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Plants have evolved to exploit stochasticity to hedge bets and ensure

robustness to varying environments between generations. In agriculture,

environments are more controlled, and this evolved variability decreases

potential yields, posing agronomic and food security challenges. Understand-

ing how plant cells generate and harness noise thus presents options for

engineering more uniform crop performance. Here, we use stochastic chemi-

cal kinetic modelling to analyse a hormone feedback signalling motif in

Arabidopsis thaliana seeds that can generate tunable levels of noise in the

hormone ABA, governing germination propensity. The key feature of the

motif is simultaneous positive feedback regulation of both ABA production

and degradation pathways, allowing tunable noise while retaining a constant

mean level. We uncover surprisingly rich behaviour underlying the control of

levels of, and noise in, ABA abundance. We obtain approximate analytic sol-

utions for steady-state hormone level means and variances under general

conditions, showing that antagonistic self-promoting and self-repressing inter-

actions can together be tuned to induce noise while preserving mean hormone

levels. We compare different potential architectures for this ‘random output

generator’ with the motif found in Arabidopsis, and report the requirements

for tunable control of noise in each case. We identify interventions that may

facilitate large decreases in variability in germination propensity, in particular,

the turnover of signalling intermediates and the sensitivity of synthesis and

degradation machinery, as potentially valuable crop engineering targets.

1. Introduction
Stochasticity is an unavoidable feature underlying cell biology [1–3], with random

influences affecting a multitude of processes in cells [4–8]. Classic examples of pro-

cesses where noise plays a central role in determining biological behaviour include

gene expression [4,7–12], stem cell fate decisions [13], cancer development [14,15]

and organelle population dynamics [16–19]. Theoretical work has often focused on

how cellular circuitry can provide robustness to intrinsic noise [10,20,21], with com-

paratively little emphasis on how biology may exploit intrinsic noise to generate

useful structure or variation [22]. One well-known example of such exploitation

is bet-hedging in bacterial phenotypes, where variability within a population is

used to provide robustness to potentially varying environments [23,24].

The biology of seeds provides an agriculturally vital example of eukaryotic

noise exploitation [25,26]. Plants are sessile organisms and cannot readily move

away from challenging environments. An evolutionary priority for plants is

to ensure that future generations survive in the face of environmental change

[27–29]. To this end, plants induce and exploit variability between seed responses

to the environment to hedge against different conditions [25,28], leading to, for

example, differences in germination propensity between seeds [30,31]. This

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2018.0042&domain=pdf&date_stamp=2018-04-11
mailto:i.johnston.1@bham.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.4052387
https://dx.doi.org/10.6084/m9.figshare.c.4052387
http://orcid.org/
http://orcid.org/0000-0001-8559-3519
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S

S

NCED6 CYP707A1
CYP707A2
CYP707A3

NCED9
ABA2
AAO3

AAO3::AAO3-GUS
CYP707A2::
CYP707A2-GUS

A
A

ABA

D

1

0 sc
al

ed
 r

ef
le

ct
an

ce
 (

ar
b.

 u
ni

ts
)

D

bi bs

l

bd

ds

dd

n

Δ

Δ

Δ

Δ

Δ

Δ

V

i

V

s

V

d

(b)(a)

(c)

Figure 1. An antagonistic pair of feedback loops governs hormone levels in Arabidopsis. (a) Synthesis and degradation of the hormone ABA (species A) are modu-
lated by two pathways (involving S and D, respectively) that themselves respond to ABA levels. Throughout this work, we will use parameters bi to correspond to
the strengths of these responses, and Li to correspond to the sensitivity of ABA to these signals. (b) A, S and D are produced and degraded, with levels modulating
the rates of these processes. (c) Fluorescence microscopy following Topham et al. [37] identifies cellular localization of members of the S and D pathways in
Arabidopsis embryos, showing that they are both present (scaled reflectance .0) in a range of cells (highlighted) at the same developmental stage. The antag-
onistic feedback loops thus together modulate ABA levels in these cells.
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variability is evolutionarily beneficial—for example, seed-

to-seed variability in germination propensity may allow a

subset of seeds to remain dormant and survive through an

environmental challenge, while seedlings from early-germinat-

ing seeds perish. However, in agricultural circumstances, the

environments that plants face are more controlled and often

less challenging than the past ecological environments they

have evolved to hedge against. The induction of seed-to-seed

variability is then no longer beneficial, and instead poses agro-

nomic challenges, such as preventing uniform establishment of

field crops [25,30,32]. Clearly, in such circumstances, artificial

interventions to mitigate the evolved mechanisms generating

variability are desirable. Understanding the mechanistic basis

of these noise-inducing processes will thus allow the engineering

of plants with more homogeneous traits of human interest,

including germination propensity.

