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Liver cancer is an extraordinarily heterogeneous malignant disease. The tumor

microenvironment (TME) and tumor-associated macrophages (TAMs) are the

major drivers of liver cancer initiation and progression. It is critical to have a

better understanding of the complicated interactions between liver cancer and

the immune system for the development of cancer immunotherapy. Based on

the gene expression profiles of tumor immune infiltration cells (TIICs),

upregulated genes in TAMs and downregulated genes in other types of

immune cells were identified as macrophage-specific genes (MSG). In this

study, we combined MSG, immune subtypes, and clinical information on

liver cancer to develop a tumor immune infiltration macrophage signature

(TIMSig). A four-gene signature (S100A9, SLC22A15, TRIM54, and PPARGC1A)

was identified as the TAM-related prognostic genes for liver cancer,

independent of multiple clinicopathological parameters. Survival analyses

showed that patients with low TIMSig had a superior survival rate than those

with high TIMSig. Additionally, clinical immunotherapy response and TIMSigwas

observed as highly relevant. In addition, TIMSig could predict the response to

chemotherapy. Collectively, the TIMSig could be a potential tool for risk-

stratification, clinical decision making, treatment planning, and oncology

immunotherapeutic drug development.
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Introduction

The development is regulated by the dynamic tumor

microenvironment (TME) which is comprised of a complex

network of multipotent stromal cells, fibroblasts, blood vessels,

endothelial cell precursors, immune cells, and various secreted

factors such as cytokines (Anderson and Simon, 2020). Tumor

immune infiltration cells (TIICs) have been demonstrated to be

important in tumor proliferation, invasion, metastasis, and drug

resistance through complex immune interaction with malignant

cells (Binnewies et al., 2018; Lei et al., 2020). Recent studies have

shown that TIICs are directly linked to the prognosis of cancer

patients (Fridman et al., 2017; Giraldo et al., 2019). The temporal

and spatial heterogeneity of TME in hepatocellular carcinoma

(HCC) suggests that the disorder and imbalance of TME caused

by various factors, such as DNA methylation and chromatin

architecture, may be one of the most critical mechanisms of

tumorigenesis and progression (Kurebayashi et al., 2018; Fu et al.,

2019; Johnstone et al., 2020). At present, most studies on the

occurrence and development of primary liver carcinoma focus on

HCC, while little attention has been paid to cholangiocarcinoma

(CCA) and combined hepatocellular-cholangiocarcinoma

(cHCC-CCA). Herein, we integrate the information from all

pathological types of liver cancer to establish a novel risk

assessment model to evaluate the risk of liver cancer.

Macrophages that reside within the TME are known as

tumor-associated macrophages (TAMs). As the predominant

infiltrated TIICs, TAMs promote tumor development at

multiple levels, such as accelerating genomic mutation,

cultivating tumor stem cells, paving the way for metastasis,

and taming the immune system (Wynn et al., 2013;

Mantovani et al., 2017). There are two types of macrophages

classically activated pro-inflammatory (M1) and alternatively

activated anti-inflammatory (M2) phenotypes. TAMs can be

polarized into M2 phenotype macrophages or M1 phenotype

macrophages by different stimuli (Vitale et al., 2019; Yoon et al.,

2019). M1 macrophages release various pro-inflammatory

cytokines, active oxygen, and nitrogen oxide that drive tumor-

killing activities (Qian and Pollard, 2010). In contrast, factors

such as IL-10, TGF-β, and VEGF secreted by M2 macrophages

promote tumor progression, angiogenesis, metastasis, and

suppression of anti-tumor immunity (Lujambio et al., 2013).

Previous studies on TAMs have suggested that high

M2 macrophage infiltration is associated with a poor

prognosis in cancers (Martínez et al., 2017; Väyrynen et al.,

2021). Therefore, TAMs are correlated to the development of

liver tumors and the clinical prognosis of patients, and a TAM-

based signature could have potential application in predicting

clinical outcomes and immunotherapeutic responses.

Immune checkpoint inhibitors (ICIs) have made an indelible

mark in the field of cancer immunotherapy (Vaddepally et al., 2020).

