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Understanding the multidimensional 
cognitive deficits of logopenic variant 
primary progressive aphasia
Siddharth Ramanan,1 Muireann Irish,2 Karalyn Patterson,1 James B. Rowe,1,3,4  

Maria Luisa Gorno-Tempini5 and Matthew A. Lambon Ralph1

The logopenic variant of primary progressive aphasia is characterized by early deficits in language production and 
phonological short-term memory, attributed to left-lateralized temporoparietal, inferior parietal and posterior tem-
poral neurodegeneration. Despite patients primarily complaining of language difficulties, emerging evidence points 
to performance deficits in non-linguistic domains. Temporoparietal cortex, and functional brain networks anchored 
to this region, are implicated as putative neural substrates of non-linguistic cognitive deficits in logopenic variant pri-
mary progressive aphasia, suggesting that degeneration of a shared set of brain regions may result in co-occurring 
linguistic and non-linguistic dysfunction early in the disease course. Here, we provide a Review aimed at broadening 
the understanding of logopenic variant primary progressive aphasia beyond the lens of an exclusive language dis-
order. By considering behavioural and neuroimaging research on non-linguistic dysfunction in logopenic variant pri-
mary progressive aphasia, we propose that a significant portion of multidimensional cognitive features can be 
explained by degeneration of temporal/inferior parietal cortices and connected regions. Drawing on insights from 
normative cognitive neuroscience, we propose that these regions underpin a combination of domain-general and do-
main-selective cognitive processes, whose disruption results in multifaceted cognitive deficits including aphasia. 
This account explains the common emergence of linguistic and non-linguistic cognitive difficulties in logopenic vari-
ant primary progressive aphasia, and predicts phenotypic diversification associated with progression of pathology in 
posterior neocortex.
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Introduction
Primary progressive aphasia (PPA) refers to a group of neurodegen-
erative disorders affecting language functions in early stages, due 
to degeneration of a distributed, largely left-lateralized language 
network.1,2 Historical descriptions of PPA-like syndromes can be 
found in late 19th and early 20th centuries in reports by Pick, 
Sérieux, Dejerine, Rosenfeld and others.1 Contemporary clinical, 
anatomical and pathological understanding of PPAs has evolved 
greatly in the last 40 years. Key to this resurgence was a seminal 
case series by Mesulam3 describing progressive aphasia with left 
perisylvian atrophy and slow rates of disease progression. Marked 
general cognitive decline emerged only later in the disease course.4

Subsequent classifications of PPA have expanded the phenotype to 
include patients with motor-speech planning, grammatical and se-
mantic memory deficits, identifying three main clinical variants: a 
‘non-fluent/agrammatic’ variant (nfvPPA) characterized by motor- 
speech dysfunction and/or agrammatism stemming from primary 
fronto-insular degeneration;5 a ‘semantic’ variant (svPPA, also called 
semantic dementia) presenting with degradation of conceptual 
knowledge due to anterior temporal degeneration;6 and a third ‘logo-
penic’ variant (lvPPA)7 that forms the focus of the current Review. 
Clinically, lvPPA patients display slowed, disrupted spontaneous 
language production marked by word-finding pauses, anomia, 
phonological errors and poor length-dependent repetition of sen-
tences, amid relatively preserved grammatical processing, motor 
speech (unlike nfvPPA) and semantic knowledge (unlike svPPA).2,8

Comprehension of long sentences is also affected and, in part, could 
arise from poor phonological short-term memory.8–10 This constella-
tion of language difficulties emerges from primary degeneration of 
the left-lateralized posterior temporal gyri, temporoparietal junc-
tion and inferior parietal lobes (TPJ/IPL) and their interstices.8,11

Recent advances in neuroimaging of disease progression in PPA syn-
dromes conceptualize them as network-level disorders, in which 
neurodegeneration starts in a syndrome-specific susceptible epi-
centre and then spreads in a predictable, constrained manner along 
structurally/functionally connected brain regions.12,13 Accordingly, 
with disease progression, atrophy in lvPPA encroaches into regions 
in the left hemisphere that are functionally coupled with TPJ/IPL 
(via language and Default Mode networks), followed by regions in 
the right hemisphere.14–19

To date, the lens of lvPPA clinical investigations has largely fo-
cused on language profiles, mainly because, by definition, the 
main presenting clinical complaint is that of language distur-
bances. However, a growing number of studies pose an important 
diagnostic challenge: that numerous lvPPA patients display concur-
rent, non-linguistic cognitive deficits on neuropsychological test-
ing. Of note, even in Mesulam’s early PPA cases who probably 
had the logopenic variant, calculation difficulties were noted 
during clinical presentation.3 When non-linguistic cognitive func-
tions are tested in depth, most lvPPA cases appear to exhibit 
moderate-to-marked levels of non-linguistic cognitive dysfunc-
tion.20 Others find that the severity of non-linguistic difficulties in 

lvPPA may parallel the severity of aphasia and emerge relatively in-
dependent of disease severity.21 This issue is complicated by over-
laps in both language and non-linguistic cognitive performance 
between lvPPA, amnestic Alzheimer’s disease and posterior cortical 
atrophy: three clinical entities often sharing common pathology.16

Piecing together the diagnostic and mechanistic puzzle of why 
lvPPA presents with linguistic and non-linguistic cognitive difficul-
ties is vital to ensure accurate diagnosis, characterization and 
prognostication.

