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Abstract

Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative
description of the corresponding processes is therefore important for a better understanding of essential biological
mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription
factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations
between transcription factors and motifs. This method is based on a linear model that combines sequence information with
expression data. We present various methods for model parameter estimation and show, via experiments on simulated
data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude
that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab
source code at http://biit.cs.ut.ee/gmat/.
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Introduction

Regulation of gene expression is one of the most important

areas of contemporary biological research. Of all the known

mechanisms behind gene regulation, perhaps the most important

one is the regulation of transcription by transcription factors [1,2].

Transcription factors (TFs) are proteins, which bind to certain

short sequences (motifs) in the regulatory regions (promoters, enhancers,

silencers) of genes. This can induce or suppress the transcription of

these genes into mRNA and thus affect their expression as

proteins. The binding motifs for many transcription factors are not

yet known and are difficult to establish by direct in vivo or in vitro

experiments. Therefore, discovery of regulatory relations between

the transcription factors and the genes that they regulate forms a

major challenge.

In this work, we present a novel computational method for in

silico discovery of putative associations between transcription

factors and motifs from microarray gene expression and DNA

sequence data. Due to overwhelming availability of this kind of

data, as well as the computational simplicity of the proposed

approach, our methodology can be used as a cheap and easy way

to generate hypotheses concerning the networks of transcriptional

regulatory control. Our experiments confirm that the generated

hypotheses are biologically and statistically meaningful.

The idea to combine data about gene expression and promoter

sequences for studying transcriptional regulation is not new. The

main assumption behind all such methods is the premise that co-

expression implies co-regulation, i.e., genes with similar gene

expression profiles must be controlled by the same regulatory

mechanisms [3,4]. This assumption is most commonly exploited

by clustering genes by their expression profiles [5,6]. The

promoters of co-clustered genes can then be successfully searched

for overrepresented motifs using one of the multitude of motif

discovery methods. We refer to [7] for a comprehensive review.

This basic approach can be refined in several ways. Biclustering

and other fine-grained clustering techniques allow to find gene

clusters co-expressed only in certain conditions [8]. Likewise,

approaches more elaborate than plain over-representation analysis

might be better suited for capturing the regulatory effects within

clusters, see [9], for example.

Another compelling alternative is to avoid the clustering step

and reconstruct gene regulation networks by modeling expression

values directly. The two major approaches here are probabilistic

graphical models and predictive models. Methods of the first kind

typically discretize the data to reduce the effect of noise and then

find a graphical model (mainly a Bayesian network) that provides

the most coherent explanation for the data [10,11]. We refer to

[12] for an excellent overview and further references.

Methods of the second kind use supervised machine learning

techniques to infer a predictive model for gene expression values

[13]. The resulting model needs to be easily interpretable, hence,

linear models and decision trees have gained most popularity. For

example, the models by [14] and [15] represent the gene mRNA

expression values in a given experiment as a linear function of

motif presence in the gene promoters. This allows to find motifs,

the presence of which has the most influence on expression. The
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decision-tree based approaches by [16], [17] and [18] go a step

further and predict gene expression from motif presence and

transcription factor expression. As a result, these models can

capture the regulatory links between transcription factors and

motifs.

The G = MAT model presented in this work falls into the

category of predictive models, taking its inspiration from

GeneClass [17] and BDTree [16]. It is based on a special kind

of a linear model that combines together expression levels of TFs

and the presence of motifs in the gene promoters in order to

predict mRNA levels. As a result, the coefficients of the model

measure a degree of association between the transcription factors

and the motifs. Hence, detecting coefficients that are statistically

different from zero gives us a list of putative associations between

motifs and transcription factors.