ICI immunotherapy covers a series of monoclonal antibodies

designed to block the binding of immune checkpoints expressed

on the surface of immune cells to their ligands, which eliminates the

immunosuppression caused by immune checkpoints and revitalizes

the function of T cells (Dyck and Mills, 2017). ICIs such as anti-

cytotoxic Tlymphocyte associated protein 4 (CTLA4, CTLA-4), anti-

programmed cell death protein 1 (PD1, PD-1), and anti-

programmed cell death one ligand 1 (PDL1, PD-L1) have been

approved for the clinical application of advanced malignancies,

including melanoma, non-small-cell lung cancer, urothelial

carcinoma, gastric cancer, liver cancer, and Hodgkin’s lymphoma

(Wei et al., 2018; Perez-Ruiz et al., 2019). Although ICIs have

demonstrated their efficiency and durability in the treatment of

solid tumors, a great number of patients have limited benefits in

terms of response and survival (Syn et al., 2017; Schoenfeld and

Hellmann, 2020; Bagchi et al., 2021). At present, some research

perspectives are that this phenomenon may be related to T cell

depletion andmechanical factors of TME, which place restrictions on

the efficacy of ICI treatment in cancer patients (Sacks et al., 2018;

Wong et al., 2021). Therefore, newmolecules and prognostic models

should be explored to predict or improve the clinical response and

application of ICI therapy.

This study developed a computational algorithm framework

for identifying prognostic signatures with TAMs (Figure 1). We

selected different immune datasets from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/database)

database, which contains bulk RNA-sequencing data of cell

lines, primary animal cells, and primary human cells, for

screening the tumor immune infiltration macrophage genes

(TIMGs). We performed a systematic and thorough

biomarker analysis and validation to locate and construct a

risk predictive signature for the prognosis of liver cancer by

taking into account multiple components of TME. Herein, we

report a tumor immune infiltration macrophage signature

(TIMSig), which can predict the prognosis and

immunotherapy of liver cancer individuals and reflect the

cellular functions of macrophages.

Methods

Data collection

The transcriptome sequencing information and corresponding

clinical data (n= 404) of liver cancer samples were obtained fromThe

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). The

gene expression data were given in log2 (x+1) transformed and

multiple imputations with R package “mice” prior to analyses.

Transcriptional profiles of macrophages from three datasets

(GSE158792, GSE56755, and GSE75829) and 21 other immune

cell profiles from 15 datasets (GSE23371, GSE27291, GSE157737,

GSE27838, GSE37750, GSE8059, GSE51540, GSE149425,

GSE104852, GSE52156, GSE155148, GSE83441, GSE42058,

GSE106932, and GSE28726) were obtained from the GEO

database, these profiles were used to perform differential gene
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analyses using GEO2R online tools with R package “limma”. The

intersection of upregulated genes in macrophages (cut-off was set at

logFC >1.5, p < 0.05) and downregulated genes (cut-off was set at

logFC < -1.5, p < 0.05) in other immune cells was considered as

macrophage-specific genes (MSG).

Identification and prognostic assessment
of immune subtypes in liver cancer

CIBERSORT algorithm was performed to characterize

22 immune cell subtypes of immune landscape using the

deconvolution strategy. The 404 liver cancer patients from

TCGA were clustered according to immune landscape by

using the R package “ConsensusClusterPlus”, and a consensus

matrix was constructed to define the immune subtypes. The

prognostic potential of each immune subtype was estimated by

Kaplan–Meier (K-M) curves. Then, the association between the

MSG and different immune subtypes of cancer patients was

investigated by using the R package “limma”, with |logFC| >
1.5 and p < 0.05 considered as significantly different.

Construction and validation of the TIMSig

Cancer cases from the TCGAdatabase were randomized into the

training cohort or test cohort for the construction and validation of

risk scores at the ratio of 1:1 (202 in the training set, 202 in the test

set). In the training cohort, we used univariate Cox proportional

hazards regression analysis and LASSO regression analysis to

investigate the prognostic performance of candidate TIMGs.

Then, TIMGs were determined by multivariate Cox proportional

hazards regression analysis, and the risk score based on TIMGs was

constructed. The samples were divided into the high-risk group and

low-risk group based on the median risk score. The difference in

overall survival (OS) between the high-risk group and low-risk group

was performed using the log-rank test. Various statistical methods,

including K–M curves, univariate Cox proportional hazards

regression analysis, multivariate Cox proportional hazards

regression analysis, and time-dependent receiver-operating

characteristic (ROC) curves were performed to identify the

association between TIMSig and OS.