Variability in biological systems can be separated into that

arising from so-called extrinsic and intrinsic sources [25].

Extrinsic variability arises externally from an individual’s

environment, while intrinsic variability is generated within

an individual (individuals here may be, for example, cells,

seeds or organisms, depending on the scale of study). Extrinsic

variability has been demonstrated to impact plant strategies

[26], including the extent of seed dormancy based on the

maternal environment in which seeds develop; this depen-

dence has been studied extensively previously [33,34].

Intrinsic variability is also present within seeds [25,27], but

remains unexplored, despite the central importance of seed

variability to science and world agriculture.

Here, we report and analyse an intrinsic noise-generating

network motif observed in the metabolic circuit governing

germination decisions in the model plant Arabidopsis thaliana.

This motif, consisting of a coupled self-promotion and self-

repressing pathway, functions as a ‘random output generator’,

allowing the tunable induction of noise in levels of abscisic acid

(ABA), a hormone that represses germination. Three-fold

variability in levels of ABA in seeds from the same silique in
Arabidopsis has been observed [31], pointing to the induction

of ABA variability as a controlled route to bet-hedging in

plant seed production.

Using tools from stochastic processes and simulation, we

derive an analytical description of noise induction in this

system and elucidate its dependence on biological features

that are susceptible to artificial engineering. We thus use this

stochastic modelling approach to suggest synthetic manipu-

lation strategies to decrease noise in germination propensity

and address the associated agronomic issues.
1.1. An antagonistic feedback system in Arabidopsis
We first introduce the recent experimental characterization of

the feedback architecture that we will study. The hormone

ABA plays a central role in a set of metabolic interactions

in plant cells that determine germination behaviour [35]. In

Arabidopsis seeds, ABA is synthesized by a metabolic pathway

involving NCED6, NCED9, ABA2 and AAO3 and degraded by

CYP707A1, CYP707A2 and CYP707A3 [36,37]. The response to

ABA induces upregulation of its synthesis genes and induces

upregulation of CYP707A2, the major contributor to ABA

breakdown in seeds, in its degradation pathway [37]. The

system therefore consists of a metabolic feedback system indu-

cing ABA synthesis and ABA degradation, both upregulated

by ABA responses, schematically illustrated in figure 1a, with

specific processes labelled in figure 1b.

This circuit exists as part of a wider regulatory network

involving the hormone gibberellic acid (GA), which interacts

antagonistically with ABA [38,39] and promotes germination.

Previous analysis of the plant embryo [37] has shown that

cells dominated by ABA responses and those dominated by

GA responses are spatially separated in Arabidopsis. Levels

of GA and stochastic influences in the wider signalling archi-

tecture represent further potential sources of variability [40],

but we hypothesized that the ABA-centric motif alone may

be sufficient to generate appreciable noise in hormone
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levels and downstream behaviour. We, therefore, focus on the

subset of this wider network that is centred on ABA response

and its feedbacks onto ABA synthesis and degradation, to

explore the intrinsic dynamics of this hormone and directly

related signalling pathways.
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2. Results
Fluorescence microscopy experiments reveal that elements of

the synthesis and degradation pathways are present in the

same cells in the Arabidopsis embryo (electronic supplementary

material; figure 1c). This observation is reproducibly made in

embryos imaged at the same developmental stage, and points

to the concurrent presence of these antagonistic elements in

cells [37]. This concurrency suggests that both pathways may

be active in controlling ABA in a given cell; a scenario sup-

ported by previous modelling work [37], which successfully

described and predicted germination behaviour assuming the

presence of this antagonistic network motif.

If it was only mean hormone levels that had a functional

role in dictating cellular behaviour, this joint expression may

be viewed as unnecessarily inefficient: any desired positive

or negative change in the mean level could presumably

be achieved through one pathway alone. However, we hypo-

thesized that this antagonistic activity facilitates the control

of variability independent of the mean level. In the light of bet-

hedging strategies in plant evolution [25,28], we thus sought

to explore how these antagonistic pathways may act together

to induce a controllable level of noise in ABA, and hence

provide a tunable ‘random output generator’ underlying the

germination decision.

2.1. The stochastic behaviour of the feedback motif
We use a stochastic chemical kinetic framework to describe a

system where a central chemical species A (representing

ABA) evolves in conjunction with a species S that promotes

its synthesis and a species D that promotes its degradation.