In this paper, we propose a new clinico-anatomical framework 
that encompasses the ‘multidimensional’ deficits in lvPPA. The 
combination of core language and variable non-linguistic deficits 
may arise from shared neurophysiological mechanisms, and the 
nature and localization of neurocognitive processes supported by 
the left TPJ/IPL region—the epicentre of atrophy in the syndrome. 
The contribution of this region and functionally connected areas 
to language disruption in lvPPA has received significant attention, 
but its role in cognitive processes beyond language in this syn-
drome has been relatively overlooked. By integrating insights 
from contemporary cognitive neuroscience and neuropsychology, 
we review the evidence of domain-general and domain-selective 
mechanistic roles for these regions. By then reversing these infer-
ences, we can consider the phenotypic outcome of left TPJ/IPL de-
generation to lvPPA, updating our understanding of why some 
patients present with a relatively pure aphasic profile while others 
display additional non-linguistic dysfunction.

To be clear from the outset, our goal of this Review is not to re-
write the current diagnostic criteria for lvPPA, but rather to explain 
phenotypic diversification in the syndrome with implications to its 
accurate diagnosis and timely introduction of multidomain symp-
tomatic treatments.

Insights from contemporary cognitive 
neuroscience
We propose that patterns of verbal and nonverbal cognitive difficul-
ties observed early in the lvPPA disease course are a direct reflection 
of (i) the cognitive complexity of TPJ/IPL; and (ii) the amount and 
distribution of neuropathology, atrophy and/or hypometabolism 
in TPJ/IPL and structurally/functionally connected regions and net-
works.10,22–25 The impact of TPJ/IPL pathology in lvPPA may further 
cause disruptions in cognitive processing related to up/down-
stream regions, such as the hippocampus and right IPL, and con-
nected functional networks, compounding cognitive dysfunction 
in the syndrome. The current proposal does not exclude contribu-
tions of other brain regions to cognitive dysfunction in lvPPA; but 
in this Review, we focus on TPJ/IPL due to its complex cognitive 
roles and early involvement in this syndrome. A detailed review 
of left TPJ/IPL functionality is beyond the scope of our Review26–29; 
however, by considering key themes regarding its neurocognitive 
organization, we can provide testable neural hypotheses explain-
ing the multifaceted cognitive presentation of lvPPA.
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Historical cognitive neuroscience and neuropsychology evi-
dence has implicated left TPJ/IPL in multiple, apparently distinct, 

cognitive tasks. For instance, Gerstmann’s syndrome, emerging 

from left IPL damage, encompasses both linguistic (dysgraphia 

and occasionally, aphasia) and non-linguistic (finger agnosia, dys-

calculia, left-right disorientation) complaints.30 Functional neuroi-

maging suggests that the multidomain involvement of TPJ/IPL can 

be traced to its role in deploying key neurocomputational resources 

to meet demands of different cognitive tasks.28,31 Three principal 

features of this region underpin its domain-general and domain- 

selective functions: 
(i) Neuroanatomically, TPJ/IPL are segregated from primary sensory corti-

ces. This absolves them from processing dynamic fluctuations in the im-

mediate sensory environment, and facilitates the processing of 

multimodal information and diverse cognitive domains.28,32,33,29,34

(ii) Computational models suggest that repeat processing, integration and 

buffering of information can promote extraction of time-, space- and 

context-invariant representations that can be repurposed to different 

task demands.28,35,36 TPJ/IPL harbour this functional capacity, whereas 

TPJ/IPL lesions characteristic of semantic aphasia impair the use of 

time- and context-appropriate information across semantic and non- 

semantic domains.37,38

(iii) Functional specialization within TPJ/IPL is not sharply fractionated, but 

varies between subregions in a graded manner and is tied closely to 

structural/functional connectivity patterns of each subregion. This char-

acteristic is seen in the temporal granularity of information being pro-

cessed here. For example, cognitive tasks processed over shorter time 

periods (e.g. phonology, sound) preferentially recruit anterior TPJ/IPL 

regions (e.g. supramarginal gyrus) whereas posterior IPL (e.g. angular 

gyrus) is preferentially recruited in tasks reliant on longer temporal win-

dows, where processing of accumulating information is required (e.g. 

sentence and narrative processing, episodic memory retrieval).28,34,39

On the basis of these principles, we evaluate evidence for TPJ/IPL 
in multidomain cognition, with relevance to lvPPA (Fig. 1A–C).