Validation of the TIMSig in the
GSE14520 cohort and ICI clinical samples

Another sample information of the GSE14520 dataset

included information from 242 tumor samples, which was

downloaded from the GEO database. Due to different

platforms, only part of four TIMGs in the TILSig was covered

by the other dataset. Therefore, the risk score is only based on

part of the TIMGs. Moreover, we collected 24 PD-1/PD-

L1 clinical treated cases with HCC from GSE140901 with

available progression-free survival (PFS) records based on the

nCounter PanCancer Immune Profiling Panel platform, which

came from the National Taiwan University Hospital for

estimation of the potential of TIMGs as immunotherapy

biomarkers. The association between TIMSig and PD-1/PD-

L1 immunotherapy response was investigated by paired t-test.

ROC curve was performed to estimate the accuracy of TIMSig

response to predict ICI treatment response. K–M curve was

performed to evaluate the risk-stratification capability of

TIMSig and PD-1/PD-L1 immunotherapy response.

Tumor immune microenvironment
analyses

ESTIMATE algorithm was performed to calculate the scores

of immune infiltration and tumor purity based on gene

expression profile. The ESTIMATE analysis method is

integrated into the “estimate” R package. Tumor Immune

Estimation Resource 2.0 (TIMER, http://timer.comp-genomics.

org/) is an excellent tool to assess the level of immune infiltration,

applied to analyze the association between TIMGs and

abundance of TIICs for estimation of the capability of TIMGs

in predicting TIICs. In addition, the expression differences of

TIMGs between cancer and normal samples were visualized.

Functional analyses

We carried out the R package “ggpubr” to investigate the

function of macrophages in secreting cytokines by analyzing the

association of the TIMSig and the expression level of corresponding

cytokine molecules. Then, The Gene Set Enrichment Analysis

(GSEA, ver. 4.1.0) was applied to analyze the organism function

and cell development with TIMSig through the Gene Ontology

(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

databases. The Human Protein Atlas (HPA, https://www.

proteinatlas.org/) provides immunohistochemistry (IHC)

information for human cancers, which applied the HPA database

to evaluate the protein expression levels for TIMGs.

Statistical analyses

All statistical analyses were performed by R version 4.1.1, in

addition to corresponding R packages and online tools. A

p-value < 0.05 was considered statistically significant.

Univariate Cox proportional hazards regression analysis and

multivariate Cox proportional hazards regression analysis

methods were integrated in the R package “survival” and

“survminer”. LASSO Cox proportional regression analysis was

performed with the R package “glmnet”. ROC curves were
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performed, and the area under curves (AUC) was applied to

estimate the prognostic performance of TIMSig using the R

package “survivalROC”. The relationship between the TIMSig

and immune checkpoints was evaluated to verify the potential

prognostic capacity of TIMSig for ICI immunotherapy. Drug

sensitivity analysis was applied with the R package “pRRophetic”.

FIGURE 1
Workflow of TIMSig generation and validation.
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Results

Identification of MSG

To characterize the gene expression pattern in various

immune cell subtypes, we retrieved 18 expression profiles of

immune cells from the GEO database. Differential expression

analyses were performed on each dataset with “limma”

algorithm, including macrophages (GSE158792, GSE56755,

and GSE75829) and other immune cells (GSE23371,

GSE27291, GSE157737, GSE27838, GSE37750, GSE8059,

GSE51540, GSE149425, GSE104852, GSE52156, GSE155148,

GSE83441, GSE42058, GSE106932, and GSE28726). The

platform information of these datasets was shown in

Supplementary Table S1. Subsequently, 994 upregulated

macrophage genes and 6,057 downregulated genes were

considered as statistically significantly different in TIICs.

Then, 422 dysregulated genes were identified that were both

highly upregulated in macrophages and downregulated in other

immune cells, demonstrating their expression specificity for

TAMs rather than other types of immune cells. Finally,

404 MSG were screened and combined with clinical features

for the construction of a prognostic risk model (Figure 2A).

Identification and prognostic assessment
of immune subtypes in liver cancer

Immunotyping can be used to mirror the immune status in

TME and help identify suitable genes for cancer immunotherapy.

The immune landscape based on the CIBERSORT algorithm was

applied to investigate the immune subtypes. We compared

median survival rates among these subtypes in the TCGA

cohorts by setting p < 0.05 as the threshold for screening. The

correlation heatmap of the CIBERSORT immune infiltration

profile was shown in Figure 2B. We chose k = 5 where

immune infiltration appeared to be stably clustered (Figures

2C–E), and obtained five immune subtypes that had a

FIGURE 2
Immune subtype analysis of TCGA cohort. (A) Venn diagram plot among TCGA, macrophage, and other immune cell genes. (B) Correlation
heatmap for TCGA cancer samples based on the CIBERSORT immune infiltration algorithm. (C–E)Consensus score matrix for cancer samples when
k = 5. A higher consensus score between two samples indicates that they are more likely to be assigned to the same cluster in different iterations. (F)
A K-M survival curve of the five immune subtypes.

