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Abstract: Neurophysiological brain activity comprises rhythmic (periodic) and arrhythmic 9 
(aperiodic) signal elements, which are increasingly studied in relation to behavioral traits and 10 
clinical symptoms. Current methods for spectral parameterization of neural recordings rely on 11 
user-dependent parameter selection, which challenges the replicability and robustness of findings. 12 
Here, we introduce a principled approach to model selection, relying on Bayesian information 13 
criterion, for static and time-resolved spectral parameterization of neurophysiological data. We 14 
present extensive tests of the approach with ground-truth and empirical magnetoencephalography 15 
recordings. Data-driven model selection enhances both the specificity and sensitivity of spectral 16 
and spectrogram decompositions, even in non-stationary contexts. Overall, the proposed spectral 17 
decomposition with data-driven model selection minimizes the reliance on user expertise and 18 
subjective choices, enabling more robust, reproducible, and interpretable research findings. 19 

Lay summary: Brain activity is composed of rhythmic patterns that repeat over time and 20 
arrhythmic elements that are less structured. Recent advances in brain signal analysis have 21 
improved our ability to distinguish between these two types of components, enhancing our 22 
understanding of brain signals. However, current methods require users to adjust several 23 
parameters manually to obtain their results. The outcomes of the analyses therefore depend on 24 
each user's decisions and expertise. To improve the replicability of research findings, the authors 25 
propose a new, automated method to streamline the analysis of brain signal contents. They 26 
developed a new algorithm that defines the parameters of the analytical pipeline informed by the 27 
data. The effectiveness of this new method is demonstrated with both synthesized and real-world 28 
data. The new approach is made available to all researchers as a free, open-source app, observing 29 
best practices for neuroscience research. 30 

Keywords: Neurophysiology, Spectral decomposition, Time-frequency analysis, 31 
Magnetoencephalography, Model selection, Rhythmic and arrhythmic brain signals, Parameter 32 
optimization, Reproducibility in research. 33 
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Introduction 43 
 44 
Neural oscillations are rhythmic (periodic) signal components ubiquitously observed in 45 
electrophysiology across spatial and temporal scales (Buzsaki & Watson, 2012). In the power 46 
spectrum, periodic components can be modelled as Gaussian-shaped peaks emerging from an 47 
arhythmic (aperiodic) background (Wen & Liu, 2016; Donoghue et al., 2020; Wilson et al., 2022). 48 
Aperiodic activity is spectrally characterized by a reciprocal distribution of signal power that 49 
decays with frequency according to a power law (1/fα). In practice, the scalar exponent parameter 50 
α and broadband offset of the aperiodic model are inferred from estimates of the signal’s power 51 
spectrum density (PSD) of the electrophysiological signal. Computational neuroscience models 52 
and growing empirical evidence suggest that α reflects the physiological balance between 53 
excitatory (E) and inhibitory (I) neural activity (Brake et al., 2024; Chini et al., 2022; Gao et al., 54 
2017; Wiest et al., 2023), and the offset is related to aggregate neuronal population spiking (Miller 55 
et al., 2014; Voytek & Knight, 2015). These model parameters of the aperiodic spectral component 56 
decrease with age, accounting for the observation of a flatter power spectrum in aging (Cellier et 57 
al., 2021; Donoghue et al., 2020; Voytek et al., 2015). They also fluctuate during cognitive tasks 58 
(Donoghue et al., 2020; Gyurkovics et al., 2022; Preston et al., 2022; Waschke et al., 2021) and 59 
reflect behavioral traits (Ostlund et al., 2021; Wilson et al., 2022).  60 
  61 
Recent algorithms and software such as the specparam (Donoghue et al., 2020) and Spectral 62 
Parameterization Resolved in Time (SPRiNT; Wilson et al., 2022) have streamlined the adoption 63 
of spectral parameterization in electrophysiological research. These tools require users to define a 64 
number of method parameters (hyperparameters), such as model complexity via the pre-65 
specification of the maximum number of spectral peaks NG to be adjusted from the empirical PSD 66 
(Gerster et al., 2022; Ostlund et al., 2022; Wilson et al., 2022). When hyperparameters are not set 67 
appropriately, the specparam algorithm either fits spurious, outlier spectral peaks or misses 68 
genuine spectral peaks (Donoghue et al., 2020). Similarly, time-resolved spectral parametrization 69 
tools rely on hyperparameters to minimize the detection of outlier spectral peaks (Brady & 70 
Bardouille, 2022; Cole et al., 2019; Kosciessa et al., 2020; Seymour et al., 2022; Stokes et al., 71 
2023; Whitten et al., 2011; Wilson et al., 2022). 72 
 73 
Setting model hyperparameters is a prevalent challenge across many fields of science and 74 
engineering. Good-practice approaches recommend prioritizing parsimonious models with a 75 
balance between simplicity (less hyperparameters) and the ability to fit the observed data (more 76 
flexibility; Vandekerckhove et al., 2015). Here, we propose such a model selection strategy for the 77 
parameterization of both the PSD and spectrogram of neurophysiological time series. The method 78 
proceeds with adjusting progressively more complex models to the empirical data spectrum or 79 
spectrogram, and determines the parameters of the simplest model that adequately accounts for the 80 
data on the basis of the Bayesian information criterion (BIC). This also enables the quantitation of 81 
evidence for periodic activity in spectral data via Bayes factor analysis. We demonstrate below the 82 
method’s performance using extensive ground-truth simulated data and a large set of empirical 83 
resting-state magnetoencephalography (MEG) from N=606 participants.  84 
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Methods 85 
 86 
Model Selection using Bayesian Information Criterion.  87 

In the context of parsimonious modeling of power spectra and spectrograms, our goal is to optimize 88 
the trade-off between model fidelity and complexity. This principle emphasizes deriving the most 89 
accurate and representative model directly from empirical data while minimizing the inclusion of 90 
unnecessary assumptions or parameters (Myung, 2000). Among the methods for comparing 91 
models, Bayes factors are noteworthy as they balance model fit evaluation with the principle of 92 
simplicity (Jefferys & Berger, 1992). These factors can be effectively estimated using the Bayesian 93 
Information Criterion (BIC), which offers a pragmatic tradeoff between goodness-of-fit and 94 
complexity in terms of the number of model parameters (Schwarz, 1978; Vandekerckhove et al., 95 
2015). 96 
  97 
In the specparam approach, model fitting involves minimizing the least-squares error between 98 
model predictions and the empirical power spectrum. The ms-specparam method refines this 99 
objective by estimating the negative log-likelihood of a model: 100 
  101 