Considering language functions, posterior superior temporal 
and inferior supramarginal gyri are involved in extraction of 
spectro-temporal features of sound41 and extraction and mainten-
ance of phonological representations.42 These specific functions, in 
turn, may be supported by shared neurophysiological mechanisms 
within TPJ/IPL. For example, the planum temporale acts as an audi-
tory ‘computational hub’, disambiguating incoming auditory infor-
mation, matching these representations to existing auditory 
templates (derived from experience), in turn, supporting its trans-
formation into subsequent motor programmes for different cogni-
tive/behavioural domains (e.g. object recognition, emotional 
vocalization).43–45 Ventral and posterior portions, including poster-
ior middle temporal regions, are associated with multimodal 
semantic-executive related processing,46–48 while angular gyrus 
participates in constructive elements of verbal episodic recollec-
tion,49–51 sentential and combinatorial processing52 and buffering 
sequential information in coherent contexts.53,54 These functional 
specializations are corroborated by extant neuropsychological 
evidence. For example, conduction aphasia, emerging from dam-
age to the inferior supramarginal gyrus and underlying arcuate 

Figure 1 Graphical summary of the main premise of this Review. (A) Insights from cognitive neuroscience indicate that the left posterior temporal 
cortices (including superior/middle/inferior temporal gyrus and TPJ; together, denoted within the white square) (reprinted from Kanwisher40) and 
left supramarginal and angular gyri (components of the IPL) (reprinted from Humphreys and Lambon Ralph28) support multiple cognitive functions, 
possibly through deployment of domain-general and domain-selective computations. These computations support phonology and working memory, 
episodic and semantic memory, social and numerical cognition, visuospatial and executive abilities, as well as attention and praxis functions. (B) lvPPA 
targets left posterior temporal and TPJ/IPL regions (depicted here as reduced cortical thickness, i.e. warmer colours) suggesting the aforementioned 
cognitive functions dependent on TPJ/IPL functionality should be affected (reprinted from Leyton et al.11 with permission from IOS Press). (C) A recent 
meta-analysis of neuropsychological performance in 663 lvPPA patients (across 51 studies) found significant performance deficits across standardized 
neuropsychological measures of episodic memory, social and numerical cognition, executive functions, and attention in lvPPA relative to nfvPPA (‘N’ in 
figure) and svPPA (‘S’ in figure) groups (reprinted from Kamath et al.21 with permission from Cambridge University Press), showcasing the multidimen-
sional cognitive profile of this syndrome.
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fasciculus, specifically disrupts speech repetition but spares 
semantic-executive control.55,56 Conversely, transcortical sensory 
aphasia and semantic aphasia, occurring from lesions in the mid-
dle/posterior cerebral artery watershed territory affecting posterior 
middle temporal regions (outside the supramarginal gyrus), display 
poor semantic-executive processing but relatively intact phono-
logical functions.38,57 Finally, combined damage to the entire left 
TPJ/IPL, such as in Wernicke’s aphasia, disrupts both phonological 
and semantic-executive control functions, irrespective of tested 
modality.58

For non-linguistic domains, left IPL emerges at the nexus of 
multiple non-linguistic cognitive capacities. As per our third prin-
ciple (i.e. functional gradation within TPJ/IPL for processing infor-
mation varying in temporal granularity), the anterior IPL 
(supramarginal gyrus) shows involvement in tasks requiring rela-
tively shorter temporal processing windows, such as directing 
bottom-up attention to external stimuli and internally generated 
thought (e.g. episodic recollection).59 Longer temporal windows in 
posterior IPL (angular gyrus) facilitate its involvement in transform-
ation and integration of accumulating information, irrespective of 
its nature or modality.28,54 For example, during memory recollec-
tion and future-oriented thinking: (i) angular gyrus and medial tem-
poral regions show functional coupling; and (ii) angular gyrus 
activity scales with the vividness, strength and accuracy of re-
trieved memories, and shows demonstrable sensitivity to integra-
tion of multimodal information.49,50,60,61 Accordingly, primary IPL 
damage, irrespective of aetiology, impairs performance on cogni-
tive endeavours requiring mental simulations, including episodic 
retrieval and scene construction,62–64 theory of mind and social 
cognition65 and spatial navigation.66 Angular gyrus is further inte-
gral to transformation and retrieval of numerical knowledge,67 ex-
plaining dyscalculia following IPL damage in Gerstmann’s 
syndrome. The integration role of the IPL further extends to motor 
behaviour, where supramarginal gyrus directs attention to motor 
sequences68 while supramarginal and angular gyri together aid in-
tegration of individual motor goals and their transformation into 
external motor actions.69 This particular finding implicates the 
IPL as a neural substrate of ideational apraxia as well as volitional 
apathy.69,70 Taken together, the evidence points to a role for the 
TPJ/IPL in supporting multiple cognitive processes spanning lan-
guage and beyond.

lvPPA clinical observations mirror 
cognitive neuroscience
Reverse inference from the cognitive neuroscience and neuro-
psychology literature on the nature of multidomain cognitive pro-
cesses of the TPJ/IPL region (reviewed previously, see also Fig. 1) 
provides a potential foundation for explaining the core language 
and co-occurring variable cognitive deficits in lvPPA in terms of sto-
chastic spreading of pathology and atrophy from the TPJ/IPL 
epicentre.