Frontiers in Molecular Biosciences frontiersin.org05

Huang et al. 10.3389/fmolb.2022.983840

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.983840


significant difference for OS (Figure 2F, p = 0.010). These results

support a distinct immune infiltration feature of five immune

subtypes, reflecting clinical outcomes due to immune infiltration

disorder and its predictive value in classifying liver cancer

patients. The association of MSG and immune subtypes was

performed with R package “limma”. The cut-off was set at |

logFC| >1.5, p < 0.05, adjust p < 0.05.

Identification and verification of the
prognostic capability of the TIMSig

The demographic and clinical characteristics of patients in

the two cohorts were similar (Supplementary Table S2). In the

training cohort (n = 202), we used univariate Cox proportional

hazards regression analysis, LASSO regression analysis

(Supplementary Figures S1A,B), and multivariate Cox

proportional hazards regression analysis to develop TIMSig.

The following formula was used for calculation: risk score =

(0.170 × S100A9) + (0.090 × SLC22A15) + (0.143 × TRIM54) +

(-0.088 × PPARGIA). Cancer patients were classified into

different groups according to respective median risk scores.

With the increase in the risk scores, the number of liver

cancer patients in the high-risk group increased (Figures

3C,D, Figures 4C,D, and Figures 5C,D). In the training cohort

(n = 202), the K–M survival curve demonstrated that patients in

the low-risk group had a significantly longer OS compared to

those in the high-risk group (Figure 3A, p < 0.001, HR: 3.164,

95% HR CI: 1.908–5.245). The AUC of ROC curves for 1, 2, and

3 years was higher than 0.7 in the training cohort (Figure 3B).

Similar trends were found in the test cohort (n = 202), the high-

risk group exhibited a shorter survival time in liver cancer

patients compared to those in the low-risk group (Figure 4A,

p = 0.019, HR: 1.755, 95% HR CI: 1.090–2.825). According to the

results of ROC curves, the AUC for 1, 2, and 3 years was 0.672,

0.616, and 0.595 in the test cohort, respectively (Figure 4B). To

further verify the prognosis prediction capability of TIMSig, the

prognostic performance of the TIMSig was further tested using

another completely independent GEO cohort with the

GSE14520 dataset (n = 242). As shown in the Figure 5A, the

K–M curve for OS showed a statistically significant difference

between the two groups (p = 0.037, HR: 1.600, 95% HR CI:

1.025–2.497). Patients tend to have a better prognosis in the low-

risk group compared to the high-risk group. In Figure 5B, the

AUC of the ROC curve was 0.641 for 3 years, which was

significantly higher than other clinical features.

The TIMSig is an independent prognostic
factor in liver cancer patients

To investigate the prognostic power of our risk model,

the TIMSig was performed as an independent prognostic

factor in univariable and multivariable Cox analyses for each

cohort (Table 1). For the training cohort, univariate Cox

regression analysis showed that risk score (p < 0.001, HR:

2.717, 95% HR CI: 1.963–3.760) and stage (p = 0.003, HR:

1.443, 95% HR CI: 1.133–1.837) were significantly related to

the prognosis of liver cancer. Multivariate Cox regression

analysis confirmed that the risk score (p < 0.001, HR: 2.562,

95% HR CI: 1.854–3.540) still was an independent prognostic

factor after adjusting for other clinicopathologic factors.

Then, the role of TIMSig was validated by using the test

cohort, the results of univariate Cox regression analysis (p =

0.006, HR: 1.529, 95% HR CI: 1.132–2.067) and multivariate

Cox regression analysis (p = 0.014, HR: 1.493, 95% HR CI:

1.084–2.057) for OS represented that risk score were

significantly relevant to the clinical outcomes of liver

cancer. For the GSE14520 cohort, the TIMSig still were an

independent prognostic predictor for OS in the univariate

Cox regression analysis (p = 0.022, HR: 2.179, 95% HR CI:

1.118–4.249) and multivariate Cox regression analysis (p =

0.019, HR: 2.282, 95% HR CI: 1.146–4.545). Taken together,

the TIMSig can be applied to predict the prognosis of

patients with liver cancer and has a great accuracy, which

is consistent across different cohorts. Moreover, patients

with a low expression value of each TIMGs had longer

survival times than patients in the high-risk group

(Figures 6A–D).