− ln 𝑝 ( 𝑦 ∣∣ 𝑥, 𝑤, β ) =
β
2/

{𝑓(𝑥! , 𝑤) − 𝑦!}"
#

!$%

−
𝑁
2 ln

(β) +
𝑁
2 ln

(2π)	102 

 103 
where (𝑥)	and (𝑦) are the frequency bins and empirical spectral power values, respectively; 104 
(𝑓(𝑥! , 𝑤)) is the spectral power predicted by the model at frequency (𝑥!); (𝑦!) is the empirical 105 
spectral power value at frequency (𝑥!); (𝑤) represents the model parameters, (𝑁) the number of 106 
frequency bins. (β) is the precision, or inverse variance, of residuals. 107 
 108 

β =   1/σ"  , 109 
 110 

Under the assumption of zero-mean (unbiased) Gaussian noise in the empirical power spectrum, 111 
minimizing negative log-likelihood provides an equivalent solution to minimizing squared error 112 
(Mitchell, 1997). Finally, we express the specparam optimization's output in terms of the 113 
Bayesian information criterion (BIC): 114 

  115 

BIC = 2 ⋅ NLL + log(𝑁) ⋅ 𝑘, 116 

where NLL is the negative log-likelihood, (𝑁) is the number of frequency bins, and 117 
(𝑘)	represents the total number of parameters, which includes the aperiodic parameters (exponent 118 
and offset) and three additional parameters for each peak (center frequency, amplitude, 119 
bandwidth). Note that (𝑘	 = 	3𝑃	 + 	2), where (𝑃) represents the number of peaks. 120 

The specparam algorithm iteratively fits models of increasing complexity by adding peaks and 121 
minimizing the squared error. It performs a final optimization of both aperiodic and periodic 122 
parameters, and then converts the squared error into a negative log-likelihood, which is used to 123 
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calculate the BIC. The algorithm ultimately provides the parameters of the model with the lowest 124 
BIC, thus achieving a balance between fit quality and model simplicity.  125 

We developed ms-specparam and ms-SPRiNT as plug-in libraries that interoperate 126 
with Brainstorm (Tadel et al., 2011) and are therefore open-source and accessible to everyone. 127 

Algorithm Settings and Hyperparameters.  128 
The spectral parameterization of neural power spectra (synthetic and empirical) was conducted in 129 
the frequency range of 1-40 Hz using three distinct approaches, each characterized by different 130 
hyperparameter settings: 131 

1. Default Hyperparameters: This approach adhered to the default settings established by the 132 
Python implementation of specparam (Donoghue et al., 2020). The hyperparameters included a 133 
minimum peak height of 0.1 arbitrary units (a.u.), a maximum of 6 peaks, peak width limits set 134 
within the range of [1, 8] Hz, and a proximity threshold of 0.75 a.u. 135 

2. Conservative Hyperparameters: This setting was driven by the Brainstorm implementation 136 
of specparam (Tadel et al., 2011). It involved more conservative hyperparameters, with a 137 
minimum peak height of 0.3 a.u., a reduced maximum number of peaks at 3, peak width limits 138 
broadened to [0.5, 12] Hz, and an increased proximity threshold of 2.0 a.u. 139 

3. ms-specparam: This approach used the same hyperparameter settings as default-specparam, 140 
including a minimum peak height of 0.1 a.u., a maximum of 6 peaks, peak width limits between 141 
[1, 8] Hz, and a proximity threshold of 0.75 a.u. The most parsimonious spectral model is selected 142 
according to the procedure described in Model Selection using Bayesian Information Criterion. 143 

These different spectral parameterization strategies were selected to provide a comprehensive 144 
comparison across various standard and conservative parameter settings. 145 

Dynamic synthetic neural time series were similarly parameterized using SPRiNT in the 1-40 146 
Hz frequency range, using 5x1 s windows (50% overlap), according to four distinct 147 
conditions. While each condition used default hyperparameters for specparam, they differed 148 
in their methodologies for removing spurious, outlier spectral peaks: 149 

1. SPRiNT: No procedure for pruning spurious, outlier spectral peaks. 150 

2. SPRiNT with post-processing: This condition identified putative spurious, outlier spectral 151 
peaks as those with fewer than a predetermined number of similar peaks (by center frequency) 152 
within neighboring time bins of the spectrogram. The process prunes identified spurious, 153 
outlier spectral peaks and re-optimizes spectral models in affected time bins. For more details, 154 
see Wilson et al. (2022). The hyperparameters used for post-processing consisted of pruning 155 
spectral peaks with fewer than four neighboring peaks within 1.5 Hz and six time bins (3 s). 156 

3. ms-SPRiNT: This condition selected the most parsimonious spectral model in each time 157 
bin according to the procedure described in Model Selection using Bayesian Information 158 
Criterion.  159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2024. ; https://doi.org/10.1101/2024.08.01.606216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.01.606216
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. ms-SPRiNT with post-processing: This process first selected the most parsimonious 160 
spectral model using ms-SPRiNT before pruning spurious, outlier spectral peaks through post-161 
processing. 162 

Synthetic Data.  163 

We created 5,000 synthetic neural power spectra using a range of aperiodic parameters: exponents 164 
from 0.5 to 2 Hz-1) and offsets from -8.1 to -1.5 arbitrary units (a.u.). Each power spectrum was 165 
augmented with zero to four peaks, with 1,000 instances for each peak quantity. The parameters 166 
for these peaks fell within specified ranges: center frequencies between 3 and 35 Hz, amplitudes 167 
from 0.1 to 1.5 a.u., and bandwidths (2 s.d.) from 2 to 6 Hz. We ensured a minimum separation of 168 
one bandwidth between adjacent peak frequencies. The frequency domain for simulation spanned 169 
from 0.5 to 100 Hz with increments of 0.5 Hz. 170 

