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Helicases and human diseases
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Recent progress in pharmaceutical sciences has made it possi-
ble for us to live longer and longer. For example, antibiotics
and vaccines have been developed that were successfully admin-
istered to patients with infectious diseases. A number of effec-
tive drugs for specific diseases could be purified from natural
resources or created by chemical synthesis, and recent recom-
binant DNA technologies have brought about antibody-drugs.
It seems increasingly possible that a treatment for every disease
could be established in the near future. Nevertheless, prevention
or remedies for inherited age-related diseases, including cancer,
have not yet been completely established. However, recent pro-
gresses in human genetics and molecular biology revealed that
premature aging is caused by mutations on DNA helicase encod-
ing genes (Bernstein et al., 2010). These exciting findings have
encouraged scientists to research mechanisms of the age-related
diseases.

DNA/RNA helicases are enzymes that unwind DNA/DNA,
DNA/RNA, and RNA/RNA duplexes to execute and regulate
DNA replication, recombination, repair, and transcription (Patel
and Donmez, 2006). To date, numerous genes have been iden-
tified to encode helicases. Importantly, genetic studies have
revealed that mutations in some of these genes are associated
with certain human diseases, including Xeroderma Pigmentosum
(XP), Cockayne Syndrome (CS), and Werner Syndrome (WS)
(Puzianowska-Kuznicka and Kuznicki, 2005). Given that helicases
play an important role in the regulation and maintenance of chro-
mosomal DNAs, it might not be so difficult to understand that
their dysfunction leads to unfavorable states. Nuclear events, such
as nucleotide excision repair (NER), transcription coupled repair
(TCR), and telomere maintenance, are thought to be individually
affected by XPB/XPD, CSA/CSB and WRN helicases, respectively
(Table 1). Because epigenetic changes and disruption of chromo-
somal integrity have been strongly suggested to correlate with
cellular senescence, these helicases may be important factors to
regulate aging and age-related diseases.

Despite great efforts being made to elucidate the properties of
helicases on a molecular and cellular level, it seems that the gap
from molecule to patient is still distant. In this research topic,
authors have described and discussed the forefront of the heli-
case studies. It is very important to establish a molecular model of
how helicases interact with DNA repair machinery. In the research
topic, the properties of the FANCJ (BRIP1) that affect cancer and
Fanconi Anemia (FA) development have been summarized (Brosh
and Cantor, 2014). In order to assess the mechanisms of diseases,
including cancer, which are caused by dysfunctions of helicases,

Table 1 | Helicases that associate with human diseases.

Helicase (GENE ID) Disease References

BLM (BLM) BSa,b Ellis et al., 1995

CSA (ERCC8), CSB (ERCC6) CSa,d Henning et al., 1995

DDX11 (DDX11) Warsaw
breakage
syndromed

van der Lelij et al., 2010

FANCJ (BRIP1) FAb,c Levitus et al., 2005

IGHMBP2 (IGHMBP2) SMARD1d,
CMT2d

Grohmann et al., 2001;
Cottenie et al., 2014

IFIH1 (IFIH1) SLEe Robinson et al., 2011

MCM4 (MCM4) NKGCD, cancer Hughes et al., 2012;
Jackson et al., 2014

RECQ1/RECQL1 (RECQL) Cancer Sharma and Brosh, 2008

RECQL4 (RECQL4) RTSa,b Kitao et al., 1999

RTEL1 (RTEL1) HHSb,c,f Ballew et al., 2013

SETX (SETX ) ALS4d Chen et al., 2004

TWINKLE (c10orf2) MDS7d Spelbrink et al., 2001

WRN (WRN) WSa,b,f Oshima et al., 1996

XPB (ERCC3), XPD (ERCC2) XPb, CSa,d Sung et al., 1993; Hwang
et al., 1996

aPremature aging.
bCancer or risk of cancer.
cBone marrow failure.
d Impaired development of nervous system or deficiencies in neuromuscular

junctions.
eAutoimmune disease.
f Telomere shortening.

ALS, amyotrophic lateral sclerosis; BS, Bloom syndrome; CMT, Charcot-Marie-

Tooth disease; CS, Cockayne syndrome; FA, Fanconi anemia; HHS, Hoyeraal

Hreidarsson syndrome (Dyskeratosis congenita); MDS, Mitochondrial DNA

depletion syndrome; NKGCD, Natural killer cell and glucocorticoid deficiency

with DNA repair defect; SLE, systemic lupus erythematosus; RTS, Rothmund-

Thomson syndrome; SMARD1, spinal muscular atrophy with respiratory distress

type 1; WS, Werner syndrome; XP, Xeroderma pigmentosum.

several approaches could be applied. Genetic and expression
analyses of samples from patients will enable us to discuss the
alterations in both the quality of DNA and the quantity of RNA.
Therefore, diagnosis/prognosis of cancer or age-related diseases
will be possible by analyzing the RECQ1 (RECQL) gene expres-
sion (Sharma, 2014). Based on the concept that helicases play
important roles in the maintenance of chromosomal DNAs, novel
therapeutics will be applicable for cancer therapy with siRNAs
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of the RECQL1 (RECQL) and WRN DNA helicase-encoding
genes (Futami and Furuichi, 2015). The therapy is supported by
experimental results showing that siRNA of the RECQL could be
effectively applied for ovarian cancer treatment by inducing apop-
tosis (Matsushita et al., 2014). Structural analyses of the helicase
protein molecules will provide their precise function in the pro-
cess of DNA repair. The precise molecular structure models of
the WRN and BLM helicases will contribute for a development
of rational design of specific drugs to prevent aging and cancer
(Kitano, 2014). Moreover, establishment of iPSCs from heli-
case deficient cells will contribute to the clinical tests to develop
novel drugs that delay aging and age-related diseases (Shimamoto
et al., 2015). Furthermore, studies on RNA helicases, especially
those that are involved in immune responses, will contribute to
developing strategies against viral infections. It was shown that
DDX3 could be a novel therapeutic target for HIV-1 and HCV
replication (Ariumi, 2014). Importantly, IFIH1, which controls
anti-viral responses, will be a molecular target of diagnosis and
treatment for systemic lupus erythematosus (SLE) (Oliveira et al.,
2014). All these articles provide new insights into the molecular
pathology of the helicase-associated diseases. Further studies on
various helicases will not only contribute to diagnoses and treat-
ment of specific diseases (Table 1) but also to prevention and next
generation-therapeutics on cancer and age-related diseases.
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