Potential of the TIMSig as an indicator of
immunotherapy response in liver cancer

Given the success of anti-PD1, anti-PDL1, and anti-

CTLA4 treatments in cancer patients, we compared the

difference in the expression value of immune checkpoints

(including PD-1, PD-L1, and CTLA-4), and the different

subgroups categorized by the median of TIMSig. In the

training cohort, patients with high TIMSig tend to show

higher expression value of immune checkpoints compared

with low TIMSig (Figure 7A, p < 0.001, p = 0.004, p < 0.001 for

comparison of PD-1, PD-L1, and CTLA-4 with each group).

Also, the patients with the high TIMSig still show higher

expression value of immune checkpoints compared with low

TIMSig in the test cohort, (Figure 7B, p < 0.001, p = 0.017, p <
0.001 for comparison of PD-1, PD-L1, CTLA-4 with each

group).

To verify whether the TIMSig has an impact on OS in liver

cancer patients with the homologous trend of immune

checkpoints and different risk groups. Based on the TIMSig

and the expression value of immune checkpoints, the survival

distribution of total TCGA patients was partitioned into four

groups and compared by log-rank test. We found that TIMSig

was positively related to PD-1 (Figure 7C, R = 0.34, p < 0.001),

PD-L1 (Figure 7D, R = 0.23, p < 0.001), CTLA-4 (Figure 7E, R =
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0.43, p < 0.001). As shown in Figure 7F, patients with a low level

of PD-1 and high TIMSig would have significantly worse OS than

the other three groups (p < 0.001), whereas patients with high

TIMSig and a low level of PD-L1 were inclined to be the worst

clinical outcomes relative to other three groups (Figure 7G, p <
0.001). The same statistical difference with OS was repeated using

TIMSig and CTLA-4 (Figure 7H, p < 0.001). It is indicated that

patients with liver cancer stratified by TIMSig and PD-L1 or

CTLA-4 exhibited OS analogous to PD-1.

The 24 clinical cases of anti-PD1/PDL1 clinical treatment for

HCC patients were obtained from GSE140901. A total of 13 PD-1/

PD-L1 responses (54.2%) occurred, while 11 cases (45.8%) have

nonresponses on PD-1/PD-L1 therapy. Based on the results of

different analyses by paired t-test (Figure 7I, p = 0.012), TIMSig

FIGURE 3
Survival analysis of the training cohort. (A) K–Mcurve for the training cohort. Patients in the low-risk group represented a better OS. (B) The 1, 2,
and 3 years ROC curves of the risk score in the training cohort. (C) Distribution of risk score of liver cancer patients in the training cohort. (D)
Distribution of survival status of liver cancer patients in the training cohort. (E) Heatmap of the TIMGs in the training cohort.
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is significantly associated with PD-1/PD-L1 therapy response. The

AUC value of the model established in the ICI clinical cohort is

0.622 and is a great predicted value for the estimation of clinical

immunotherapeutic efficacy (Figure 7J). In addition, TIMSig

combined PD-1/PD-L1 response can significantly stratify PFS

(Figure 7K, p < 0.0001). These observed associations between the

TIMSig and immune checkpoints confirmed our hypothesis that the

TIMSig may be a great predictive biomarker for cancer

immunotherapy response.

The pertinence of TIMGs and immune
infiltration level in liver cancer

ESTIMATE algorithm gave scores for 404 TCGA cancer

samples, containing the immune score, ESTIMATE score,

and tumor purity. We compared the distribution of these

scores with TIMSig to immune characteristics. Pearson

correlation tests were applied while each specific score and

TIMSig was inspected and analyzed as shown in Figures

FIGURE 4
Survival analysis of the test cohort. (A) K–M curve for the test cohort. Patients in the low-risk group represented a better OS. (B) The 1, 2, and
3 years ROC curves of the risk score in the test cohort. (C) Distribution of risk scores of liver cancer patients in the test cohort. (D) Distribution of
survival status of liver cancer patients in the test cohort. (E) Heatmap of the TIMGs in the test cohort.
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8A–C. TIMSig was positively associated with immune score

(R = 0.29, p < 0.001) and ESTIMATE score (R = 0.21, p <
0.001), while TIMSig and tumor purity was negatively

correlated (R = -0.21, p < 0.001). To evaluate whether

TIMGs can accurately predict the distribution of TIICs,

the association of TIMGs expression level with TIICs’

abundance was evaluated using the TIMER2.0 database. It

suggested that high expression levels of S100A9, SLC22A15,

TRIM54, and PPARGC1A were significantly correlated with

increased infiltration degree of macrophages, DCs, B cells,

and NK cells (Figures 8D–G). Therefore, TIMGs may directly

or indirectly present the immune cells in triggering an

immune response.