The coefficients of the model can be estimated using a variety of

approaches known from classical statistics, such as least squares or

regularized least squares regression [19]. In this work we present

the techniques for efficient estimation of model parameters from

data. We then extensively validate the reliability of our approaches

in well-known yeast datasets by comparing them with other state

of the art methods. The choice of yeast as a test organism is

motivated by several reasons. First, the effectiveness of other

methods is commonly demonstrated on few selected yeast datasets

and hence we can directly compare our method to other published

algorithms. Second, it is known that the main regulatory regions of

yeast genes are comprised of their immediate promoters, whereas

in more complex organisms the regulatory regions would often lie

far away from the gene at unknown locations. Finally, as yeast is a

well-studied organism, it is much easier to interpret the results. For

the same reason, we use artificially generated data to experimen-

tally study the statistical properties of our algorithms and verify

that they are robust against noise. The results are encouraging on

both types of data. More importantly, the method itself is not

limited to yeast and can be applied to other organisms

Being a simple linear model, the method is statistically more

reliable than the more complex tree-based models of GeneClass

and BDTree. Additionally, it does not require data discretization

and can be implemented with better efficiency. This makes

G = MAT a somewhat better alternative to the former approaches.

We also provide implementations of our methods in SciLab and as

a Python web application (see the supplementary website) for

others to test and use.

Methods

Basic Concepts
Although an exact definition of a gene can be argued about,

here by genes we refer to the protein-coding regions of the DNA.

More precisely, we divide genes in two non-overlapping classes:

transcription factors (TFs) and target genes. The class of

transcription factors consists of all genes that correspond to actual

or putative transcription factors. The class of target genes (in the

following referred to simply as genes) consists of all the remaining

genes. We denote TFs by tk, k[ 1,2, . . . ,nTf g where nT denotes the

number of TFs. Similarly, we denote target genes by gi,

i[ 1,2, . . . ,nGf g where nG is the number of target genes. The

information about which genes are transcription factors and which

are not can be obtained from publicly available Gene Ontology

(GO) annotation databases, such as SGD [20].

The simplest way to quantify abundance of TFs and target

genes is through mRNA expression levels. These levels can be

measured using a variety of microarray-based experimental

techniques. Each experiment measures the expression levels of

thousands, if not all, of the genes in the cell simultaneously.

Typically, a single study is comprised of several microarray

experiments that are collected into a single dataset. Let us denote

each experiment in a study by aj , j[ 1,2, . . . ,nAf g, where nA is the

number of experiments. Then we can collect the expression levels

of target genes into an nG|nA expression matrix G where the value

Gij denotes the expression of a target gene gi in the experiment aj .

Similarly, let T be the nT|nA TF expression matrix where the value

Tkj denotes the expression of the TF tk in the experiment aj .

As a second data source, we consider motif presence in

promoter regions. A motif is a generalized representation of a

binding site: a short region on the DNA, characterised by its

sequence. Commonly, motifs are represented as fixed strings,

strings with mismatches, position weight matrices or hidden

Markov models, see [21] for further details. The exact represen-

tation type of a motif is irrelevant for our purposes, as long as we

can count how many times the motif matches a promoter

sequence. In the following, we denote motifs by m‘,

‘[ 1,2, . . . ,nMf g where nM is the total number of motifs. The list

of relevant motifs can consist of all possible n-mers or can be taken

form public motif transcription factor databases, such as Transfac

[22,23] or Jaspar [24].

The information about motifs in the promoters of target genes

can be represented as the motif matrix M, where each entry Mi‘

counts the number occurrences of motif m‘ in the promoter of the

target gene gi. There are other ways of defining the motif matrix.

For example, Mi‘ can just indicate whether a motif m‘ is present

or not. Now the matrices G, M and T capture all the data to be

analysed. Figure 1 shows a convenient way to visualize these

matrices.

Although the amount of data is sufficient for statistical analysis,

there are also some inherent limitations. First, our model actually

quantifies the effect of transcription factors on gene expression.

Therefore, ideally, we would like the matrix T to contain protein

expression levels of TFs, rather than their mRNA expression.