To mimic realistic noise conditions, we introduced Gaussian white noise at varying intensities: 171 
low (0.05 a.u.), medium (0.10 a.u.), and high (0.15 a.u.). We then applied default-specparam 172 
(minimum peak height of 0.1 a.u., up to six peaks, peak width range of 1 to 8 Hz, and proximity 173 
threshold of 0.75 a.u.) alongside ms-specparam with identical parameters. 174 

We also used 10,000 synthetic neural-like time series to evaluate the model selection approach in 175 
the context of time-resolved spectral parameterization. These simulations, previously generated by 176 
Wilson et al. (2022) to evaluate SPRiNT's performance, each consist of 60 seconds of unique, 177 
dynamic periodic and aperiodic activity. Aperiodic exponents were initialized between 0.8 and 2.2 178 
Hz⁻¹, and aperiodic offsets between –8.1 and –1.5 a.u. Within the 12–36 second segment of the 179 
simulation (onset randomized), the aperiodic exponent and offset underwent a linear shift of 180 
magnitude in the ranges -0.5–0.5 Hz⁻¹ and -1–1 a.u., respectively (sampled continuously and 181 
chosen randomly). The duration of the linear shift was randomly selected for each simulated time 182 
series between 6 and 24 seconds. Periodic components (0–4 peaks) were added to each trial with 183 
parameters randomly sampled within the ranges: center frequency: 3–35 Hz; amplitude: 0.6–1.6 184 
a.u.; SD: 1–2 Hz. Onset (5–40 s) and duration (3–20 s) of periodic components (if any) were 185 
randomized across trials, with the constraint that they would not overlap in both time and 186 
frequency; they were allowed to overlap in one dimension. If a periodic component overlapped 187 
temporally with another, its center frequency was set at least 2.5 peak SDs from the other 188 
temporally overlapping periodic component(s). The magnitude of each periodic component was 189 
tapered by a Tukey kernel (cosine fraction = 0.4). Spectral noise levels were inherent to the 190 
methods for time-frequency decomposition (short-time Fourier transform, 5x1 s windows with 191 
50% overlap) and were previously approximated to be high (approximately 0.2 a.u.; Wilson et al., 192 
2022). 193 
  194 
For accuracy assessment, a 'hit' was designated when an identified peak's center frequency was 195 
within one bandwidth (2 s.d.) of a true peak. In cases where multiple identified peaks met this 196 
criterion, the peak with the highest amplitude was selected as the 'hit.' Peaks detected by the 197 
algorithm that did not correspond to a true peak were classified as false positives. 198 
  199 
We defined peak sensitivity as the ratio of 'hits' to the total number of simulated peaks, and the 200 
positive predictive value as the ratio of 'hits' to all detected peaks (including false positives). For 201 
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peaks identified as 'hits,' we calculated the parameter estimation error as the absolute deviation 202 
from the true values. 203 
 204 
Bayes factor evidence for periodic brain activity.  205 

Bayes factor (BF) provides a statistical measure for comparing two models, offering evidence 206 
about the presence of periodic activity within neural power spectra. The computation of the Bayes 207 
factor follows the formula proposed by Wagenmakers (2007): 208 

BF&% = 𝑒(BIC!+BIC")/" 209 

where (BIC&) is the Bayesian Information Criterion (BIC) value for the aperiodic-only model and 210 
(BIC%) is the BIC value of the lowest-BIC model. 211 

In this context, (BIC&) represents the BIC for the aperiodic-only model, which posits that the data 212 
can be explained without invoking rhythmic components. (BIC%), on the other hand, corresponds 213 
to the model that includes both aperiodic and periodic elements and has the lowest BIC among all 214 
models considered. 215 

The Bayes factor (BF&%) compares these models, translating the difference in their BIC values into 216 
the odds ratio against periodic activity. A smaller (BF&%) implies stronger evidence against the 217 
aperiodic-only model, thereby indicating the presence of significant periodic activity within the 218 
brain's neural power spectra. Conversely, larger (BF&%)values suggest that the periodic 219 
components do not significantly improve the model beyond the aperiodic activity alone. 220 

This approach allows for the quantitative assessment of oscillations in neural recordings, providing 221 
a more rigorous foundation for claims of rhythmic brain activity observed in electrophysiological 222 
data. 223 

Empirical data.  224 

The empirical dataset for our study was obtained from the Cambridge Centre for Aging 225 
Neuroscience repository (Cam-CAN; Shafto et al., 2014; Taylor et al., 2017). This comprehensive 226 
dataset includes 606 healthy individuals aged 18 to 90 years (mean age = 54.69; SD = 18.28), with 227 
a balanced gender representation (299 females). Each participant underwent a thorough 228 
assessment, beginning with a detailed home interview followed by a resting-state 229 
magnetoencephalography (MEG) session. The MEG recordings, lasting approximately 8 minutes 230 
each, were conducted using a 306-channel VectorView MEG system (MEGIN). These recordings 231 
were complemented with structural T1-weighted magnetic resonance imaging (MRI) to provide 232 
anatomical context for MEG source mapping. All data collection occurred at a single, consistent 233 
location to maintain uniformity in data acquisition. 234 

This rich dataset forms the basis for our analyses, allowing for a comprehensive investigation into 235 
the spectral properties of neural signals across a wide age spectrum.  236 

MEG Preprocessing and Source Mapping.  237 
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We preprocessed magnetoencephalography (MEG) data with Brainstorm (Tadel et al., 2011; 238 
March 2021 distribution), integrated with MATLAB (2020b; Natick, MA), adhering to established 239 
best-practice guidelines (Gross et al., 2015). The preprocessing methodology followed protocols 240 
detailed previously (da Silva Castanheira et al., 2021). 241 

Line noise artifacts at 50 Hz and its first 10 harmonics were filtered using a notch filter bank. 242 
Additionally, an 88-Hz artifact present in the Cam-CAN dataset (Wiesman et al., 2022) was 243 
removed. To address slow-wave and DC-offset artifacts, a high-pass finite impulse response (FIR) 244 
filter with a cutoff frequency of 0.3 Hz was applied. Signal-Space Projections (SSPs) were 245 
implemented to attenuate cardiac artifacts and mitigate low-frequency (1–7 Hz) and high-246 
frequency (40–400 Hz) noise components, typically originating from saccades and muscle 247 
activities. 248 