Functional analyses for TIMGs

The main role of TAMs is to accelerate tumor growth by

secreting many cytokines. To analyze the function of

macrophages in liver cancer tissues, we analyzed the

relationship between TIMSig and cytokine gene expression. As

shown in Figure 9A, eight cytokines (IL-1β, IL-6, IL-10, TGF-β,

CCL2, CXCL8, CSF-1, and VEGF) were identified to have higher

expression values in the high-risk group than in the low-risk

group, which was relevant to the progression, invasion, and

metastasis of cancers. The GO analysis of the biological

process (BP), molecular function (MF), and cell component

(CC) showed that most of the enriched terms were related to

cellular material transport and material metabolism (Figure 9B).

The KEGG pathway enrichment analysis illustrated that the

TIMSig were mainly enriched in NOD-like receptor signaling

pathway, cytokine–cytokine receptor interaction, and Fc gamma

R-mediated phagocytosis, most of which are related to immunity

and metabolism (Figure 9C). Concurrently, the protein level of

S100A9, SLC22A15, and TRIM54 was found to be much higher

in the cancer tissues or the cells around the blood sinus compared

to the normal tissues (Supplementary Figure S2).

Screening of sensitive chemotherapy
drugs

Based on the pRRophetic algorithm, we explored the

relationship between TIMSig and drug chemoresistance by

FIGURE 5
Validation of GSE14520 cohort. (A) K–Mcurve for the GSE14520 cohort. Patients in the low-risk group represented a better OS. (B)Comparison
of the 3 years’ ROC curve with other clinical characteristics. (C) Distribution of risk score of liver cancer patients in the GSE14520 cohort. (D)
Distribution of survival status of liver cancer patients in the GSE14520 cohort.
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calculating the half-maximal inhibitory concentration (IC50) of

six common chemotherapeutic drugs (cytarabine, rapamycin,

cisplatin, sunitinib, erlotinib, and methotrexate) for liver cancer.

In Figures 10A–F, we observed that cancer patients in the high-

risk group were more resistant to erlotinib. On the contrary, the

patients with a high score of TIMSig were more sensitive to

cytarabine, rapamycin, cisplatin, sunitinib, and methotrexate.

Discussion

Liver cancer is the leading cause of cancer-related death in

the world, due to its characteristics of late diagnosis, poor

prognosis, and high heterogeneity (Heinrich et al., 2021; Sung

et al., 2021). Hence, identifying reliable and effective biomarkers

for liver cancer prognosis is of great importance. The tumor’s

immune status largely influences the effectiveness of cancer

immunotherapy. Accumulating evidence has suggested that

distinct molecular subtypes of tumors are positively associated

with OS (Zhang et al., 2020; Hu et al., 2021; Liu et al., 2021). In

this study, we defined five immune infiltration subtypes and

screened TAM-related molecular biomarkers, which could help

to predict the clinical response of ICI treatments.

TAMs can promote malignant cell proliferation by

interacting with cancer cells by secreting ingredient exosomes

and cytokines. Accumulating evidence has indicated that TAMs

in TME is associated with the prognosis and immunological

characteristics of a variety of cancers (Lam et al., 2019; Li et al.,

2019; Xiao N et al., 2021). TAMs can mediate PD-1 drug

resistance in HCC through the PD-L1 pathway and regulation

of T cells (Pu and Ji, 2022). Molecular biomarkers of TAMs could

be used for risk-stratification and response prediction of cancer

treatments, though the fundamental cognition of cellular

structures and molecular landscapes in liver cancer remains

difficult to define. Traditional strategies for clinical models

perform investigation mainly at the single component level

and have inherent limitations in providing precise prognostic

information on complex component cells residing in a highly

multicomponent TME. In previous investigations, the signatures

for prognostic prediction based on immune-related genes or

immune microenvironment have been described in many kinds

of cancers, and several mRNAs or lncRNA-associated signatures

have also been developed to predict the clinical outcomes of HCC

patients (Xiao B et al., 2021; Kang et al., 2021; Pi et al., 2021).

However, the potential ability of TAMs for immunotherapy

prediction has been ignored. In this study, we used the

transcriptome profile of TAM to construct a risk model that

could reflect the function of macrophages.