We coarse-grain the processes of chemical synthesis and degra-

dation into Poissonian immigration and death terms,

respectively, and model the transduction of each independent

signal as occurring through pathways involving a single inter-

mediate. We note that the genes and enzymes underlying these

pathways are known [36,37] and subject to stochastic chemical

kinetics in their own production and degradation, but the

straightforward structure of these pathways motivates this

coarse-graining to allow a more intuitive understanding of

the system’s behaviour. We will initially work in the picture

of interactions taking place in a single cell.

As in figure 1, A catalyses the synthesis of S and D, which,

respectively, increase the rates of A synthesis and degradation.

S and D themselves degrade according to a Poissonian death

term. The overall model is thus

;����!l(1þLsS)
A, ð2:1Þ

A ����!n(1þLdD) ;, ð2:2Þ

A�!bs Aþ S, ð2:3Þ

A�!bd AþD, ð2:4Þ

S�!ds ; ð2:5Þ

and D�!dd ;: ð2:6Þ
b parameters denote the strength with which A promotes the

production of S and D and can be viewed as the cell’s respon-

siveness to A levels. L parameters control the strength with

which S and D influence the synthesis and degradation of A;

l and n are the base synthesis and degradation rates of A; d

parameters are the degradation rates of the two feedback

species. All parameters describe rates, and are throughout

taken to be unitless multiples of a characteristic time scale t.

The system is illustrated in figure 1b.

We first consider the symmetric realization of this system

with Ls ¼ Ld ¼ L, bs ¼ bd ¼ b and ds ¼ dd ¼ d. This symmetric

case corresponds to each type of biological process having the

same rate, which we regard as a simple ‘default’ case; we will

generalize this picture later. We use stochastic simulation to

investigate the induction of noise through this antagonistic

mechanism with an example set of parameters b ¼ 0.1, d ¼ 1,

l ¼ 10, n ¼ 0.1 (results for general parameters will be derived

later). In the absence of sensitivity (L ¼ 0), the numerical results

converge on the well-known results for an immigration–death

process fA ¼ l/n, kj2
Al ¼ l/n (figure 2). The noise, expressed as

a coefficient of variation, is thus h ¼ 1=
ffiffiffiffiffiffiffiffi
l=n

p
¼ 1=

ffiffiffiffiffiffi
fA

p
, in

agreement with the common h � 1=
ffiffiffi
n
p

scaling seen in other

biological contexts [12]. As L increases, the level of noise

increases from this base case to several-fold higher, while the

mean level is preserved as l/n (figure 2). Increasing the sensi-

tivity of hormone synthesis and degradation to the presence

of the intermediate signalling molecules—in essence, increasing

the strength of the feedback signal—thus increases the noise in

hormone level while keeping fA constant.

As b increases from zero, the level of noise increases to a

peak, then, by contrast, subsequently decreases (figure 2).

Increasing the response of the hormone synthesis and

degradation machinery to hormone levels thus induces non-

monotonic behaviour in noise. This non-monotonic behaviour

can be understood as resulting from a tension between the

strength of the response of S and D intermediates to A levels

(requiring a high b) and the variability resulting from the

dynamics of S and D (increased at low copy number and

thus low b). Once more, tuning b modulates noise in A without

affecting the mean level of A.

Intuitively, in this symmetric case, the synthesis and degra-

dation signals remain of the same average magnitude, so the

average hormone level remains the same. But due to intrinsic

fluctuations in the levels of the signalling molecules, higher

dependence of A on the dynamics of these molecules leads

to higher variability in A. Observing that figure 2 suggests

that the system converges to a steady-state distribution for a

variety of parametrizations, we proceed by attempting to

find interpretable expressions for the properties of this

steady-state behaviour.
2.2. Analysis of the symmetric feedback system
As is often the case with chemical kinetic models, this system

cannot be readily solved to yield exact analytic solutions for

the behaviour of interest. However, we can employ a linear

noise approximation via Van Kampen’s system size expansion

[41,42] to characterize the levels of induced noise. Briefly, this

approximation involves representing the level of chemical

species in a system as a sum of a deterministic component f

and a fluctuating component j (both vectors with ns com-

ponents), interpreted, respectively, as encoding the mean and

random behaviours of the ns species in the system. As j has
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Figure 2. Hormone levels over time as a function of feedback responses and sensitivities. Behaviour of hormone level A over time, in five stochastic simulations in
each panel, as (top) sensitivity L and (bottom) response b change. Increasing L increases noise monotonically while preserving the mean hormone level;
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zero mean (mean species levels being encoded by f), kjil2 ¼ 0,

and kj2
i l is interpreted as the variance associated with the level

of species i. The chemical master equation is then phrased in

terms of these elements, and we collect terms that scale in

different powers of the system size. If the system of interest

involving R reactions is represented by a stoichiometric

matrix S and a vector of rates f, this process gives us (see the

electronic supplementary material) a set of ODEs describing

the system’s mean behaviour f and a Fokker–Planck equation

describing the behaviour of the fluctuating components. The

3 � 6 stochiometric matrix S and 1 � 6 vector f of rates for

our system are readily written down from equations (2.1)–

(2.6), then we obtain ODEs for the mean behaviour (see the

electronic supplementary material) which support the

steady-state solution suggested by numeric simulation above.