A prototypical language deficit

The core language deficit of lvPPA is in keeping with the role of the 
posterior superior temporal gyrus/inferior supramarginal gyrus in 
phonological processing and working memory. In lvPPA, errors of 
phonology and lexical retrieval during word formation emerge 
from dysfunction of these specific regions.11,71,72 Difficulties in de-
coding phonemic structure in lvPPA patients further relate to 

attenuated activation of superior temporal regions as noted on 
functional neuroimaging.73 With disrupted phonological short- 
term memory, length-dependent repetition deficits are a canonical 
feature of lvPPA, manifesting in a profound inability to retain, ma-
nipulate and reproduce long segments of verbal information (e.g. 
repeating lengthy words, sentences and letter/digit strings in for-
ward/reverse orders).74,75 On this view, the language and anatomic-
al profile of lvPPA most closely resembles conduction aphasia 
post-stroke,74,76,77 although it must be acknowledged that the ma-
jor PPA syndromes have either little or only partial analogues in 
vascular aphasiology, in terms of overall linguistic and cognitive 
performance.78 If and when the underlying pathology encroaches 
into anterior and ventral temporal cortices, semantic comprehen-
sion impairments, such as those in svPPA, are expected.79,80

Similarly, if the disease spreads into fronto-insular regions and 
connecting arcuate/superior longitudinal fasciculus, then motor- 
speech difficulties (resembling those observed in nfvPPA) may be-
come part of the clinical profile.81

The multidimensional non-linguistic deficits

Relative to healthy controls and other PPA variants, neuropsycho-
logical investigations of well-characterized lvPPA patients identify 
deficits in processing speed, executive function, sustained attention, 
working memory and visuospatial function.82–85 Dyscalculia as early 
as 1 year post disease onset, and emergence of apraxia within 2 years 
are also reported.7,86 A recent case report of an lvPPA patient with ca-
nonical TPJ/IPL atrophy noted attentional and visuospatial complaints 
(manifesting as hemispatial neglect)87—a constellation of complaints 
typically seen in posterior cortical atrophy following superior/inferior 
parieto-occipital neurodegeneration. Another case report of a patient 
meeting lvPPA clinico-radiological criteria evidenced deregulated 
semantic-executive control when using electrical appliances, where-
in the patient ‘clearly understood what these appliances are and what 
they are used for, but was not sure how to use them’.86(p2). This profile 
appears to fulfil standard definitions of ideational apraxia, and is high-
ly reminiscent of semantic control deficits in semantic aphasia (who 
present with concurrent ideational/dysexecutive apraxia),88–90 where 
damage to inferior/middle posterior temporal and IPL (angular gyrus) 
regions results in context-invariant executive deregulation of verbal 
and nonverbal semantic information.38,89,90 In this regard, probing 
the status of semantic control functions in lvPPA forms an important 
line of inquiry as it may inform whether deregulated semantic control 
partly explains the co-occurrence of some non-linguistic symptoms, 
such as apraxia, in this syndrome.

Given the role of the angular gyrus in episodic memory process-
ing, atrophy/pathological deposition to this region can impair episod-
ic retrieval.34,49,60,91 Accordingly, an additional under-appreciated 
cognitive complaint in lvPPA is episodic amnesia, closely linked to 
IPL involvement in the syndrome. By the time of their first clinic ap-
pointment, a third of patients report misplacing objects, missing ap-
pointments, getting lost and facing difficulty in learning new 
tasks.92,93 Both carer- and clinician-indexed reports further attest 
to daily memory difficulties.94 On objective standardized neuro-
psychological memory assessment, verbal and nonverbal episodic 
memory deficits in lvPPA can be prominent to a magnitude compar-
able to amnesic Alzheimer’s disease and are associated with changes 
to integrity of the bilateral IPL (angular gyri) and their structural con-
nections to memory processing regions in the medial temporal lobe 
(e.g. hippocampus).94–96 Episodic amnesia in lvPPA can also extend to 
remote autobiographical memories encoded decades before the on-
set of clinical symptoms (e.g. from teenage and early adulthood 
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years), with poor autobiographical recall, irrespective of the temporal 
epoch of the memory, correlating with angular gyrus involvement in 
the syndrome.97

Beyond episodic memory, lvPPA patients show difficulties on 
tasks of nonverbal auditory object processing (e.g. phoneme dis-
crimination, prosody perception, global pitch and timbre process-
ing), in the absence of peripheral hearing difficulties.98–101 These 
impairments have been found to be closely associated with dys-
functional working memory,98,100 further correlating with integrity 
of the left IPL and parietal cortices.100,101 Spatial working memory 
deficits are also prominent in lvPPA, again associated with degener-
ation of superior parietal cortices and their functional connections 
with prefrontal brain regions.102–104 Across clinical variants of 
Alzheimer’s disease (including lvPPA), increased pathological accu-
mulation in TPJ/IPL and parietal cortex strongly correlates with 
emergent impairments of episodic and semantic memory, plus ex-
ecutive and visuospatial functions.105 In lvPPA particularly, pa-
tients displaying greater visuospatial, executive and general 
cognitive disturbances typically show intensified atrophy to left 
IPL/superior parietal regions.20,106 Corroborative evidence also 
comes from studies adopting the inverse ‘imaging-first’ classifica-
tion approach, where lvPPA patients with greater left IPL/parietal 
atrophy/hypometabolism display poorer nonverbal memory, 
visuospatial and executive performance, in contrast to lvPPA pa-
tients with temporal-dominant atrophy/hypometabolism.107

