (UV-1700, Shimadzu, Kyoto, Japan) at 251.5 nm.
Dissolution Efficiency (DE) was determined using trapezoidal method and expressed as percentage of
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the area of the rectangle divided by the area of 100% dissolution in the same time period. DE% was
calculated using the following equation.

DE(%) =

∫ t
0 yXdt

y 100 Xt
× 100% (3)

where y is the percentage of dissolved DIF; DE is the area under the dissolution curve between time
points t1 and t2 expressed as a percentage of the curve at maximum dissolution, y100, over the same
period. It was computed to compare the performance of binary and ternary formulations [38]. The time
taken for 50% drug release (T50%) was obtained from the drug dissolution profiles.

2.7. Scanning Electron Microscopy (SEM)

The surface morphology of DIF, βCD, HPβCD, PVA, CMC-Na, PXM-188, binary inclusion
complexes and ternary inclusion complexes was observed under scanning electron microscope
(JSM-6480, Tokyo, Japan). Electrical conductivity was improved by sputtering a thin gold layer on the
samples before imaging.

2.8. Fourier-Transform Infrared Spectroscopy (FTIR)

The infrared spectra of samples were obtained using FTIR (BRUKER-Tensor II-ALPHA, Berlin,
Germany). The samples (10–50 mg) were directly placed on a sample pan and analyzed over a region
from 4000 to 400 cm−1 with 10 scans, at a resolution of 1 cm−1 and wavenumber accuracy of 0.01 cm−1.

2.9. Differential Scanning Calorimetry (DSC)

The thermograms of samples were recorded using a differential scanning calorimeter (Universal
V4.2E TA Instruments, Newcastle, DE, USA). A sample of 5 mg was crimped in a covered sample pan
and heated in an atmosphere of nitrogen (20 mL/min) at a rate of 10 ◦C/min over the temperature range
of 25–400 ◦C. An empty aluminum pan was used as a reference.

2.10. Powder X-ray Diffractometry (XRD)

The diffraction pattern of samples was obtained using an X-ray powder diffractometer (Bruker
D-8 Advance, Berlin, Germany). A sample of 10 mg was packed in an aluminum sample container
after slight grinding. The required conditions to obtain the diffraction pattern were as follows: Current
30 mA, target Cu, voltage 30 kV, filter Ni, time constant 4 s, scanning 5 to 60 ◦C, at increments of 0.02 ◦C.

2.11. Statistical Analysis

The results were presented as mean ± standard deviation (SD). The statistical analysis was
performed using SPSS® (Version 16, USA). The solubility results were analyzed using one-way
analysis of variance (ANOVA). When there was a statistically significant difference, a post hoc Tukey
HSD (Honestly significant difference) test was performed. A statistically significant difference was
considered at p < 0.05.

3. Results

3.1. Phase Solubility Study

Figure 1a–d demonstrated the proportional increase in solubility of DIF with increases in βCD
or HPβCD concentration. A comparatively higher solubility of DIF in HPβCD than βCD could
be attributed to a relatively higher solubilization efficiency of HPβCD. The addition of hydrophilic
polymers further improved the solubility. PXM-188 yielded the highest value of slope at the same
concentration, thus, giving maximum drug solubility. The stability constant and complexation efficiency
of both binary and ternary systems of βCD and HPβCD are shown in Table 1. CMC formed gel at this
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concentration, and hence, was excluded from phase solubility. The ternary system produced more
enhanced drug solubilization than the binary system, as indicated by their stability constant values.
The reported value of stability constant for improved drug stability ranged from 200 to 5000 M−1 [39].
It is favorable to measure complexation efficiency (C.E) as it is a more accurate term in relation to
intrinsic solubility determination [40].Polymers 2020, 12, x FOR PEER REVIEW 5 of 18 
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Table 1. Stability constant and complexation efficiency results of binary and ternary inclusion complexes.