Specifically, if fi denotes the mean level of species i, we obtain

fA ¼
l

n
ð2:7Þ

and

fS ¼ fD ¼
bl

dn
: ð2:8Þ

We also obtain ODEs (see the electronic supplementary

material) for the variances and covariances of the fluctuating

components which can be solved in the steady state, giving

in particular a solution for the variance of A:

kj2
Al ¼ l(b2l2L2 þ d2n(dþ n)þ bdlL(dþ 2(lLþ n)))

n(blLþ dn)(blLþ d(dþ n))
: ð2:9Þ

Equation (2.9) allows us to explore how the variance, and

noise (h ¼
ffiffiffiffiffiffiffiffiffi
kj2

Al
q

=fA, which for constant fA here gives

h ¼ n

ffiffiffiffiffiffiffiffiffi
kj2

Al
q

=l) of hormone levels change with the strength of

the feedback signals mediated via S and D. When L ¼ 0 (A is

insensitive to S and D), this reduces to the expected kj2
Al ¼ l/

n (hence h � 1=
ffiffiffi
n
p

as above) for a simple immigration–death

process governing ABA dynamics. Taking derivatives shows

that as L rises, kj2
Al and h undergo a monotonic increase to a
saturating value. The maximum variance is thus achieved as

L! 1, giving

max
L

kj2
Al ¼ (bþ 2d)l

bn
: ð2:10Þ

The variance—and the Fano factor—of ABA levels thus spans a

multiplicative range of (b þ 2d)/b as L increases from 0; the

coefficient of variation h spans a multiplicative range offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bþ 2d)=b

p
from its 1=

ffiffiffi
n
p

base case. Hence, the relation-

ship d/b between the degradation and synthesis rates of the

intermediate species plays a crucial role in determining the

degree to which hormone noise can be manipulated by

tuning sensitivity.

As seen in simulations above (figure 2), the behaviour of

kj2
Al and h with b for a given L is not monotonic. When b ¼ 0

(synthesis of S and D is not catalysed by A), kj2
Al again

reduces to l/n, and when b! 1, kj2
Al! l=n. Computing

dkj2
Al/db shows that, as b rises, kj2

Al rapidly rises to a peak

at b ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ dÞ

p
=lL, at which kj2

Al takes the value

max
b

kj2
Al ¼ l(d2 þ 2dlLþ lL(4n� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ dÞ

p
))

d2n
; ð2:11Þ

the maximum value of kj2
Al achievable by tuning b is thus

strongly dependent on sensitivity L. Figure 3 shows the

structure of h behaviour as b and L are tuned. We underline

that through these changes to b and L, the mean hormone

level fA remains constant at fA ¼ l/n.

Here and throughout, we confirmed that the analytic pre-

dictions from the linear noise approximation matched the

behaviour of numerical simulations. The agreement between

theory and simulation is strong for all parametrizations

considered (see the electronic supplementary material).
2.3. Generalization to asymmetric regulatory
interactions

We have shown that symmetric feedback strengths (bs ¼ bd,

Ls ¼ Ld) provide the plant cell with a robust way of
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modulating noise while retaining the mean level of a hor-

mone. It is of interest to generalize these results to the case

of asymmetric interactions, both to better capture potential
heterogeneity in interaction strengths that may occur in

biology, and to explore the effects of synthetic interventions

to change individual features of the symmetric regulatory

system.

A steady-state solution for all means, variances and

covariances in the case of different bs, bd, ds, dd, Ls, Ld can

readily be found by applying the above treatment to the gen-

eral equations (2.1)–(2.6), but the form of kj2
Al is rather

lengthy and does not admit intuitive interpretation. A more

informative result can be found without sacrificing much

generality by setting ds ¼ dd ¼ 1 (hence, synthesis and degra-

dation intermediates are degraded at the same rate, by which

the rates of all other processes are scaled). Changes in these d

parameters have intuitive effects on the mean and variability

behaviour of the system (see the electronic supplementary

material). We then find, again for the steady state, that

fA ¼
bslLs � nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bdlLdnþ (n� bslLs)

2
q

2bdLdn
: ð2:12Þ

Clearly, when bs = bd or Ls = Ld, fA departs from its usual

value of l/n: a signal of synthesis or degradation being

favoured by the system, and a consequent raising or lowering

of steady-state mean expression.