Brain source models were anchored to the individual T1-weighted MRI data of each participant. 249 
Automatic segmentation and labeling of MRI volumes were achieved using FreeSurfer (Fischl, 250 
2012). Co-registration with MEG data was facilitated using approximately 100 head points 251 
digitized for each participant. MEG biophysical head models were computed using Brainstorm’s 252 
overlapping-spheres model (default parameters). 253 

Cortical source models were estimated using linearly constrained minimum-variance (LCMV) 254 
beamforming, following Brainstorm’s default parameters (2018 version for source estimation 255 
processes). MEG source orientations were constrained normal to the cortical surface, distributed 256 
across 15,000 locations. Neural power spectra were then calculated for each of the 148 cortical 257 
regions defined by the Destrieux atlas (Destrieux, 2010). These calculations were based on the 258 
first principal component of all signals within each region of interest (ROI). Neural spectral power 259 
was estimated using Welch’s method, utilizing 2-second windows with a 50% overlap. 260 

Statistical Analyses.  261 

To evaluate the accuracy of spectral parameters generated by ms-specparam, we employed two-262 
sample non-parametric permutation t-tests from the RVAideMemoire package in R. This statistical 263 
approach allowed us to test differences in spectral parameter estimates, specifically focusing on 264 
five key variables: aperiodic exponent, aperiodic offset, peak center-frequency, peak amplitude, 265 
and peak bandwidth. 266 

To capture differences in residual variance and the number of peaks fitted between algorithms in 267 
our empirical data, we similarly relied on paired non-parametric permutation t-tests. 268 

We implemented hierarchical linear regression models using the lmer function in R to test how 269 
algorithm choice impacts age’s effect on both aperiodic exponent and offset. The models were 270 
formulated as: 271 

𝑦 ∼ intercept + (Participant	intercept) + β% × chronological	age + β" × algorithm272 
+ β. × chronological	age × algorithm 273 

where (	𝑦	) represents the dependent variables, including the aperiodic exponent and offset. 274 
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Separate linear regression analyses were conducted to compare ms-specparam against both 275 
default-specparam and conservative-specparam. Chronological age and the chosen algorithm 276 
(e.g., ms-specparam vs. default-specparam) were introduced as fixed predictors, and individual 277 
participants were treated as a random factor to account for inter-individual variability. 278 

To quantify the Bayesian evidence for each predictor in our regression models, we employed 279 
Bayes factor analysis with the Wagenmakers approximation (Wagenmakers, 2007). This provided 280 
a nuanced understanding of the statistical significance and strength of the effects of age and 281 
algorithm on spectral parameterization outcomes. 282 