Inclusion Complexes Stability Constant (M−1) Complexation Efficiency

DIF: βCD 528.6 ± 1.0 0.094
DIF: HPβCD 1014.8 ± 0.1 0.180

DIF: βCD: PVA (2.5%) 1142.5 ± 0.2 0.203
DIF: βCD: PVA (5.0%) 1224.7 ± 1.1 0.218

DIF: βCD: PVA (10.0%) 1241.5 ± 0.5 0.221
DIF: βCD: PXM-188 (2.5%) 1134.3 ± 0.4 0.201
DIF: βCD: PXM-188 (5.0%) 1241.5 ± 2.0 0.218

DIF: βCD: PXM-188 (10.0%) 2317.0 ± 1.0 0.412
DIF: HPβCD: PVA (2.5%) 1150.3 ± 0.6 0.204
DIF: HPβCD: PVA (5.0%) 1241.5 ±1.0 0.221

DIF: HPβCD: PVA (10.0%) 1267.1 ± 1.5 0.225
DIF: HPβCD: PXM-188 (2.5%) 1309.2 ± 0.2 0.233
DIF: HPβCD: PXM-188 (5.0%) 1404.4 ± 0.3 0.250
DIF: HPβCD: PXM-188 (10.0%) 2407.3 ± 0.6 0.428

3.2. Solubility Studies

The solubility data of DIF, binary and ternary systems of βCD and HPβCD are given in Table 2.
Solubility of DIF was enhanced as a result of complexation with βCD and HPβCD. At a ratio of DIF
to cyclodextrin of 1:2, solubility was drastically increased from 44.60 to 450.36 µg/mL for βCD and
907 µg/mL for HPβCD (p < 0.05). There was no substantial increase in DIF solubility by increasing
the amount of cyclodextrins further (p > 0.05). As such, the DIF/cyclodextrin complex at a ratio
of 1:2 was chosen for subsequent study. A statistically significant (p < 0.05) improvement in DIF
solubility was observed by the addition of hydrophilic polymer. The solubility further increased when
polymer concentration was raised from 2.5% to 10.0%. The solubility of DIF was the highest with
PXM-188, followed by PVA and lastly, CMC-Na. PVA showed better solubility than CMC-Na due to
better inclusion efficiency and improved complexation [41]. Maximum solubility was recorded for
the DIF/HPβCD/PXM 188 ternary complex (1259.50 µg/mL), which was approximately 28 times that
of drug solubility (44.60 µg/mL) and was considered statistically significant (p < 0.05). This could be
attributed to having the least crystalline features and transformation of its ternary complexes into
amorphous form [42].

Table 2. Solubility data of DIF, binary and ternary inclusion complexes. Mean ± SD, N = 3.

DIF:CD (w/w)
Solubility (µg/mL)

βCD HPβCD

1:0 44.6 ± 0.02 44.6 ± 0.02
1:1 284.5 ± 0.5 765.5 ± 0.5
1:2 450.3 ± 0.6 907.5 ± 0.5
1:4 500.5 ± 0.5 940.4 ± 0.5

1: 2 (2.5% PVA) 789.6 ± 0.5 965.5 ± 0.5
1: 2 (5.0% PVA) 846.3 ± 0.6 1049.3 ± 0.6
1: 2 (10.0% PVA) 904.1 ± 0.5 1190.3 ± 0.6

1: 2 (2.5% CMC-Na) 692.1 ±0.3 924.3 ± 0.6
1:2 (5.0% CMC-Na) 723.6 ± 0.6 1000.5 ± 0.5

1:2 (10.0% CMC-Na) 800.6 ± 0.5 1089.6 ± 0.6
1:2 (2.5% PXM-188) 791.2 ± 0.7 998.5 ± 0.5
1:2 (5.0% PXM-188) 894.4 ± 0.5 1181.6 ± 0.6
1:2 (10.0% PXM-188) 930.0 ± 0.5 1259.5 ± 0.5

Valero et al. reported ternary inclusion complexes of naproxen,βCD and PVP, in which the polymer
(PVP) has greater affinity for the naproxen/βCD binary systems than the free drug, and surrounded the
binary system partially or completely through hydrogen bonding, resulting in pronounced increase in
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solubility [43]. The presence of CMC-Na did not enhance aqueous solubility of diflunisal considerably
in the presence of cyclodextrins. This is further supported by the study of Alexanian et al. (2008) [44].
At low concentrations, CMC-Na interacts with the drug/CD inclusion complex in the same way as
with micelles, but upon further increase in concentration, there is no significant increase in solubility,
which could be possibly explained on the basis of its higher viscosity.