An expression for the variance can also be derived:
kj2
Al ¼ l(bslLs � n� 1)þ fA(bslLs(lLs(bs � 2)� 1)� n(2bdlLd þ 1)� n2 � bdLdnfA(1þ bslLs þ 3nþ 2(bd þ 1)LdnfA))

2(bslLs � n� 2bdLdnfA)(1þ nþ bdLdnfA)
, ð2:13Þ
demonstrating the strongly coupled roles of the b and L par-

ameters in dictating the statistics of hormone levels, and

suggesting that two forms of intervention—altering sensi-

tivity or expression levels of intermediates—can be used to

artificially tune variability.

Equations (2.12) and (2.13) together provide a predictive

‘roadmap’ for the influence of perturbed interactions on the

statistics of hormone levels in the system. The behaviour of

these predicted statistics under changes to each parameter is

illustrated in figure 4a, where we use a default set of parameters

(as above) with bs,d¼ Ls,d ¼ 0.1, d ¼ 1, l ¼ 10, n ¼ 0.1, and

vary pairs of values while holding the remainder constant.

Generally, the behaviour of mean hormone level fA behaves

intuitively with L and b parameters. As Ls and bs increase,

fA increases; asLs andbs decrease, fA decreases to a minimum

of l/n. As Ld and bd increase, fA decreases—no longer

bounded by l/n—and as Ld and bd decrease, fA increases.

The behaviour of h with these control parameters is more

complex and now frequently non-monotonic. Increasing Ls

independently of other parameters can drive h to and past

a maximum noise value; this non-monotonic behaviour is

observed at low bs and high bd. Similarly, increasing bs inde-

pendently drives h through and past a peak. Increasing Ld

generally induces an increase in h. Increasing bd induces a

wide range of behaviours, including an increase in h at

high Ls, and a decrease followed by recovery of h at high Ld.

This complex behaviour can be more readily interpreted

by considering the quantity h0 ; h=ð1=
ffiffiffiffiffiffi
fA

p
Þ, the multiplica-

tive factor by which h exceeds the 1=
ffiffiffi
n
p

level expected for a

simple immigration–death model. h0 reflects the additional
contribution of feedback to the natural noise in hormone

levels. The behaviour of this ‘scaled noise’ h0 with interven-

tions is more intuitive, roughly following a ‘more synthesis,

more scaled noise’ principle. Increasing bd decreases h0;

increasing Ld decreases h0; increasing Ls increases h0; increas-

ing bs increases h0 at low Ls and drives h0 through a peak at

high Ls. Efficient noise reduction can be achieved by reducing

bs and Ls or increasing bd and decreasing Ls.

2.4. Artificial interventions to modulate noise in
seed behaviour

The many directions in which equations (2.12) and (2.13) show

that noise can be modulated suggest a wide range of options

for tuning noise in the hormone regulatory system. Figure 4b
illustrates the effect of a set of different perturbations on fA

and h. From an intermediate initial state, any combination

of increasing, maintaining or decreasing fA and increasing,

maintaining or decreasing h is possible by selecting the corre-

sponding parameter(s) and directional change(s) from figure

4b. Perhaps the most agriculturally pertinent outcomes involve

(a) decreasing noise while maintaining expression levels and

(b) decreasing noise while decreasing expression levels (hence

both favouring and harmonizing germination propensity).

These goals can be achieved by (a) simultaneously decreasing

sensitivities to, or responses of, both pathways, as seen above

(L2
s , L2

d andb2
s , b2

d ) and (b) decreasingbs and/orLs, increasing

bs while decreasing Ls or increasing bd while decreasing Ls.

Notably, it is possible to decrease h below the 1=
ffiffiffiffiffiffi
fA

p
behaviour expected from the underlying immigration–death
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process, by strengthening the negative feedback aspects of

the regulatory system. In the limit Ls ! 0 (the limit bs ! 0

behaves equivalently, as the two parameters always appear

together), negative feedback dominates (A represses its own

production), acting to stabilize expression levels and decrease

noise. In this limit, writing r ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(4lbdLd þ n)

p
,

fA ¼
r� n

2bdLdn
ð2:14Þ

and

kj2
Al ¼ 2b2

dlLd(rþ 1)þ bdlLd(r� 3n)þ n(r� n)

b2
dLdr(2þ nþ r)

, ð2:15Þ

driving h0 below one for some parametrizations as seen in

figure 4b (the mean-and-noise strategies listed above, and

increasing Ld to a greater degree than Ls).

As above, we confirmed that this theory matches stochastic

simulation by comparing results for fA and kj2
Al at uniformly

spaced points in parameter space through each of the panels

in figure 4a; the results show strong agreement and are

illustrated in the electronic supplementary material.