Finally, there is some evidence for behavioural dysfunction in 
lvPPA, such as increased apathy, anxiety, irritability, agitation 
and difficulties in emotion detection.108–112 Ultimately, it is 

unsurprising that a combination of aphasia, poor memory and gen-
eral cognition, increased apathy and agitation significantly com-
pounds carer burden and caring-related challenges in 
lvPPA.110,113,114 Additional investigations of the inter-dependence 
between behavioural and mood symptoms, the neural bases of 
non-linguistic cognitive and behavioural difficulties, and how these 
changes relate to underlying pathological and genetic changes in 
lvPPA are required (see Box 1). Nevertheless, the extant evidence 
consistently implicates TPJ/IPL dysfunction as one of the brain re-
gions central to multidimensional cognitive decline in the syn-
drome. This anatomical framework also potentially explains the 
development of incipient lvPPA-like features in other Alzheimer’s 
disease clinical variants, especially in early onset atypical presenta-
tions such as posterior cortical atrophy,92,131,132 as the underlying 
pathology encroaches into TPJ/IPL.

Box 1 Links between multidimensional cognitive impairment, underlying Alzheimer’s disease pathology and progranulin gene 
mutations in lvPPA.   

Clinicopathological associations are key to achieving accurate prognosis and treatment decisions. Over 80% of lvPPA patients have 
underlying Alzheimer pathology, mostly noted as amyloid-positive PET scans.16,115–118 More recently, reports have emerged of cases 
showing an lvPPA-like clinical picture amid amyloid-negative profiles. In these cases, a common finding is the mutation of the 
progranulin gene, which is typically associated with frontotemporal lobar degeneration syndromes.119–122 In addition to the classic 
linguistic profile of lvPPA, many such cases display concurrent difficulties in reading, episodic memory, executive functions and 
calculation,123,124 suggesting links between cognitive multidimensionality and underlying neurobiological and genetic factors. In 
current neurodegenerative dementia clinico-pathological conceptualizations, lvPPA is considered as an atypical clinical variant of 
Alzheimer’s disease.16 Therefore, an lvPPA patient with an amyloid-positive scan, a prototypical aphasic profile, poor memory, 
visuospatial and/or executive dysfunction may rule in several different diagnostic labels including mixed PPA, advanced amnesic 
Alzheimer’s disease and an Alzheimer’s disease clinical variant with visuospatial and/or language features. As the syndrome straddles 
clinicopathological boundaries of both PPA and Alzheimer’s disease taxonomies, it is sensible to ask whether multidimensional 
cognitive difficulties in lvPPA are parsimoniously explained by underlying pathological and/or genetic mechanisms.

Given the paucity of evidence on correspondence between clinicopathological and cognitive performance data in lvPPA, a direct 
answer to this question is currently hard to establish. For example, one study noted that PPA with Alzheimer’s disease pathology (most 
of whom met a clinical diagnosis of lvPPA) is associated with episodic memory preservation, despite these patients presenting 
significant TPJ/IPL and medial temporal atrophy.125 On the other hand, accumulating evidence suggests that lvPPA patients with and 
without amyloid-positive profiles perform comparably on standardized measures of lexical retrieval, speech and language, executive 
function, processing speed and verbal memory.126–129 Comparable profiles between high- and low-amyloid burden lvPPA patients are 
also evident on visuospatial and non-verbal memory tasks, even when disease severity and overall language status are accounted 
for.127,130 Moreover, data-driven clustering solutions of lvPPA cognitive performance find no significant differences in amyloid burden, 
demographic and disease duration indices between lvPPA with mild, marked or no co-occurring general cognitive deficits.20 Likewise, 
when contrasting lvPPA cases with and without progranulin gene mutations, comparable language, cognitive, and neuroanatomical 
profiles (on structural MRI) are notable.119,120 Due to the rarity of such reports, more work is required on this front. However, most 
findings suggest that the pathological or genetic profile, by itself, may not be sufficient to explain variations in non-linguistic cognitive 
difficulties in lvPPA. Rather, as we propose, the key factor in variable cognitive profiles early in the syndrome may be the extent to which 
the distribution and loading of pathology and atrophy/hypometabolism are localized in the TPJ/IPL and neighbouring regions.

Other contributory mechanisms
Non-linguistic deficits and their relationship with 
primary aphasia