The ternary systems produced better complexation efficiency and improved solubility than that
of binary systems. The polymer interacts with drug/CDs complexes through the outer surface of
CD molecules and forms aggregates that are capable of solubilizing drugs and various hydrophobic
entities [45].

3.3. In Vitro Dissolution Study

Figure 2a,b showed the dissolution of DIF, binary and ternary complexes with different contents
of PVA, CMC-Na or PXM-188. DIF manifested the least dissolution, with approximately 50% of
drug released after one hour. It could be observed that the percentage of drug release of both βCD
and HPβCD binary systems was comparatively higher than that of DIF. The addition of hydrophilic
polymers further increased the drug release rate. The ternary system of DIF/HPβCD/PXM-188 yielded
the highest dissolution. The ternary system with CMC-Na and PVA also showed improved dissolution
than their corresponding binary systems, but less than PXM-188. The reason behind this is their
viscosity, which hinders the diffusion of dissolution medium to the powdered product. Capello et al.
(2001) reported that interaction of either the CD molecule or drug–CD complex with the hydrophilic
polymers could lead to formation of aggregated hydrates in the solution, increasing the thickness
of the diffusion layer and ultimately, slowing the drug release. The dissolution efficiency (DE) and
time taken for 50% drug release (T50%) results are presented in Table 3. The DE and T50% values were
statistically analyzed using ANOVA (post hoc Tukey HSD test). The rate of in vitro dissolution for
DE and T50% values was statistically significant different when DIF and its inclusion complexes were
analyzed. A statistically significant difference (p < 0.05) was observed when compared to the DE
values of the binary kneaded mixture with pure DIF, whereas ternary complexes produced significant
differences (p < 0.05) and improved DE as compared to the binary kneaded mixture. The longest T50%

was observed for DIF as compared to its binary and ternary systems. The improved dissolution could
be possibly described by the decrease in drug crystallinity of binary and ternary systems.
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Table 3. The dissolution parameters of DIF, binary and ternary systems. Mean ± SD, N = 3.

Samples DE60 (%) T50% (min)

DIF 24.2 ± 0.3 57.8 ± 0.2
DIF:βCD 1:2 66.8 ± 0.02 11.3 ± 0.03

DIF:HPβCD 1:2 66.7 ± 0.02 9.4 ± 0.01
DIF:βCD 1:2 (10% PVA) 71.6 ± 0.05 8.4 ± 0.01

DIF:βCD 1:2 (10% CMC-Na) 68.5 ± 0.07 10.8 ± 0.01
DIF:βCD 1:2 (10% PXM-188) 76.7 ± 0.07 6.2 ± 0.02
DIF:HPβCD 1:2 (10% PVA) 76.4 ± 0.04 7.65 ± 0.01

DIF:HPβCD 1:2 (10% CMC-Na) 69.3 ± 0.03 9.0 ± 0.01
DIF:HPβCD 1:2 (10% PXM-188) 81.0 ± 0.01 6.53 ± 0.01

3.4. Scanning Electron Microscopy (SEM)

The scanning electron micrographs of DIF, βCD, HPβCD, PVA, CMC-Na, PXM-188, binary
complexes and ternary complexes are given in Figure 3. DIF appeared as crystalline matter with bars of
different lengths and widths (Figure 3a). βCD presented as large rhomboidal crystals with non-smooth
surfaces (Figure 3b). HPβCD exhibited oval shaped smooth particles of different sizes with concave
depression (Figure 3d). The smaller particles were observed to adhere with the larger particles.