2.5. Experimental data
Our model makes predictions about how perturbing aspects

of the signalling circuitry in figure 1 will influence hormone

levels and noise in those levels. Experimental exploration of

perturbations to this motif is currently limited (though exper-

imental evidence for substantial variability in ABA between

seeds is well established, including the aforementioned three-

fold variability in levels of ABA in seeds from the same

Arabidopsis silique [31]). However, one experimental study

[43] artificially introduced a positive feedback circuit into

Arabidopsis, enhancing ABA response-mediated synthesis,

and providing the opportunity to test the predictions of this

theory. In several plant lines including this modification,

seed-wide ABA levels and germination propensity were

reported for the mutated plant line and a wild-type control.

We first consider the three lines where seed-wide ABA levels

were reported for controls and engineered lines enhancing ABA

synthesis machinery (hence, increasingbs in our nomenclature).
As these statistics are seed-wide, we must consider the whole-

seed statisticsf(seed)
A andh(seed), which reflect but are not directly

linked to the microscopic fA and h on smaller (cellular) length

scales (see Discussion). In each experimental case, f(seed)
A was

unsurprisingly increased by the increase inbs. We also observed

that noise h(seed) in ABA levels was markedly decreased by the

genetic intervention, agreeing with our theory, in two cases,

displaying a small increase in the third (figure 5a).

The relationship between ABA levels and germination

propensity is complicated by the presence of other factors

which may vary between seeds, including levels of GA, the

antagonistic germination-promoting hormone. In the absence

of heterogeneity in external factors, and for a simple inverse

relationship between ABA level and germination propensity,

we would expect decreases in germination to be a signal of

increased ABA levels, and hence lower noise in ABA and ger-

mination. Using a logit transformation to cast germination

percentages onto the full real line (hence accounting for the

0% and 100% boundaries in percentage statistics; see the elec-

tronic supplementary material), we found that 5 of 6 tractable

experiments showed a decrease in noise in transformed ger-

mination propensity in the ABA-enhanced mutant, agreeing

with our extrapolated theory (figure 5b).

These limited available experimental observations agree

with our theory but are certainly not conclusive evidence

that our model is correct. Further work inducing pertur-

bations to the regulatory system will be required to provide

stronger support for, and more power to parametrize, our

model (see Discussion).
2.6. Alternative regulatory architectures
For completeness, we consider two alternative motifs allow-

ing hormone levels to leverage control over hormone

synthesis and degradation, involving ‘direct feedback’:

; ����!l(1þLsA)
A ð2:16Þ

and

A ����!n(1þLdA) ;; ð2:17Þ
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and ‘single pathway’:

; ����!l(1þLsX)
A, ð2:18Þ

A ����!n(1þLdX) ;, ð2:19Þ

A�!b Aþ X ð2:20Þ

and X�!d ;; ð2:21Þ

illustrated in figure 6.

For direct feedback, A levels directly modulate the

synthesis and degradation rates of A. For single pathway, A
levels modulate the synthesis of a single chemical species X,

levels of which modulate synthesis and degradation of A.

To investigate whether these simpler architectures are

capable of inducing the striking symmetric control over hor-

mone levels seen previously—allowing a tuning of noise

while retaining the same mean level—we first consider the

case of symmetric sensitivities Ls ¼ Ld ¼ L. We proceed

through the same analysis as above (noting that the direct feed-

back model admits full solutions to the equations of motion). In

both cases, the steady-state solutions are

fA ¼ kj2
Al ¼ l

n
: ð2:22Þ

Hence, for symmetric regulatory interactions in these

models, the value of L (and those of b, d) exerts no regulatory

control on the noise, which remains at the usual h � 1=
ffiffiffi
n
p

(figure 6). Indeed, L, b, d do not control the mean levels of A
in these symmetric cases. To control the level of noise with sym-

metric regulatory interactions, the two pathways S and D are

required.

We can also consider the effect of varying interactions

asymmetrically under these other regulatory models. In the

direct feedback model we obtain

fA ¼
lLs � nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lLdnþ (n� lLs)

2
q

2Ldn
ð2:23Þ

and

kj2
Al ¼ lþ (lLs þ n)fA þ Ldnf

2
A

2nþ 4LdnfA � 2lLs
, ð2:24Þ

with h, h0 and fA behaviour shown in figure 6. As above, fA

varies intuitively with signal strength, increasing as Ls

increases and decreasing as Ld increases. Unscaled noise h

increases with Ld and decreases with Ls, but due to changes

in fA, the difference between this noise level and the expected

1=
ffiffiffiffiffiffi
fA

p
scaling is more nuanced. With increasingLs,h

0 tends to

a saturating value: at low Ld this increase drives h0 through a

peak. When Ld� Ls in this system (the negative-feedback-

only case), noise is reduced: in the limit of Ls ¼ 0,Ld ! 1,

fA ! l=
ffiffiffiffiffiffiffiffiffiffiffi
lnLd
p

and h0 ! 1=
ffiffiffi
2
p

, allowing control of noise

below the h0 ¼ 1 level expected for the simple immigration–

death system. Hence, increasing Ls is optimal for decreasing

absolute noise levels; increasing Ld increases absolute noise

levels but is the optimal strategy for decreasing scaled noise h0.