Primary verbal degradation in lvPPA greatly influences performance on 
tasks taxing working memory and phonological abilities, such as read-
ing, verbal fluency and verbal episodic memory.133–135 These deficits of-
ten interfere with patients’ ability to understand complex verbal 
instructions. However, there is compelling evidence that many non-
verbal cognitive deficits observed in lvPPA are not simply a reflection/ 
by-product of the patients’ progressive aphasia. Patients with lvPPA 
can show marked deficits on cognitive functions that circumvent 
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language demands, such as nonverbal episodic memory, nonverbal 
auditory object processing, spatial orientation, spatial working mem-
ory and visuospatial functioning.83,96,98,99,136,137 Likewise, lvPPA pa-
tients exhibit impaired performance on verbal memory, and 
visuospatial and executive processing tasks, even after statistically 
controlling effects of aphasia severity.94,97,106,109 In this regard, detailed 
lvPPA case reports are particularly insightful. In one report, the earliest 
recorded complaints involved calculation and sustained attention dif-
ficulties occurring a few months prior to the emergence of a florid lvPPA 
aphasic profile.87 In another study, Pozzebon et al.138 interviewed 
spouses of five lvPPA patients and found all carers to report incipient 
apathy and social withdrawal, plus deficits of episodic memory and 
sustained attention emerging almost 1–3 years before spousal recogni-
tion of frank expressive language deficits. These deficits were not core 
of the patients’ presentation, which was of language impairment, thus 
meeting the primary criteria for progressive aphasia. These findings in-
dicate that non-linguistic deficits in lvPPA can emerge independent of 
and in parallel to primary aphasia, even where the patient’s core com-
plaint is that of language difficulty.

Non-linguistic deficits emerge with disease 
progression

As with other progressive disorders, relatively ‘pure’ cases with cir-
cumscribed clinico-anatomical presentation evolve to show clear 
and increasing multidomain dysfunction as the underlying path-
ology propagates. Although longitudinal profiles of some lvPPA pa-
tients neatly fit this pattern,139 this hypothesis is not a sufficient 
explanation the early non-linguistic deficits in many other people 
with lvPPA. Even at the mildest clinician-indexed disease stages 
(mean Clinical Dementia Rating score of 0.5–0.7), difficulties in cal-
culation and spatial working memory can be evident in lvPPA.7,8

Likewise, poor nonverbal episodic memory performance remains 
prominent in lvPPA, even after statistically controlling for disease 
severity.94 The confounding issue of disease severity has been ad-
dressed by recent data-driven studies parcellating its effects. For 
example, when overall language performance is employed as a cat-
egorical proxy for disease severity, the magnitude of general cogni-
tive impairment scales with aphasia severity.79,140 A key limitation 
of this approach is that categorizing lvPPA patients first on aphasia 
severity and then on non-linguistic cognitive performance over-
looks linguistic and non-linguistic difficulties occurring in parallel. 
Using step-wise classifications, therefore, may bias our determin-
ation of the absence/magnitude of non-linguistic complaints.

A recent study overcame this limitation by using principal com-
ponent analysis in 43 well-characterized lvPPA patients, at varying 
disease stages, who had undergone comprehensive multidomain 
neuropsychological testing.106 The principal component analysis 
revealed multiple, concurrent sources of variance across neuro-
psychological performance in lvPPA. Extraction of orthogonal di-
mensions of performance variation allowed (i) exploration of 
confounds associated with disease and aphasia severity that other-
wise pervade across measures; and (ii) situation of patients along 
independent dimensions of verbal and nonverbal cognitive per-
formance thereby capturing their graded, inter-individual varia-
tions in cognitive impairment. The results indicated that the 
cognitive profile of lvPPA is best characterized along two orthogonal 
dimensions: (i) speech production and verbal memory deficits; and 
(ii) visuospatial and executive changes (Fig. 2B). Supporting our pro-
posed framework, reduced integrity of left IPL and right fronto- 
parietal grey matter was characteristic of lvPPA cases with poorer 
visuo-executive performance. Three results from this study argue 

against the hypothesis that disease severity is the primary modula-
tor of general cognitive deficits in lvPPA: (i) language and non- 
linguistic performance did not align with a single ‘disease severity’ 
factor but lay on orthogonal dimensions; (ii) the visuo-executive 
factor correlated weakly with independent clinical measures of dis-
ease severity and disease duration; and (iii) visuo-executive deficits 
were present systematically across the lvPPA cohort, irrespective of 
the magnitude of speech production difficulties.106 These findings 
are consistent with the case studies reporting concurrent verbal 
and non-verbal dysfunction early in the disease course; and formal-
ly show that multidimensional nonverbal cognitive difficulties are 
systematically present and form an early and integral part of the 
symptom complex of lvPPA.

Accommodating lvPPA cognitive 
variations within a graded 
multidimensional phenotypic space
Given the evidence for multidomain cognitive dysfunction, it has 
been argued whether the term ‘lvPPA’ be reserved for ‘pure’ cases 
(impaired single-word retrieval and sentence/phrase repetition 
without concurrent non-linguistic impairment), while ‘Logopenic 
Progressive Aphasia’ might better capture individuals displaying 
a dynamic, multifaceted phenotype beyond the linguistic con-
straints of a pure PPA.125 Terminological distinctions are non- 
trivial; terminologies themselves are carefully derived and require 
universal consensus. Although language difficulties remain the pri-
mary presenting complaint for these patients, the evidence re-
viewed here might bring into question (i) whether additional 
non-linguistic cognitive dysfunction is representative of the syn-
dromic designation of lvPPA; (ii) whether ‘logopenic progressive 
aphasia’ might better reflect the cognitive profile of such patients; 
or (iii) whether such cases may represent a new subtype/subcat-
egory of lvPPA. How do we then best capture these terminological 
differences and inter-individual differences in cognitive 
performance?