The DIF/βCD complex presented a rough surface with indefinite shape (Figure 3c). On the other
hand, DIF was found to be included within HPβCD for the DIF/HPβCD complex. The shape of
HPβCD changed from globular to a plane lamellar surface due to complex formation. The binary
complex appeared as an amorphous structure of miscellaneously dispersed particles with asymmetrical
morphology and coarse surface (Figure 3e). The SEM study indicated that the kneading method
successfully converted DIF to an amorphous state in CD.

PVA appeared as large smooth surface particles due to its semi crystalline state (Figure 3f).
CMC-Na exhibited irregular fiber structure of variable length (Figure 3g). PXM-188 showed a large
globular form (Figure 3h). PVA produced a much coarser ternary system with HPβCD than βCD.
However, these systems appeared amorphous in the SEM micrographs (Figure 3i and l). In the
DIF/βCD/CMC-Na ternary complex, CMC-Na appeared to form a layer over DIF/βCD (Figure 3j),
whereas DIF/HPβCD/CMC-Na expressed more amorphous features due to the loss of original shape
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of the pure drug and HPβCD (Figure 3m). In the DIF/βCD/PXM-188 ternary complex, the crystal
structure of PXM-188 disappeared and was adsorbed on the DIF/βCD surface (Figure 3k), retaining
little crystallinity. In the case of DIF/HPβCD/PXM-188, the ternary complex appeared as an amalgam
and in aggregated form (Figure 3n).Polymers 2020, 12, x FOR PEER REVIEW 10 of 18 

 

 

Figure 3. Scanning electron photomicrographs of (a) DIF; (b) βCD; (c) DIF/βCD (1:2); (d) HPβCD; (e) 

DIF/HPβCD (1:2); (f) PVA; (g) CMC-Na; (h) PXM-188; (i) DIF/βCD (1:2) PVA 10%; (j) DIF/βCD (1:2) 

CMC-Na 10%; (k) DIF/βCD (1:2) PXM-188 10%; (l) DIF/HPβCD (1:2) PVA 10%; (m) DIF/HPβCD (1:2) 

CMC-Na 10%; (n) DIF/HPβCD (1:2) PXM-188 10%. 

The DIF/βCD complex presented a rough surface with indefinite shape (Figure 3c). On the other 

hand, DIF was found to be included within HPβCD for the DIF/HPβCD complex. The shape of 

HPβCD changed from globular to a plane lamellar surface due to complex formation. The binary 

complex appeared as an amorphous structure of miscellaneously dispersed particles with 

asymmetrical morphology and coarse surface (Figure 3e). The SEM study indicated that the 

kneading method successfully converted DIF to an amorphous state in CD. 

PVA appeared as large smooth surface particles due to its semi crystalline state (Figure 3f). 

CMC-Na exhibited irregular fiber structure of variable length (Figure 3g). PXM-188 showed a large 

globular form (Figure 3h). PVA produced a much coarser ternary system with HPβCD than βCD. 

However, these systems appeared amorphous in the SEM micrographs (Figure 3i and l). In the 

DIF/βCD/CMC-Na ternary complex, CMC-Na appeared to form a layer over DIF/βCD (Figure 3j), 

whereas DIF/HPβCD/CMC-Na expressed more amorphous features due to the loss of original shape 

of the pure drug and HPβCD (Figure 3m). In the DIF/βCD/PXM-188 ternary complex, the crystal 

structure of PXM-188 disappeared and was adsorbed on the DIF/βCD surface (Figure 3k), retaining 

little crystallinity. In the case of DIF/HPβCD/PXM-188, the ternary complex appeared as an 

amalgam and in aggregated form (Figure 3n). 