The single-pathway system has very similar expressions

for hormone statistics to that for the two-pathway system

with bs ¼ bd ¼ b. Indeed, fA is identical to equation (2.12)

in this case. A subtle but important difference exists in the

expressions for kj2
Al in the two cases (see the electronic sup-

plementary material). As noted above, the one-pathway

version results in kj2
Al reducing to l/n when Ls ¼ Ld, remov-

ing the ability to control noise through symmetric
interactions. The range of behaviours in h and h0 that can

be induced by varying parameters is correspondingly altered.

As b now represents a general response term, its influence on

noise is strongly dependent on which pathway ABA is more

sensitive to. The behaviour of noise as b is varied thus reflects

two aspects of the two-pathway system above: when Ld . Ls,

increasing b enhances the dominance of the degradation

pathways, and when Ls . Ld, increasing b enhances the

dominance of the synthesis pathway.

At higher Ls, increasing b intuitively increases fA and

decreases noise; at higher Ld, increasing b decreases fA and

increases noise, leading to two regions of high h (low Ls,

high b; and high Ls, low b). In the case of high Ls and low b,

scaled noise h0 can increase substantially. Low b and high Ld

also induces a high h0, which can be understood through an

enhanced influence of the intermediate X which itself is

highly variable due to a comparatively low expression level.

The behaviour of fA and h with Ls and Ld is intuitive,

with more synthesis leading to higher hormone levels and

lower noise, and more degradation leading to lower hormone

levels and higher noise. However, the relative strength of

these influences leads to complex behaviour in scaled noise

h0, which shows two peaks at intermediate Ls for low Ld,

and at low Ls and high Ld. The structure of this (Ls, Ld) be-

haviour is similar to that in the direct feedback system,

with the addition of the high-Ld peak in h0 due to the

stronger influence of Ld on decreasing fA.

The magnitudes of noise, and particularly scaled noise h0,

in the single-pathway system are usually lower than in the

two-pathway system above, reflecting the increased ability

of two independent stochastic pathways to induce noise in

the underlying hormone levels. The bimodal behaviour in

h0 observed in the single-pathway system is often of low mag-

nitude compared to the stronger trends observed in the case

of two antagonistic pathways.
3. Discussion
We have used stochastic modelling to investigate the behaviour

of a regulatory motif, recently identified in plant cells [37], that

acts as a ‘random output generator’ governing the levels

of ABA in seeds. The key feature of this motif is its positive

feedback regulation of both ABA synthesis and degradation

pathways, allowing the maintenance of constant mean ABA

levels in concert with tunable control of ABA variability.

ABA governs germination propensity (through an antagonistic

relationship with another hormone GA [38,39]); variability in

ABA therefore translates into variation in germination propen-

sity [25,37]. The system we investigate is capable of generating

tunable levels of noise in hormone levels while preserving

mean levels, hence allowing plants to naturally vary germina-

tion propensity and allowing an evolutionarily beneficial

bet-hedging strategy against varying environments [25,26,28].

Both genetic perturbations and differences in pathway activity

can be used to modulate the levels of noise induced through

this motif, providing the plant with a means to produce

seeds of highly variable germination propensities, and a

means for a population to navigate and adapt to selective

pressures arising from varying environments. This variability

is observed in germination experiments [43] (see above) and

at the level of hormone abundance in observations of three-

fold differences in ABA between seeds from the same silique
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[31]. We identify several routes for artificially adapting this cel-

lular system to reduce this generation of variability, allowing

for more uniform germination propensity when environments

are less dynamic (as in agricultural contexts).

Among the findings of this stochastic modelling approach

are the following: (a) symmetric modulation of synthesis and

degradation pathways allows noise to be induced while pre-

serving mean expression levels; (b) simple manipulations of

the interactions within this regulatory system can be used

to control hormone levels and noise in any combination

of directions; (c) the limited experimental data currently

available support our stochastic modelling of the features

modulating ABA levels in Arabidopsis; (d) a symmetric two-

pathway system with equal reaction rates is required for

symmetric, robust control of noise while preserving

expression levels; and (e) perturbations to simpler pathways

can be identified to modulate noise and expression levels in

a more restricted palette of options.