As per recent developments in post-stroke aphasia and fronto-
temporal dementia studies,78,141–143 we propose that cognitive 
changes in individual lvPPA patients are best conceptualized as 
graded, individual-level differences within a multidimensional 
space (Fig. 2A). By this view, differences between two lvPPA patients 
in non-linguistic cognition do not necessarily reflect a sharp cat-
egorical distinction in their clinical conceptualization. Instead, 
these differences reflect graded, individual-level variations directly 
tied to disease encroachment into different brain regions. 
Importantly, embracing a graded, multidimensional approach 
does not require discarding current categorical labels. Instead, cat-
egorical labels serve as direct pointers to a specific region within 
this multidimensional space (Fig. 2A).

To simplify, we can use a colour analogy to represent this multi-
dimensional space, with each axis representing systematic vari-
ation on verbal and nonverbal cognitive performance (Fig. 2A) as 
has been indicated by previous evidence (Fig. 2B).106 In this space, 
some cases may be ‘yellow’, others ‘blue’ and many others various 
intersections of these colours. In this hue space, ‘pure’ lvPPA pa-
tients (with prototypical aphasia and atrophy centred in posterior 
superior temporal gyrus/supramarginal gyrus) may represent a 
subsample of individuals within this larger space. What is import-
ant to recognize is that ‘pure’ lvPPA as a clinical entity does not oc-
cupy the entire multidimensional space, but rather locates in an 
area of a larger space spanning variable clinical presentations of 
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the syndrome. Variations in atrophy/functional disruptions within 
the TPJ/IPL cortices, and connected regions, will generate graded 
variations in the type and severity of the individual verbal and non-
verbal profile, determining locations of individuals within this 
space. In short, phenotypic deviations from prototypical lvPPA 
may be graded rather than absolute, and reflect the variations in lo-
cal pathology (Fig. 2A).

The adoption of such a multidimensional space may further af-
ford the mapping of dynamic cognitive devolution of individual 
lvPPA patients, tied closely to patterns of disease encroachment 
(Fig. 2C). It is proposed that, if phenotype can be multidimension-
al, disease progression can be too and the adoption of such a space 
can accommodate fluid and heterogeneous cognitive degradation 
patterns. This includes individuals showing generalized cognitive 
impairment that emerge (i) linearly with disease and aphasia pro-
gression (Fig. 2C, square); (ii) quickly into disease onset (Fig. 2C, tri-
angle and pentagon); or (iii) slowly with disease advancement 
(Fig. 2C, diamond and circle). This space further enables 

comparison of different clinical syndromes (lvPPA, amnestic 
Alzheimer’s disease, posterior cortical atrophy) to derive trans-
diagnostic understandings of symptom progression. Ultimately, 
we propose that clinical subtypes of Alzheimer’s disease can be 
coherently conceptualized as displaying graded patterns of cogni-
tive variation, mainly dependent on the neuroanatomical regions 
of impact.23,106,144 This proposal holds important clinical implica-
tions, especially when patients present with co-occurring lan-
guage, memory and visuospatial difficulties that each require 
recognition and management. It holds importance for how indivi-
duals are sampled for research and clinical studies as ‘representa-
tive’ of a clinical condition, as the subspace from where we sample 
directly determines emergent results. This approach can 
also accommodate discrepancies regarding usage of the terminolo-
gies in published literature, such as ‘lvPPA’ versus ‘Logopenic 
Progressive Aphasia’ to refer to patients with prototypical lvPPA 
clinico-anatomical profiles, but with varying, graded levels of add-
itional non-linguistic difficulties.

Figure 2 Capturing phenotypic variations in lvPPA within a graded, multidimensional space. (A) Capturing cognitive changes to language and non- 
linguistic domains within a multidimensional space allows an examination of the graded, individual-level variations in patients’ profiles, as well as 
the underlying neural machinery that is affected in each case. STM = short-term memory; PCA = posterior cortical atrophy; AD = Alzheimer’s disease. 
(B) The nature of such a multidimensional graded space including the lvPPA phenotype receives support from the empirical findings of Ramanan 
et al.106 Here, principal component analysis on comprehensive neuropsychological performance data (n = 43 lvPPA) revealed multiple, independent 
sources of variation, captured best by two orthogonal dimensions of performance labelled ‘speech production and verbal memory’ and ‘visuospatial 
and executive’ (visuo-executive) performances. The finding that lvPPA patients, irrespective of the extent of their speech production and verbal mem-
ory performance, display some level of visuo-executive changes (c.f. coloured pairs) suggests individual-level variation in cognitive phenotype that 
necessitates the use of a multidimensional space. Here, dashed gold lines indicate lower bound of performance in healthy Controls (adapted from 
Ramanan et al.106). (C) The adoption of a multidimensional space to account for linguistic and non-linguistic changes in lvPPA can further afford map-
ping of heterogeneous disease trajectories dynamically varying at the individual-level. This includes individuals showing generalized cognitive impair-
ment that are (i) linear with disease progression (square); (ii) emerge quickly into disease onset (triangle and pentagon); or (iii) emerge slowly with 
disease advancement (diamond and circle). Here, numbers correspond to the clinical assessment round (1 = 1st assessment etc.). STM = short term 
memory.
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Conclusions
The evidence for non-linguistic cognitive deficits in lvPPA does not 
necessitate a change in current diagnostic criteria. Rather, the com-
bination of linguistic and non-linguistic deficits indicates a need to 
re-evaluate the phenotype and pathophysiology, and consider the 
use of non-linguistic deficits in the diagnostic and management 
plan of lvPPA. We foresee three direct clinical advantages to this 
change.