3.5. Fourier-Transform Infrared Spectroscopy (FTIR). 

FTIR is a practical approach to investigate the drug-polymer interaction and formation of 

complex Figure 4 showed the FTIR spectra of DIF, CDs, hydrophilic polymers, binary and ternary 

systems. In the spectrum of DIF, a characteristic broad band appeared at 3152 cm⁻1 (due to aromatic –

C–H stretching and OH association and stretching), peaks at 1678 cm⁻1 (due to –C=O stretching), 

Figure 3. Scanning electron photomicrographs of (a) DIF; (b) βCD; (c) DIF/βCD (1:2); (d) HPβCD;
(e) DIF/HPβCD (1:2); (f) PVA; (g) CMC-Na; (h) PXM-188; (i) DIF/βCD (1:2) PVA 10%; (j) DIF/βCD (1:2)
CMC-Na 10%; (k) DIF/βCD (1:2) PXM-188 10%; (l) DIF/HPβCD (1:2) PVA 10%; (m) DIF/HPβCD (1:2)
CMC-Na 10%; (n) DIF/HPβCD (1:2) PXM-188 10%.

3.5. Fourier-Transform Infrared Spectroscopy (FTIR).

FTIR is a practical approach to investigate the drug-polymer interaction and formation of complex
Figure 4 showed the FTIR spectra of DIF, CDs, hydrophilic polymers, binary and ternary systems.
In the spectrum of DIF, a characteristic broad band appeared at 3152 cm−1 (due to aromatic –C–H
stretching and OH association and stretching), peaks at 1678 cm−1 (due to –C=O stretching), 1664 cm−1

(due to stretching in the phenyl nucleus) and 1269 cm−1 (due to CF stretch) (Figure 4a). βCD (Figure 4b)
and HPβCD (Figure 4c) spectra presented a strong and broad band between 3300–3400 cm−1, assigned
to stretching vibrations of the hydroxyl group relative to intermolecular hydrogen bonds; the peak
at 2920 cm−1 corresponded to stretching vibration of the aliphatic C–H group; a band at 1600 cm−1

is indicative of deformation vibration of –OH group and C–O stretching vibrations in ester; bands
located at 1150 and 1030 cm−1 corresponded to the C–O–C stretching vibration [46].

All major peaks related to acetate and hydroxyl groups were observed in the spectrum of PVA
(Figure 4d). The band due to intermolecular and intramolecular hydrogen bonding appeared between
3550 and 3200 cm−1. The vibrational band appearing between 2840 and 3000 cm−1 indicated stretching
of C–H from the alkyl group; the peaks appearing at 1750–1735 cm−1 represented C=O and C–O
stretching from the acetate group; the band at 1087 cm−1 was due to –C–C stretching of secondary
alcohol; the band appearing at 851 cm−1 was due to the rocking mode of the –CH bond of PVA [47].
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In the case of PXM-188 (Figure 4f), the spectrum showed peaks at 3465 cm−1 (due to -OH stretching),
2887 cm−1 (due to –CH stretching) and 1103 cm−1 (due to C–O stretching) [29,48]. In the spectrum
of CMC-Na (Figure 4e), a strong peak could be visibly seen at 3443 cm−1 due to stretching vibration
of hydroxyl group and the band area of 1000–1166 cm−1 indicated the presence of an ether bond.
The carboxylate and methylene moiety gave peaks at 1635 and 2926.8 cm−1, respectively [48].
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(1:2); (h) DIF/HPβCD (1:2); (i) DIF/βCD (1:2) PVA 10%; (j) DIF/βCD (1:2) CMC-Na 10%; (k) DIF/βCD
(1:2) PXM-188 10%; (l) DIF/HPβCD (1:2) PVA 10%; (m) DIF/HPβCD (1:2) CMC-Na 10%; (n) DIF/HPβCD
(1:2) PXM-188 10%.

The shifting and intensity changes of bands or peaks gave indication of complexation. There was
a significant shifting of DIF peak from 3152 to 3305 cm−1 (for βCD) (Figure 4g) and 3365 cm−1 for
HPβCD (Figure 4h). The shift could be attributed to modification in the hydrogen bonding network.
The FTIR spectra of ternary systems signified some characteristic bands of individual elements, thus,
reporting the formation of complexes with minor or insignificant alteration of functional groups of
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individual components. There were no dramatic changes in the peaks pattern of DIF, which confirms
the absence of any chemical interaction among the components [49].