We underline that mathematical modelling with tools from

stochastic processes is a powerful approach to explore ques-

tions associated with variability in cell biology. Biological

variability is often challenging to experimentally characterize,

requiring large numbers of observations and decoupling

confounding sources of noise (including experimental uncer-

tainty). Stochastic modelling affords the opportunity to make

biological advances based on a bottom-up description of the

system of interest, and can often be connected with what

limited experimental evidence is available. In particular,

the linear noise approximation we employ yields analytic

expressions that can be explored in depth without necessitating

time-consuming and less generalizable stochastic simulation;

our previous work has also demonstrated the propensity of

interpretable, powerful and simple analytic expressions to

emerge from this treatment and drive scientific advances [44].

A natural follow-up question is how to quantitatively para-

metrize this system to model a given real plant. We first note

that this study’s qualitative predictions are perhaps its most

important deliverable—the direction and relative magnitudes

of effects that can be achieved by perturbing aspects of the

system. The coarse-grained representation we employ necess-

arily omits some quantitative detail (for example, subtleties of

stochastic gene expression, the full set of biochemical agents in

each signalling pathway and the functional form of biochemical

responses). Direct measurements of hormone levels are limited

at this time (though some [43] provide support for our model as

above), but readouts of relative protein abundance are available

at a cellular resolution [37]. Moreover, experiments where ABA

levels are increased in a bath of known concentration can be per-

formed [37]. A combination of these readouts with parametric

inference tools for stochastic biology [45] will allow further

quantitative refinement of this modelling approach.

We have largely considered variability at the cellular

level. In linking this approach to whole-seed behaviour, we

must address the possibility that noise in individual cells is

somehow ‘averaged out’ and is less important at the seed

level. Several findings suggest that this picture may not be

accurate. Existing work has shown that observed germination

behaviour can be recapitulated by a model considering only a

reduced subset of cells [37], suggesting a picture where the

germination influence of a small number of cells may be

amplified. Concurrently, the idea of a ‘threshold’ switch is

widely used in considering germination [25,39,40,46,47].

A plausible mechanism giving rise to such threshold-like
behaviour would involve a collective decision being reached,

for example, when a given proportion of fluctuating cells

exceed a threshold at the same time. In both these cases,

the cell-to-cell variability in hormone levels would be crucial

in governing germination, and levels of cell-to-cell variability

are directly linked to germination variability. This picture is

supported by the agreement between the predictions of our

cell-level model and the limited seed-level statistics available

[37,43]; further work taking a multiscale approach will be

valuable in elucidating this link.

In our model, we have used a fixed set of initial con-

ditions for each element of the system. However, the

unique history of a given plant could contribute additional

variability to the system, for example if variability in ABA

levels in the previous generation is transmitted to the current

generation. Our model contains a characteristic time scale

with which initial states are remembered, but this quantity

remains challenging to parametrize with existing data. The

lack of empirical information on this time scale is a reason

that we currently largely focus on the steady-state behaviour

of moments in our model. Further experimental characteriz-

ation of correlations in these cellular variables will enable

future work to identify the time scales over which such

memory contributes to the system’s behaviour.

Our predictions of most importance for crop engineering,

reflected by a combination of equations (2.12) and (2.13), are

that modulating sensitivity L, response b, and the degrada-

tion rate of signalling intermediates d will decrease noise in

hormone abundance. This outcome is desirable in instances

where variability in germination propensity is an agronomic

issue, for example, in preventing uniform field crop esta-

blishment [25]. As previously discussed, seed variability is

an evolutionarily beneficial trait in plants, allowing hedging

against environmental change, but human control over crop

plant environments means that this evolutionary priority

takes lower precedence and this variability is therefore a

source of inefficiency. Crop breeding is likely to have reduced

some sources of variability, but the confounding involvement

of these cellular actors in other processes of agronomic impor-

tance presents a limiting factor for previous strategies. We

believe that detailed elucidation of the specific role that these

actors play in noise generation will motivate new breeding

strategies that reduce variability while limiting impact on

these other traits. Synthetic perturbations to the genes

involved in these signalling pathways represents a promising

avenue for further engineering out these evolutionarily

beneficial, but agronomically challenging, noise-generating

mechanisms. We hope that this work, characterizing the noise-

inducing behaviour of a regulatory motif central to germination

in Arabidopsis, illustrates that stochastic modelling can identify

targets for future genetic manipulation to lower seed variabi-

lity and address consequent issues in crop establishment and

food security.
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