Results 283 
 284 
Figure 1a highlights how user-dependent hyperparameters affect the outcome of spectral 285 
parameterization. In the example shown, the hyperparameter specifying the maximum number of 286 
peaks expected from spectral parameterization was set manually to a value of 6. However, the 287 
spectrum of the present empirical data contains only two peaks (left panel; Figure 1a). Under high 288 
signal-to-noise conditions, spectral parameterization may yield only two peaks as expected. 289 
However, when data is realistically noisy, the spectral parameterization algorithm may 290 
overestimate the number of peaks in the spectrum to account for noise-related fluctuations (right 291 
panel; Figure 1a). Ideally, spectral and spectrogram parameterization should automatically and 292 
adaptively adjust model hyperparameters to account for the noise level in the data.  293 
 294 
To address these issues, we propose an approach that proceeds iteratively with the 295 
parameterization of empirical power spectra and spectrograms with increasing model complexity 296 
(i.e., the maximum number of spectral peaks). We derive the Bayesian Information Criterion (BIC) 297 
for each hyperparameter setting. The most parsimonious hyperparameter setting to model the 298 
empirical power spectrum or spectrogram is the one corresponding to the lowest BIC value (Figure 299 
1b). If the most parsimonious model contains spectral peaks, we can further quantify the evidence 300 
for periodic activity using the Bayes factor relative to the aperiodic-only model (Figure 1c). Our 301 
approach applies to both spectral and spectrogram parameterization, as demonstrated herein with 302 
specparam (Donoghue et al., 2020) for spectral analysis and SPRiNT (Wilson et al., 2022) for 303 
spectrograms. The model-selection versions of these methods, coined ms-specparam and ms-304 
SPRiNT, are freely available through Brainstorm (Tadel et al., 2011) and on GitHub 305 
(github.com/lucwilson/model_selection). 306 
 307 
We tested and validated ms-specparam using 5,000 ground-truth, synthetic but 308 
neurophysiologically plausible power spectra. We compared its performance against the original 309 
specparam algorithm, configured to its default hyperparameters (referred to as default-specparam; 310 
see Methods). Additionally, we validated ms-SPRiNT against the original SPRiNT algorithm using 311 
spectrograms from 10,000 synthetic, neurophysiologically plausible time-series. We also applied 312 
ms-specparam to task-free MEG recordings from 606 participants to replicate, with less 313 
dependence on user-selected hyperparameters, the previously reported findings of an age-related 314 
decline in the aperiodic exponent of the neurophysiological power spectrum (Voytek et al., 2015). 315 
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316 
Figure 1: Spectral Parameterization with Model Selection 317 
(a) Illustration of a spectral parameterization of a simulated power spectral density 318 
estimate (black line) obtained with specparam in the context of lower (left panel) and 319 
higher (right panel) noise levels. Both spectra are generated using the same spectral 320 
parameters (i.e., two spectral peaks). In more noisy conditions, specparam (pink line) fits 321 
a greater number of spectral peaks (green shaded areas) than what is present (simulated) 322 
in the data, resulting in overfitting (right panel). Key: ‘cf’ refers to a peak’s center 323 
frequency, ‘amp’ refers to a peak’s amplitude, and ‘bw’ refers to a peak’s bandwidth. 324 
(b) ms-specparam is a method for spectral parameterization combined with a model 325 
selection procedure. It first adjusts a model for the aperiodic component of the spectrum 326 
(subpanel i) before adding spectral peaks (green shaded areas) in an iterative fashion 327 
(subpanel ii). These successive models are then assessed via the Bayesian Information 328 
Criterion (BIC; subpanel iii). 329 
(c) The resulting BIC model is then subjected to Bayes factor inference against the 330 
aperiodic spectral model (panel i) to adjudicate whether spectral peaks are likely to be 331 
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present in the data power spectrum.  A Bayes factor greater than 1 is evidence in favour 332 
of periodic brain activity over the null hypothesis of no periodic activity (panel iv).  333 
 334 
Synthetic, Ground-Truth Data. 335 
 336 
Each of the 5,000 synthetic power spectra comprised an aperiodic component, with offset values 337 
ranging from -8.1 to -1.5 arbitrary units (a.u.) and exponents set between 0.5 and 2 Hz-1. We 338 
randomly added between 0 and 4 spectral peaks to the aperiodic background of each power 339 
spectrum (1,000 simulated spectra for each number of peaks; see Methods). Zero-mean Gaussian 340 
noise was added to the resulting power spectra with varying standard deviation values (s.d.). 341 
  342 
In moderate noise conditions (s.d. = 0.10), ms-specparam demonstrated a slightly lower sensitivity 343 
(89%) in detecting spectral peaks compared to default-specparam (91%). However, it had a 344 
substantially higher positive predictive value for peak detection (ms-specparam:  96%; default-345 
specparam: 63%). On average, default-specparam overestimated the number of peaks in the 346 
spectrum by 59%, whereas ms-specparam underestimated the number of peaks by 13% (Figure 347 
2a). We observed similar results for sensitivity and PPV in both algorithms at lower and higher 348 
noise levels (Supplemental Materials). 349 
  350 
We found that, on average, parameter estimates derived from ms-specparam are more accurate 351 
than those derived from default-specparam: aperiodic exponent (t = 8.62, p = 0.0019; aperiodic 352 
offset t = 8.38, p = 0.0019; peak center frequency t = 15.33, p = 0.0019; peak amplitude t = 353 
10.33, p = 0.0019; peak bandwidth t = 14.50, p = 0.0019; one-tailed permutation t-tests; Figure 354 
2b). 355 
 356 
 357 
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 358 
Figure 2: Performances on Synthetic Stationary Data 359 
(a) Sensitivity and positive predictive value (PPV) for detection of spectral peaks (top 360 
row). ms-specparam (green) has similar sensitivity (89%) than default-specparam (blue; 361 
91%), but superior PPV (96% vs. 63%). The heat maps below report the ground-truth vs. 362 
estimated number of spectral peaks (with percent incidence listed in each element) and 363 
highlight ms-specparam's improved peak detection accuracy.  364 
(b) Boxplots and empirical density distributions reporting the errors on the estimates of 365 
the spectral parameters derived using ms-specparam and default-specparam. For every 366 
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spectral parameter, ms-specparam estimated values with significantly lower mean 367 
absolute error (one-tailed permutation t-test, all p<0.05). 368 
 369 
We subsequently evaluated the performance of ms-SPRiNT using 10,000 time series simulated 370 
from realistic ranges of spectral parameters. We replicated the simulation procedure of Wilson et 371 
al. (2022): in short, we synthesized neurophysiologically plausible time series (60-s duration) 372 
composed of time-varying periodic and aperiodic components (see Methods).  373 
 374 
We evaluated the respective performances of SPRiNT, SPRiNT with post-processing (i.e., 375 
removing spurious outlier spectral peaks, following Wilson et al., 2022), ms-SPRiNT, and ms-376 
SPRiNT with post-processing (Table S1). On average, SPRiNT with post-processing best estimated 377 
the number of spectral peaks (4% more than expected), than ms-SPRiNT (15% more than expected) 378 
and ms-SPRiNT with post-processing (20% fewer than expected). Similar to specparam, SPRiNT 379 
tended to overestimate the number of spectral peaks (60% more than expected; Figure 3a). 380 
SPRiNT’s peak detection had the highest sensitivity (89%) of all contexts (post-processing: 84%; 381 
ms-SPRiNT: 80%; ms-SPRiNT with post-processing: 76%; Figure 3b) but also the lowest positive 382 
predictive value (22%). Notably, peaks detected using ms-SPRiNT with post-processing had a 383 
much higher positive predictive value (83%) than all other contexts (post-processing: 45%; ms-384 