In the PVA ternary system (Figure 4i,l), a broad hydroxyl band appeared due to the shifting of the
vibrational band (3220–3448 cm−1) towards a lower wave number, while the DIF peak at 3152 cm−1 was
shifted to 3136 cm−1 with no significant change at other peaks, but their intensity was reduced, which
is indicative of the suitability of ternary systems. The other peaks of PVA at 1726, 1087 and 851 cm−1

are shifted to 1730, 1038 and 850 cm−1 in the complex, while the peak at 2925 cm−1 is found to be absent.
Although the main peaks of DIF remained unchanged in the ternary system, the intensity of the peak
that occurred due to OH association and stretching and aromatic -CH stretching reduced significantly,
which indicates that ternary systems are quite suitable for enhancing complexation efficiency [50].
As for the ternary system with CMC-Na (both with βCD and HPβCD), the characteristic peak of
CMC-Na at 1038 cm−1 (due to carboxymethyl ether group stretching) diminished considerably and
shifted to 1027 cm−1 (with βCD) (Figure 4j) and 1010 cm−1 (with HPβCD) (Figure 4m), which indicated
that CMC-Na might participate in the interaction through this chemical group. The characteristic band
of DIF at 3152 cm−1, as a result of aromatic –C–H stretching and OH association, was shifted towards a
lower wave number at 3106 cm−1, while all other peaks did not undergo a significant shift. No new
peak was observed in the ternary system, indicative of the compatibility between the drug and carriers.

As for the DIF/βCD/PXM-188 (Figure 4k) ternary system, the characteristic DIF peak at 3152 cm−1

shifted to 3122 cm−1, an indication of hydrogen bonding resulting in an almost flat region. The DIF
peak at 1269 cm−1 was significantly reduced and completely masked in DIF/HPβCD/PXM-188, which
might be due to insertion of DIF in the molecular cage of cyclodextrin in the presence of PXM-188
(Figure 4n). The peak of PXM-188 at 2887 cm−1 vanished, probably due to strong interaction with
cyclodextrins. The appearance of a band at 940 cm−1 in the spectra of ternary systems of cyclodextrins
with PXM-188 was due to the vibration of an α (1→4) glucopyranose ring of cyclodextrins, thus,
reinforcing the grafting of cyclodextrin onto the polymeric network.

The absence of any new peak in the FTIR spectra indicated that there was no chemical incompatibility
among the components, only the vanishing and reduction in peak intensity as a result of complexation.

3.6. Differential Scanning Calorimetry (DSC)

The host–guest interaction can be better evaluated by DSC. The melting point peak of the drug
is either shifted or disappears as a result of inclusion within the cyclodextrin molecular cage [51,52].
Figure 5 showed the thermograms of DIF, βCD, HPβCD, hydrophilic polymers and the binary and
ternary systems. DIF showed a single endothermic peak around 210 ◦C (Figure 5a). βCD (Figure 5b)
and HPβCD (Figure 5c) manifested broad endothermic peaks at 92.4 and 61.8 ◦C, indicating loss of
water molecules due to the dehydration process and melting peaks at 325.2 and 340.2 ◦C, respectively.
PVA showed an endothermic peak at 45.2 ◦C (Figure 5d). CMC-Na showed an endothermic peak at
130.2 ◦C and exothermic peak at 274 ◦C (Figure 5e), while PXM-188 revealed an endothermic peak at
about 56.1 ◦C (Figure 5f).

The reduction in the intensity and shifting of DIF peaks to 212.2 and 214 ◦C was observed in DIF/βCD
and DIF/HPβCD binary complexes (Figure 4g,h). The drug peak was shifted to 213.2 ◦C for DIF/βCD/PVA
(Figure 5i), 214.2 ◦C for DIF/HPβCD/PVA (Figure 5l), 214.1 ◦C for DIF/βCD/CMC-Na (Figure 5j) and
216.1 ◦C for DIF/HPβCD/CMC-Na ternary complexes (Figure 5m). For the DIF/βCD/PXM-188 ternary
system, the intensity of the drug peak was remarkably reduced and shifted to 215.1 ◦C (Figure 5k).
An almost flat region was obtained with DIF/HPβCD/PXM-188, indicating reduced crystallinity and
improved complexation with HPβCD (Figure 5n).