In our results, S100A9, SLC22A15, TRIM54, and

PPARGC1A were identified as TIMGs, which were identified

as prognostic biomarkers for liver cancer sufferers. The

expression of these TIMGs in the training cohort and test

cohort was shown in Figure 3E and Figure 4E. In addition,

based on the pan-cancer analyses, TIMGs are differentially

expressed not only in patients with liver cancer, but also in

many other cancers (Supplementary Figure S3). In most cancer

TABLE 1 Univariate Cox analysis and multivariate Cox analysis of OS in each cohort.

Univariate analysis Multivariate analysis

Variables HR 95% HR CI p value HR 95% HR CI p value

Training cohort

Risk score 2.717 1.963–3.760 <0.001 2.562 1.854–3.540 <0.001
Stage 1.443 1.133–1.837 0.003 1.305 1.018–1.673 0.036

Gender (female/male) 1.079 0.662–1.758 0.760 1.141 0.694–1.878 0.603

Age (>65/≤65) 1.381 0.869–2.193 0.172 1.252 0.780–2.009 0.352

BMI (>30/≤30) 0.618 0.332–1.151 0.129 0.557 0.297–1.044 0.068

Test cohort

Risk score 1.529 1.132–2.067 0.006 1.493 1.084–2.057 0.014

Stage 1.558 1.211–2.004 0.001 1.449 1.114–1.885 0.006

Gender (female/male) 0.644 0.406–1.021 0.061 0.730 0.448–1.189 0.206

Age (>65/≤65) 1.219 0.766–1.939 0.403 1.073 0.664–1.735 0.773

BMI (>30/≤30) 1.365 0.791–2.357 0.264 1.408 0.805–2.463 0.230

GSE14520 cohort

Risk score 2.179 1.118–4.249 0.022 2.282 1.146–4.545 0.019

Gender (female/male) 1.859 0.901–3.834 0.093 1.930 0.932–3.996 0.077

Age (>65/≤65) 0.726 0.352–1.497 0.386 0.793 0.383–1.641 0.532

ALT (>50/≤50 U/L) 1.155 0.772–1.727 0.483 1.113 0.743–1.666 0.604
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types, TIMGs exhibited an upregulated tendency in cancer

samples compared to normal samples. To date, studies on

S100A9 and PPARGC1A have been suggested as a new

potential biomarker for liver cancer. S100A9, a secreted

protein related to the inflammatory immune

microenvironment and the functional phenotype of

macrophages, is significantly increased in TAMs of HCC

(Ganta et al., 2019). As a downstream regulator of

VEGFR1 macrophage polarization, S100A9 is a promoter of

M2 polarization. It has been found that after the knockout of

S100A9, the levels and activities of CX3CR1 and Nur77 in

macrophages decreased significantly, which resulted in the

decrease of efferocytosis in macrophages and the

accumulation of necrotic cells in tissues (MarinkoviÄ‡ et al.,

2020; Willers et al., 2020). The existence of S100A9 positive

macrophages in tumor tissues, a key gene in the growth and

metastasis of HCC, was related to the shorter survival time and

the poor treatment of PD-1 antibody in metastatic cancer

patients (Duan et al., 2018; Kwak et al., 2020; Wei et al.,

2021). PPARGC1A is a mitochondrial regulator, which can

regulate mitochondrial biogenesis in macrophages and play a

regulatory role in the growth and metastasis of liver cancer. The

FIGURE 6
Immunotherapy response with TIMSig. (A–B) Comparison of the expression value of immune checkpoints (PD1, PDL1, and CTLA4) with
different groups of TIMSig in each cohort. (C–E) The Pearson correlation between immune checkpoints and the risk scores in the TCGA cohort.
(F–H) K-M survival curves of OS among four patient groups stratified by the TIMSig and PD1, PDL1, and CTLA4 in the TCGA cohort. (I)Comparison of
the risk score with different groups of PD1/PDL1 therapy responses, paired t-test was used as the significance test. (J) The ROC curve to
estimate the sensitivity of TIMSig to PD1/PDL1 therapy responses. (K) K–M survival curves of PFS among four patient groups stratified by the TIMSig
and PD1/PDL1 therapy reponses.
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up-regulation of PPARGC1A will enhance the oxidation of fatty

acids in mitochondria to reduce the accumulation of free fatty

acids, which leads to abnormal mitochondrial function (Soliman

et al., 2020). PPARGC1A mediates YAP to reprogram cell

metabolism, shifting substrates from gluconeogenesis to

growth anabolism (Hu et al., 2017). At the same time, it

FIGURE 7
Tumor immunemicroenvironment analyses. (A)Correlation between the immune score and risk score in TCGA cancer samples. (B)Correlation
between the ESTIMATE score and risk score in TCGA cancer samples. (C) Correlation between the tumor purity and risk score in TCGA cancer
samples. (D–G) Identification of TIMGs associated with TIICs.
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effectively inhibits aerobic glycolysis by adjusting Wnt/β-
catenin/pdk1 axis, thus inhibiting the migration and invasion