SPRiNT: 43%; Figure 3d). 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
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 394 
Figure 3: Performances on Synthetic Data with Time-Varying Spectral Contents 395 
(a) Heat maps reporting the number of spectral peaks detected vs. ground-truth. ms-396 
SPRiNT with post-processing (purple; bottom right) best recovers the true number of 397 
spectral peaks.  Numbers of datasets synthesized with 0 spectral peaks = 798,753, 1 398 
peak = 256,599, 2 peaks = 78,698, 3 peaks = 14,790, and 4 peaks = 1160. 399 
(b) Sensitivity of spectral peak detection (N = 10,000 simulated time series). ms-SPRiNT 400 
with (purple) and without post-processing (fuchsia) exhibit marginally lower sensitivity 401 
than the default SPRiNT algorithm (orange). 402 
(c) Positive predictive value (PPV) of spectral peak detection. ms-SPRiNT with post-403 
processing (purple) exhibits a higher positive predictive value than all other algorithms. 404 
 405 
Empirical MEG Data. 406 
 407 
We applied ms-specparam to resting-state MEG data from the Cam-CAN repository (N=606; 408 
Shafto et al., 2014; Taylor et al., 2017). We first preprocessed and source-mapped the MEG time 409 
series using Brainstorm (Tadel et al., 2011) following good-practice guidelines (Gross et al., 410 
2013). We then derived the PSDs of each cortical parcel of the Destrieux atlas (Destrieux, 2010; 411 
see Methods). We then compared models generated with ms-specparam to those frrom specparam, 412 
using two hyperparameter settings: default-specparam (minimum peak height: 0.1 a.u.; maximum 413 
number of peaks: 6; peak width limits: [1 8]; proximity threshold: 0.75 s.d.) and a more 414 
conservative configuration (conservative-specparam; minimum peak height: 0.3 a.u.; maximum 415 
number of peaks: 3; peak width limits: [0.5 12]; proximity threshold: 2). 416 
  417 
We found that ms-specparam generated models with less residual variance (i.e., mean squared 418 
error, MSE; average MSE = 2.08x10-3, SD = 7.68x10-4) than both specparam settings (default: 419 
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average MSE = 3.06x10-3, SD = 1.07x10-3; t = -48.82, p < 0.001;  conservative average MSE = 420 
7.63x10-3, SD = 3.08x10-3; t = -51.17, p < 0.001; Figure 4a). This observation was consistent across 421 
all cortical parcels, with posterior parietal areas showing the greatest enhancements in model 422 
goodness-of-fit (Figure 4a). Reduced residual variance was consistent over the entire frequency 423 
range (1–40 Hz), with marked improvements with respect to both specparam settings over the 424 
edges of the spectrum (<5 Hz and >35 Hz; Figure 4a). We also observed that ms-specparam 425 
detected fewer spectral peaks than default-specparam, and therefore, as expected, provided more 426 
parsimonious spectral parameterizations (t= -58.26, p < 0.001; Figure 4b).  427 
 428 
With ms-specparam, we performed Bayes factor analyses (Vandekerckhove et al., 2015) as an 429 
objective measure of evidence for the presence of rhythmic activity in the neurophysiological 430 
power spectrum. We found that the bilateral cuneus exhibited the highest Bayesian evidence for 431 
rhythmic activity in the resting-state, while we found the lowest evidence of rhythmic activity in 432 
the orbitofrontal and medial frontal cortices (Figure 4c). 433 
 434 
For illustration purposes, Figure 4d shows representative spectral parameterizations obtained from 435 
neurophysiological time series recorded the right post-central gyrus. In this instance, ms-436 
specparam identified two spectral peaks while default-specparam adjusted five spectral peaks 437 
(default-specparam MSE: 1.76x10-3; ms-specparam: 1.17x10-3).  438 
 439 
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 440 
Figure 4: Performances on Empirical MEG Data. 441 
(a) Residual variance analysis across the 606 participants and all brain regions shows 442 
ms-specparam (green) with consistently lower residual variance, indicating a superior fit 443 
relative to the other spectral parameterization methods (blue and yellow; left panel). The 444 
brain maps display residual variance values for each cortical parcel. A frequency 445 
breakdown (right panel) reveals ms-specparam outperforms the other two tested 446 
specparam variations across the spectrum, particularly at the edges of the frequency 447 
spectrum. 448 
(b) ms-specparam estimates less spectral peaks than default-specparam, demonstrating 449 
more parsimonious modeling, as reported in the box/density plots (left panel). The brain 450 
maps indicate that less spectral peaks were detected in posterior cortical parcels with ms-451 
specparam (right panel). 452 
(c) Bayesian evidence for periodic, rhythmic brain activity mapped across the cortical 453 
surface emphasizes occipital and left temporal regions. 454 
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(d) Parameterized spectra from the right post-central gyrus of a sample subject highlight 455 
the differences between algorithms: ms-specparam fits two peaks (right panel), reflecting 456 
the dominant oscillations, whereas default-specparam fits five (left panel), some of which 457 
may be redundant or overfitted, as seen in the overlaid spectral models. 458 
 459 
Age-Related Flattening of the Aperiodic Spectrum Depends on Hyperparameter Choice. 460 
  461 
We aimed to replicate with ms-specparam previous observations using specparam of age-related 462 
decreases in aperiodic exponent (Donoghue et al., 2020; Voytek et al., 2015). We examined the 463 
degree to which the methods’ hyperparameters influenced the detection of these aging effects. To 464 
do this, we fitted hierarchical linear regression models where age, the choice of spectral 465 
parameterization algorithm, and their interaction were included as predictors of both aperiodic 466 
exponent and aperiodic offset, respectively. A significant interaction would suggest that age-467 
related changes in the spectral aperiodic exponent, for example, are contingent upon the method’s 468 
hyperparameters, rather than reflecting actual neurophysiological effects. 469 
  470 
We found that age-related decreases in aperiodic exponent are modulated by the algorithm used, 471 
whether ms-specparam or specparam with default or conservative hyperparameter settings (i.e., a 472 
significant interaction between age and spectral parameterization algorithm). This indicates that 473 
the observed age-related changes in aperiodic exponent may be influenced by the choice of 474 
parameterization method rather than solely reflecting genuine neurophysiological effects (default 475 
hyperparameters: β = 0.04, SE = 0.01, 0.02, 0.06]; BF01= 0.12; conservative hyperparameters: β = 476 
0.12, SE = 0.01, [0.09, 0.14]; BF01 = 5.91×10-12; Figure 5a-b and Table S2 & S3). 477 
  478 
We obtained similar results for the age-related decline in aperiodic offset. Our analysis confirmed 479 
a significant interaction effect between age and spectral parameterization algorithm, both when 480 
comparing ms-specparam to default-specparam (β = 0.04, SE = 0.01, CI [0.01, 0.06]; BF01= 11.91) 481 
and to conservative-specparam (β = 0.11, SE = 0.01, CI [0.09, 0.14]; BF01= 2.96×10-13; Figure 5b 482 
and Table S4 & S5).  483 
 484 
Taken together, these observations suggest that the magnitude of age-related declines in the 485 
aperiodic exponent and offset are influenced by the choice of the hyperparameters in the spectral 486 
parametrization method. Note that the effect size of age was the smallest in the spectral models 487 
derived from ms-specparam. 488 
 489 
As in our simulation results, we also found that ms-specparam identified fewer spectral peaks than 490 
default-specparam, particularly in the 8-30 Hz range, and most pronounced in senior participants 491 
(65-89 years old). This reinforces the earlier finding that ms-specparam curtails the number of 492 
detected peaks and underscores the influence of model selection on the characterization of peak 493 
parameters across all age groups (Figure 5c). 494 
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495 
Figure 5: Age-related Neural Spectral Changes and Algorithmic Parsimony 496 