Polymers 2020, 12, 1564 13 of 17

Polymers 2020, 12, x FOR PEER REVIEW 13 of 18 

 

The absence of any new peak in the FTIR spectra indicated that there was no chemical 

incompatibility among the components, only the vanishing and reduction in peak intensity as a 

result of complexation. 

3.6. Differential Scanning Calorimetry (DSC) 

The host–guest interaction can be better evaluated by DSC. The melting point peak of the drug 

is either shifted or disappears as a result of inclusion within the cyclodextrin molecular cage [51,52]. 

Figure 5 showed the thermograms of DIF, βCD, HPβCD, hydrophilic polymers and the binary and 

ternary systems. DIF showed a single endothermic peak around 210 °C (Figure 5a). βCD (Figure 5b) 

and HPβCD (Figure 5c) manifested broad endothermic peaks at 92.4 and 61.8 °C, indicating loss of 

water molecules due to the dehydration process and melting peaks at 325.2 and 340.2 °C, 

respectively. PVA showed an endothermic peak at 45.2 °C (Figure 5d). CMC-Na showed an 

endothermic peak at 130.2 °C and exothermic peak at 274 °C (Figure 5e), while PXM-188 revealed an 

endothermic peak at about 56.1 °C (Figure 5f). 

 

Figure 5. DSC thermograms of (a) DIF; (b) βCD; (c) HPβCD; (d) PVA; (e) CMC-Na; (f) PXM-188; (g) 

DIF/βCD (1:2); (h) DIF/HPβCD (1:2); (i) DIF/βCD (1:2) PVA 10%; (j) DIF/βCD (1:2) CMC-Na 10%; (k) 

DIF/βCD (1:2) PXM-188 10%; (l) DIF/HPβCD (1:2) PVA 10%; (m) DIF/HPβCD (1:2) CMC-Na 10%; (n) 

DIF/HPβCD (1:2) PXM-188 10%. 

The reduction in the intensity and shifting of DIF peaks to 212.2 and 214 °C was observed in 

DIF/βCD and DIF/HPβCD binary complexes (Figure 4 g and h). The drug peak was shifted to 213.2 

°C for DIF/βCD/PVA (Figure 5i), 214.2 °C for DIF/HPβCD/PVA (Figure 5l), 214.1 °C for 

DIF/βCD/CMC-Na (Figure 5j) and 216.1 °C for DIF/HPβCD/CMC-Na ternary complexes (Figure 

5m). For the DIF/βCD/PXM-188 ternary system, the intensity of the drug peak was remarkably 

reduced and shifted to 215.1 °C (Figure 5k). An almost flat region was obtained with 

DIF/HPβCD/PXM-188, indicating reduced crystallinity and improved complexation with HPβCD 

(Figure 5n). 

Figure 5. DSC thermograms of (a) DIF; (b) βCD; (c) HPβCD; (d) PVA; (e) CMC-Na; (f) PXM-188;
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(n) DIF/HPβCD (1:2) PXM-188 10%.