First is the need to assess both language and non-linguistic fea-
tures in PPA diagnosis. Naming, spontaneous speech and parapha-
sic/lexical error patterns, as individual measures, are increasingly 
recognized as providing poor specification of PPA type.78,126,145,146

On language performance alone, specific expertise is necessary to 
distinguish lvPPA from other PPA types78,147 and the clinical accur-
acy of language measures in differentiating PPA variants may not 
always improve upon the incorporation of additional pathological 
information.126,127 This complicates identification of the syndrome 
and, to the untrained clinical eye, risks conferring an lvPPA diagno-
sis through eliminating nfvPPA and svPPA labels. In contrast, recent 
work suggests that non-linguistic measures, such as nonverbal 
memory, may hold >80% accuracy in distinguishing lvPPA from 
other non-fluent variants (if not from amnestic Alzheimer’s dis-
ease).94 While the discriminative use of other non-linguistic tests 
remains to be explored, co-reliance on linguistic and non-linguistic 
measures uniquely stressing functions supported by TPJ/IPL may 
significantly improve accurate diagnosis of lvPPA. For practising 
clinicians, detailed testing of verbal and nonverbal cognition in 
the syndrome can improve understanding of the structure of this 
multidimensional space and help identify measures that are highly 
representative of each axis of space. In turn, this information can be 
used to cull lengthy test batteries and retain those efficient and ef-
fective measures that capture the most important cognitive- 
behavioural variation in lvPPA. The success of this method has 
recently been demonstrated in post-stroke aphasia148; how inform-
ative it is in PPA, where aetiology, cognitive performance and 
progression patterns are complex and highly variable, remains to 
be better understood. At the point of diagnosis, specific quad-
rants/locations within this space may also inform selection, 
titration and timing of management approaches, therapies and 
treatments, as well as inclusion and stratification of specific indivi-
duals into trials.

Second, given their importance in the multifaceted clinical pro-
file of lvPPA, TPJ/IPL and parietal cortex seem likely to become 
neuroanatomical targets of symptomatic intervention in this syn-
drome. In this regard, recent work has revealed links between exci-
tatory neurostimulation of prefrontal regions and facilitation of 

oral and written language improvement in lvPPA.149,150 As for the 
IPL, emerging evidence in PPA indicates that a combination of IPL 
neurostimulation and speech and language training can induce (i) 
improved naming and verbal fluency performance; (ii) transfer of 
gains to unlearnt items and select cognitive domains (e.g. overall 

digit span performance); and (iii) benefits sustaining for up to 
2 weeks.151,152 These findings indicate the need for more studies ex-
ploring interventions targeting the parietal cortex for linguistic, 
non-linguistic cognitive and functional improvement in lvPPA. 
Moreover, TPJ/IPL and general parietal dysfunction are largely con-

sidered to form the common neuroanatomical denominator asso-
ciated with phenotypic diversification across several posterior 
cortical neurodegenerative syndromes, many of which share 
Alzheimer’s disease pathology.23,92,153,154 Shifting the focus to re-

veal the importance of parietal integrity in Alzheimer’s disease 

will move the field a step closer to achieving a full understanding 
of the interplay between neurodegeneration and cognitive dys-
function in multiple clinical variants of Alzheimer’s disease.

As we make progress on the aforementioned steps, it seems 
likely that we will uncover deeper layers to the lvPPA cognitive 
and behavioural profile. Therefore, a final, important step forward 
is to build integrative frameworks of cognitive and brain mechan-
isms that underpin the broader symptom complex of lvPPA, with 
relevance to other neurodegenerative dementia syndromes affect-
ing the posterior neocortex. This larger programme requires a two- 
pronged approach, with each step informing the other. What we 
first need is a better understanding of how psychological and 
pathophysiological changes in lvPPA relate to changes in local 
neural populations and their neurochemistry, genetics and neuro-
pathology, and neuroimaging in the syndrome. This will allow inte-
gration of new knowledge regarding brain, behaviour and biological 
changes in lvPPA with current neurocognitive models. Next, testing 
the stability and interpretability of these renewed models requires 
international, multi-centre studies to establish large lvPPA cohorts 
with deep neuropsychological and neuroimaging phenotyping, and 
identify candidate neurophysiological biomarkers in the diagnostic 
process. We acknowledge that this future direction is ambitious 
and requires navigating recruitment challenges and nosological 
disagreements. However, we hope that our framework can aid 
this process by accommodating terminological discrepancies and 
diverse clinical-cognitive presentations within a multidimensional 
space, and potentially offer a common research framework to 
springboard future efforts towards a complete understanding of 
the lvPPA phenotype.
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