of HCC. Meanwhile, PPARGC1A interacts with TNFAIP3 and

HSPA12A, produces nuclear translocation, induces AOAH

expression, participates in mitochondrial regulation and the

expression of inflammatory genes such as NLRP3, and plays a

FIGURE 8
Functional analysis for TIMGs. (A) Comparison of the expression value of cytokines (IL-1β, IL-6, IL-10, TGF-β, CCL2, CXCL8, CSF-1, and VEGF)
with different groups of TIMSig in the TCGA cohort. (B)GO function analysis of TIMSig in the TCGA cohort. (C) KEGGpathway analysis of TIMSig in the
TCGA cohort.
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vital role in the homeostasis of telomeres and macrophages’

mitochondria (Kang et al., 2018; Liu et al., 2020).

TAM promotes intravasation, extravasation, and metastasis

of tumor cells by secreting various pro-tumoral molecule

proteins. Macrophages change their functional state by

responding to signaling molecules in the TME, and secrete

various cytokines (such as IL-1β, IL-6, CXCL-8, IL-10, CCL2,
and CSF-1) to interact with various types of cells in the TME,

thus playing a momentous role in the regulation of tumor

invasiveness, metastasis and drug resistance (Galdiero et al.,

2018; Lin et al., 2019; Korbecki et al., 2020). A common

feature of the nine cytokines in Figure 8 is the enhancement

of tumor progression via efferocytosis of TAMs which is essential

for understanding the immune status of TME and improving the

prognosis of liver cancer patients. It is proved that TIMGs are

significantly associated with the biological functions of the

immune system and will be a promising tool reflecting the

function of TAMs in liver cancer. Thus, we consider that

TIMSig plays a role in the crosstalk between the macrophages

and the TME of liver cancer. For further studies, the connection

among TIMGs, cytokines, and corresponding pathways could be

an interesting direction.

FIGURE 9
Chemotherapeutic drug sensitivity analysis based on TIMSig. (A–F) Comparison of the IC50 levels (cytarabine, rapamycin, cisplatin, sunitinib,
erlotinib, and methotrexate) with different groups of TIMSig in the TCGA cohort.
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Many previous studies have identified meaningful

immune infiltration signatures for cancer patients (Chen

et al., 2021; Lin et al., 2021; Xu et al., 2021). However, the

immune subtype or the interaction between TAMs and

immune cells in cancer metabolism was rarely considered.

Compared with other similar prognostic models based on

bioinformatics, our signature passed the test of clinical PD-1/

PD-L1 treated cohort and has good relevance with PFS, which

is the biggest advantage of our model. In addition, our study

not only screened the immune subtypes of liver cancer based

on immune infiltration, but also investigate the potential

TIMSig-based regulatory mechanisms where the immune

system participated and allowed robust risk-stratification,

thus enhancing a broader notion of the TME-based

prognostic model. Finally, based on the drug resistance

algorithm, we explored six chemotherapeutic drugs that

were related to TIMSig, which could provide guidelines for

clinical cancer treatments. Except for macrophages, our

algorithm is also suitable for identifying the specific genes

of other immune cells in the prognosis of tumor patients.

There are several limitations to our study. The components of

tumor tissues were complicated, it is not certain whether the

collected cases and algorithm could accurately reflect the

function of TAMs on the survival of liver cancer sufferers. In

addition, our prognostic model is only based on bulk RNA-

sequencing data and retrospective clinical cohort, and validation

of this model by single-cell sequencing or flow cytometry might

give a higher potential for its application. Finally, the mechanism

of TRIM54 and SLC22A15 affecting liver cancer development

through TAMs is still unclear, and further research was

warranted.

Conclusion

Overall, S100A9, SLC22A15, TRIM54, and PPARGC1A were

screened as TIMGs that can be used for prognostic prediction

and be the potential targets of the ICI treatments for patients with

liver cancer. The prediction model integrated specific genes of

immune cells in the TME will help clinicians not only make

rational immunotherapeutic decisions but also understand the

driving nodes in the machinery of liver cancer.
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FIGURE 10
(A–D) K–M curves for S100A9, SLC22A15, TRIM54, and PPARGC1A in the TCGA cohort.
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