3.7. Powder X-ray Diffractometry (XRD)

Figure 6 showed the powder XRD patterns for DIF, CDs, hydrophilic polymers and the binary and
ternary systems. DIF exhibited crystalline nature, with characteristic peaks at 2θ values of 13.5◦, 14.4◦,
16.9◦ and two peaks of lower intensity at 26.5◦ and 27.9◦ (Figure 6a). βCD displayed crystalline features
(Figure 6b), while HPβCD appeared to be in an amorphous state (Figure 6c). PVA and CMC-Na are
amorphous (Figure 5d,e), whereas PXM-188 is crystalline in nature (Figure 6f).
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Figure 6. XRD diffractograms of (a) DIF; (b) βCD; (c) HPβCD; (d) PVA; (e) CMC-Na; (f) PXM-188;
(g) DIF/βCD (1:2); (h) DIF/HPβCD (1:2); (i) DIF/βCD (1:2) PVA 10%; (j) DIF/βCD (1:2) CMC-Na 10%;
(k) DIF/βCD (1:2) PXM-188 10%; (l) DIF/HPβCD (1:2) PVA 10%; (m) DIF/HPβCD (1:2) CMC-Na 10%;
(n) DIF/HPβCD (1:2) PXM-188 10%.
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In the binary systems of βCD, the drug peaks at 26.5◦ and 27.9◦ vanished and the inclusion
complex showed a reduction in the number of crystalline peaks with greater degree of amorphousness
(Figure 6g). On the other hand, the drug peaks at 26.5◦ and 27.9◦ in the binary system of HPβCD also
disappeared. The binary system of HPβCD showed further reduction in the crystalline peaks and
expressed greater amorphousness. It is evident from the diffractograms of binary systems that higher
C.E could be achieved using HPβCD (Figure 6h).

Diffractograms for ternary systems showed more amorphousness than the binary systems.
Although the peaks were detectable in ternary systems, their intensity was reduced and appeared as
amorphous. For the ternary system with βCD/PVA, the characteristic peak of PVA at 19.3◦ broadened,
followed by a reduction in intensity, indicating amorphous nature (Figure 6i). For the ternary system
with HPβCD/PVA, there was more broadening as compared to that of βCD/PVA and the main peak
of PVA at 19.3◦ completely vanished (Figure 6l). In the βCD/CMC-Na ternary systems, the peak
of CMC-Na at 19.8◦ diminished significantly and an almost flat region was obtained (Figure 6j).
In addition, the intensity of drug peak at 13.2◦ decreased and the inclusion complex appeared to
be amorphous. The same trend was observed with HPβCD/CMC-Na; the characteristic peak of
CMC-Na at 19.8◦ vanished and the peak intensity at 13.5◦ further reduced (Figure 6m). The inclusion
complex showed greater amorphousness as compared to the βCD/CMC-Na ternary system. PXM-188
showed two crystalline peaks at 18.9◦ and 23.1◦, while the ternary system of PXM-188/CDs showed
a reduction in crystalline peaks of PXM-188 and intensity of drug peak at 13.5◦ (Figure 6k,n). Some
crystalline peaks of PXM-188/βCD vanished and preparations appeared to be amorphous in nature
but PXM-188/HPβCD formulations showed greater amorphousness.

The reduction in intensity and broadening of peaks could be better attributed to nanosized particles
which cause insufficient diffraction centers, which ultimately lead to peak broadening phenomenon [53].
A correlation between degree of crystallinity and height of peak could be established according to the
criterion of Hodge et al. [54]. The release of water molecules (enthalpy-rich) from the cyclodextrin
cavity is the motivational force for complex formation [20,55]. These water molecules exhibited higher
enthalpy and could not fit properly in the cavity. To stabilize the systems, these more polar molecules
were replaced by less polar drug molecules.

The XRD data show that the typical crystalline peaks of DIF were detectable (less in number and
reduced intensity). These findings suggest the presence of fewer amounts of crystalline drugs in the
system (either binary or ternary, with different extents). DIF appeared to be more amorphous with
intense molecular mobility and high energy than the crystalline form, which contributes to improved
apparent solubility and dissolution. Binary systems with HPβCD gave better solubility and dissolution
data than that of βCD, which is further improved by addition of hydrophilic polymers.

4. Conclusions

HPβCD yields better results than those of βCD. Increase in solubility and dissolution of DIF were
found with the addition of hydrophilic polymers (PVA, CMC-Na and PXM-188) to binary systems of
DIF/βCD and DIF/HPβCD. Ternary systems with PXM-188 presented comparatively more superior
performance in enhancing solubility and dissolution of DIF.
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