(a) Topographical differences in aperiodic neural components, showing the variations in 497 
exponent (top) and offset (bottom) estimates when using ms-specparam versus default-498 
specparam. Areas where ms-specparam yields higher parameter estimates are 499 
highlighted in blue. 500 
(b) Moderating effect of spectral parameterization method (ms-specparam vs. Default-501 
specparam) on the relationship between age and aperiodic spectral components. The left 502 
graph shows the exponent, and the right graph displays the offset, with statistical 503 
interactions highlighted. 504 
(c) Frequency-specific empirical distribution of the number of peaks fitted across different 505 
age groups. The histograms show that ms-specparam (green) generally fits fewer peaks, 506 
especially in the mid-frequency range (8-30Hz), illustrating a more parsimonious 507 
approach to model fitting and potentially more accurate reflection of age-related spectral 508 
changes.  509 
 510 
  511 
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Discussion 512 
 513 
Spectral parameterization enables the spectral decomposition of neurophysiological signals into 514 
aperiodic and periodic components. Its adoption has grown rapidly over recent years, thanks to 515 
open software tools, with the aim of disambiguating the respective functions of rhythmic 516 
oscillatory and arrhythmic background neural activity. However, present tools require the manual 517 
adjustment of algorithm parameters (hyperparameters), which hinders the reproducibility, 518 
interpretability, and proper fitting of spectral parameterization models to the empirical data. In the 519 
present report, we addressed this issue with the addition of a principled model selection strategy 520 
to specparam (ms-specparam) and SPRiNT (ms-SPRiNT) to set key hyperparameters, including 521 
the maximum number of peaks, minimum peak height, and proximity threshold. We validated both 522 
new methods with synthetic and empirical data. We show that the resulting spectral 523 
parameterizations are more parsimonious and fit better the data, while being considerably less 524 
dependent on user decisions and expertise.  525 
 526 
Spectral Parameterization with Enhanced Model Parsimony and Goodness-of-Fit.  527 
 528 
Our examination of ground-truth data shows that ms-specparam is more effective that specparam 529 
in accurately identifying spectral peaks. It avoids the frequent issue in practice of overfitting the 530 
spectral data, which typically overestimates the number of periodic components in power spectra 531 
(Figure 2a). In empirical data also, ms-specparam consistently generates more parsimonious 532 
models (Figure 4). We observed enhanced goodness-of-fit (reduced residual variance) in both 533 
synthetic and real-world data (Figures 2b and 4a), particularly at the edges of the frequency 534 
spectrum. The implications of these findings are twofold: firstly, ms-specparam's parsimonious 535 
approach prevents both overfitting and underfitting (see Practical Guidelines below). Secondly, 536 
the improved accuracy of aperiodic component estimates is critical for characterizing complex 537 
neural dynamics (Donoghue et al., 2020; Gerster et al., 2022).  538 
 539 
The proposed model selection approach features similar benefits for the parameterization of 540 
spectrograms, with substantial improvements of the model’s positive predictive values and less 541 
parameter settings than the ad-hoc post-processing steps proposed by Wilson et al. (2022). We 542 
note, however, that combining model selection with post-processing increases dramatically the 543 
positive predictive value of detected peaks (83% vs. about 45% for model-selection only), with 544 
only a modest reduction (approximately 8%) in peak sensitivity. 545 
 546 
To understand why the benefits of post-processing and model selection are additive, we can 547 
consider the mechanism by which they achieve more parsimonious fits. Post-processing removes 548 
isolated spectral peaks in time and frequency. Model selection encourages the parsimonious 549 
addition of spectral peaks to the model, observing both goodness-of-fit and BIC. When combined, 550 
model selection and post-processing remove spectral peaks which either do not substantially 551 
improve goodness-of-fit (model selection) or have short durations (post-processing).  552 
 553 
 554 
Hyperparameter Settings. 555 
 556 
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Our empirical investigations emphasize the critical role of hyperparameter settings in spectral 557 
modelling. Notably, the choice of spectral parameterization algorithm influenced aperiodic 558 
parameter estimates across methods (Figures 5a-c). While deviations were modest, suggesting that 559 
default spectral parameterizations may have captured the aperiodic component accurately, our 560 
comparative analysis with synthetic data indicates that ms-specparam yields improved estimates 561 
of the aperiodic exponent and offset (Figure 2b). 562 
  563 
We replicated with the new model selection approach previous observations of changing aperiodic 564 
parameters with age (Cellier et al., 2021; Donoghue et al., 2020; Hill et al., 2022). We found that 565 
the aperiodic component of the neurophysiological power spectrum flattens with age, which has 566 
been discussed as related to increased neural noise and asynchronous neuronal firing, yielding less 567 
structured brain dynamics (Usher et al., 1995; Pozzorini et al., 2013; Voytek et al., 2015; Voytek 568 
& Knight, 2015). Several empirical observations support this hypothesis (Hanggi and Jung, 1994; 569 
Bédard et al., 2006; Sosnoff and Newell, 2011).  570 
 571 
We found, however, that previously reported effects of shifts in the spectral aperiodic exponent 572 
and offset with age can be substantially reduced, depending on the spectral parameterization 573 
method used and its hyperparameters. This observation encourages the present and further efforts 574 
towards more automated and principled parameter selection procedures, promoting robustness and 575 
replicability of research results. 576 
 577 
Practical Guidelines. 578 
 579 
We provide practical recommendations to adjust the hyperparameters of ms-specparam. As with 580 
other spectral parameterization methods, we encourage future users to examine their data’s power 581 
spectra before and after applying ms-specparam and verify the model’s goodness-of-fit. We refer 582 
the reader to the previously published guidelines by Donoghue et al. (2020), Gerster et al. (2022), 583 
and Ostlund et al. (2022), which set good foundational principles for neurophysiological spectral 584 
parameterization. Here, we highlight more specific considerations for the best possible use of ms-585 
specparam: 586 

1. Model selection in ms-specparam determines the optimal number of spectral peaks that fit 587 
the empirical power spectrum. The setting of other hyperparameters, including peak width 588 
limits and aperiodic mode, remain to be defined by the user. The value set for the maximum 589 
number of spectral peaks parameter needs to be larger than the number of peaks that are 590 
clearly visible in the data’s power spectrum. In our investigations, we set this value to 6.  591 

2. We encourage users to derive measures of model goodness-of-fit, such as Mean-Squared 592 
Error, R2, and BIC, as in our Brainstorm plug-in of the proposed model selection methods. 593 
Some of these metrics, like R2, may be influenced by the aperiodic component of the 594 
spectrum, as demonstrated in previous studies (Donoghue et al., 2020). In the context of 595 
model selection, users should choose the spectral model with the lowest BIC (as in the 596 
present study). 597 
 598 

These guidelines also apply to time-resolved spectral parameterization with ms-SPRiNT. Model 599 
selection enhances the positive predictive value of detected spectral peaks and may substitute for 600 
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post-processing (Wilson et al., 2022). Post-processing requires users to set additional 601 
hyperparameters.  602 

To conclude, the present report introduced a model selection approach to the parameterization of 603 
neurophysiological power spectra and spectrograms. The approach minimizes the requirement for 604 
user expertise in the adjustment of hyperparameters, which influences the outcome of analyses. It 605 
is grounded in the optimization of parameters that favour model parsimony while maximizing 606 
goodness-of-fit. We foresee that this principled approach will contribute to the robust application 607 
of spectral parameterization in neuroscience research, further elucidating the roles of rhythmic and 608 
arrhythmic brain activity in cognition, health, and disease. We anticipate that the proposed tools, 609 
ms-specparam and ms-SPRiNT, will enhance the reproducibility and robustness of reported 610 
findings. 611 
 612 
Data and Software Availability 613 

The ms-specparam and ms-SPRiNT algorithms, as well as simulated power spectra and code used 614 
to generate results, are available on GitHub (github.com/lucwilson/model_selection). Simulated 615 
neural-like time series used for spectrogram parameterization can be accessed from Wilson et al. 616 
(2022). Resting-state MEG recordings were obtained from the CamCAN repository (Shafto et al., 617 
2014; Taylor et al., 2017). 618 
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Supplemental Materials 640 

Algorithm Validation with Alternative Noise Conditions. 641 
 642 
In addition to injecting moderate noise to the synthetic data, we also evaluated ms-specparam 643 
performance at low (s.d. = 0.05) and high (s.d. = 0.15) noise conditions. In spectra with low 644 
noise, ms-specparam detected spectral peaks with comparable sensitivity (92%) to default-645 
specparam (92%). The positive predictive value of peaks detected using ms-specparam (97%) 646 
was notably higher than that of peaks detected using default-specparam (68%). In spectra with 647 
high noise, ms-specparam detected spectral peaks with lower sensitivity (84%) to default-648 
specparam (90%). However, the positive predictive value of peaks detected using ms-specparam 649 
(96%) remained higher than that of peaks detected using default-specparam (61%). Taken 650 
together, these results support the generalizability of the observed algorithmic performance 651 
improvements across noise levels. 652 
 653 

 654 

  exponent offset cent. freq. amplitude st. dev. 

Parameter 
estimation error Mean SE Mean SE Mean SE Mean SE Mean SE 

SPRiNT 0.16 5x10-4 0.21 5x10-4 0.59 9x10-4 0.24 8x10-4 0.24 5x10-4 

SPRiNT with 
post-processing 0.13 5x10-4 0.16 5x10-4 0.49 9x10-4 0.24 8x10-4 0.24 5x10-4 

ms-SPRiNT 0.15 5x10-4 0.19 5x10-4 0.49 9x10-4 0.24 8x10-4 0.24 5x10-4 

ms-SPRiNT with 
post-processing 0.12 5x10-4 0.15 5x10-4 0.41 9x10-4 0.23 9x10-4 0.23 5x10-4 

Table S1. Parameter estimation error for spectrograms with and without model selection.  655 

 656 

 657 

 658 
 659 
 660 
 661 
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  exponent 

Predictors Estimates CI p 

(Intercept) 0.00 -0.07 – 0.08 0.944 

algorithm [default vs ms-specparam] -0.01 -0.03 – 0.01 0.610 

age (continuous) -0.44 -0.51 – -0.37 <0.001 

algorithm [default vs ms-specparam] × age 
(continuous) 

0.04 0.02 – 0.06 <0.001 

Random Effects 
σ2 0.03 

τ00 subID 0.80 

ICC 0.96 

N subID 606 

Observations 1212 

Marginal R2 / Conditional R2 0.174 / 0.969 

Table S2. Hyperparameter choice impacts the age’s effect on the aperiodic exponent: default 662 
hyperparameter setting vs ms-specparam.  663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 
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  exponent 

Predictors Estimates CI p 

(Intercept) -0.12 -0.19 – -0.05 0.001 

algorithm [conservative vs ms-specparam] 0.24 0.21 – 0.26 <0.001 

age (continuous) -0.50 -0.57 – -0.43 <0.001 

algorithm [conservative vs ms-specparam] × age 
(continuous) 

0.12 0.09 – 0.14 <0.001 

Random Effects 
σ2 0.06 

τ00 subID 0.73 

ICC 0.93 

N subID 606 

Observations 1212 

Marginal R2 / Conditional R2 0.209 / 0.942 
 674 
Table S3. Hyperparameter choice impacts the age’s effect on the aperiodic exponent: 675 
conservative hyperparameter setting vs ms-specparam. 676 
 677 
 678 
 679 
 680 
 681 
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 684 
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  offset 

Predictors Estimates CI p 

(Intercept) 0.19 0.13 – 0.26 <0.001 

algorithm [default vs ms-specparam] -0.39 -0.41 – -0.36 <0.001 

age raw -0.52 -0.59 – -0.46 <0.001 

algorithm [default vs ms-specparam] × age raw 0.04 0.01 – 0.06 0.002 

Random Effects 
σ2 0.04 

τ00 subID 0.67 

ICC 0.94 

N subID 606 

Observations 1212 

Marginal R2 / Conditional R2 0.294 / 0.960 

Table S4. Hyperparameter choice impacts the age’s effect on the aperiodic offset: default 697 
hyperparameter setting vs ms-specparam.  698 

 699 
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  offset 

Predictors Estimates CI p 

(Intercept) 0.12 0.05 – 0.19 <0.001 

algorithm [conservative vs ms-specparam] -0.24 -0.27 – -0.22 <0.001 

age raw -0.58 -0.65 – -0.52 <0.001 

algorithm [conservative vs ms-specparam] × age raw 0.11 0.09 – 0.14 <0.001 

Random Effects 
σ2 0.05 

τ00 subID 0.66 

ICC 0.93 

N subID 606 

Observations 1212 

Marginal R2 / Conditional R2 0.294 / 0.948 

Table S5. Hyperparameter choice impacts the age’s effect on the aperiodic offset: conservative 719 
hyperparameter setting vs ms-specparam.  720 

 721 
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 727 
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