Indeed, the TF proteins are involved in DNA binding and influence

the target gene mRNA expression. However, current technology

does not provide cheap methods for measuring expression levels of

binding factors directly. Instead, we assume the microarray-

measured mRNA expression levels to be a reasonable approxi-

mation for TF protein abundance. The assumption sweeps under

the carpet the issues of translation regulation, splicing, post-

translational modifications as well as the inertia of the whole

Figure 1. The matrices T (top), G (bottom left) and M (bottom
right). Each row of G corresponds to a certain gene, as does each row
of M. Each column of G corresponds to a certain experiment, as does
each column of T. The rows of M can be regarded as descriptive
attributes for the rows of G, and the columns of T – as the attributes for
the columns of G.
doi:10.1371/journal.pone.0014559.g001

G = MAT
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process. Nonetheless, this assumption is rather common and often

implicit in other similar methods [16,17], because it is difficult to

include the translation issues into the model. Luckily, mRNA

expression levels are on average in good correlation with the actual

protein expression levels.

Finally, it is worth mentioning that although public repositories

of microarray data contain hundreds of normalized data sets, each

data set having a hundred or so of microarray experiments

concerning a single study, the different datasets cannot be

combined easily. The differences in microarray protocols, cell

cultures and laboratory conditions used in different studies make it

difficult, if not impossible, to unify different datasets reliably [25].

The G = MAT Model
In this section, we present and justify a new type of linear model

for characterising gene expression. Our model is based on three

simplifying assumptions about the transcriptional regulation

process. Firstly, we assume that gene expression is controlled only

by transcription factors. In particular, the target gene expression

values in each experiment Gij are determined by the TF

expression values in the same experiments. That is, if in two

experiments the expression levels of all the TFs were the same, the

expression levels of all the genes would be the same, too. Thus, for

every gene gi there exists some function fi such that in experiment

aj :

Gij~fi(T1,j ,T2,j , . . . ,TnT,j): ð1Þ

Secondly, we assume that transcription factors perform their

functions by binding to certain motifs on the promoters of the

target genes and the effect of each transcription factor is

proportional to the number of matches of its bound motifs.

Therefore, there must exist a single function f that predicts the

expression level of a gene gi given only the expression levels of

transcription factors t1, . . . ,tnT
multiplied by the weights of motifs

m1, . . . ,mnM
in the promoter. We can express this dependency as

Gij~f

Mi1T1j , Mi2T1j , . . . MinM
T1j

Mi1T2j , Mi2T2j , . . . MinM
T2j

..

. ..
.

P
..
.

Mi1TnT j , Mi2TnTj , . . . MinM
TnTj

0
BBBBB@

1
CCCCCA

, ð2Þ

where we have organised pairs (Mi‘Tkj)‘,k into a matrix for visual

convenience.

Thirdly, we assume that we can approximate the actual

prediction function f by a linear form. As a result, we obtain

the G = MAT model that predicts each element of G as follows:

Gij~
XnM

‘~1

XnT

k~1

a‘kMi‘Tkjzeij , ð3Þ

where a‘k are the (unknown) model parameters and eij is the noise

discarded by the model. Observe that the linearity in terms of

pairwise products Mi‘Tkj puts our model into the realm of linear

models, widely studied in statistical literature. In fact, the equation

(3) is also known as the growth curve model [26]. However, its

application in the context of gene regulation is, to the best of our

knowledge, entirely novel.

Now we can easily recast the equation (3) into a more compact

matrix form

G~MATze, ð4Þ

where A is the nM|nT matrix of coefficients a‘k. We emphasise

that all the coefficients a‘k have a simple and clear interpretation.

A large positive (or negative) value of a‘k shows that expression of

predictor gene is tk positively (or negatively) correlated with the

expression of genes that have the motif m‘ in their promoter.

Similarly, a small value of a‘k indicates that the effect of the

transcription factor tk is either non-existent or highly nonlinear.

Hence, a large absolute value of a‘k suggests that either there is a

direct binding of a transcription factor to the motif m‘, or the

predictor gene tk initiates a regulatory process that somehow

involves the motif m‘.

It is important to understand that the G = MAT model is only a

crude approximation of the true biological processes taking place

within the cell and in practice, all the three assumptions can be

violated. For instance, the gene expression is not entirely

controlled by transcription factors. In reality, various other factors

(such as microRNAs and environmental conditions) also influence

transcriptional regulation. Neither is the effect of TFs on

transcription instantaneous. Nevertheless, as long as the primary

effect of TFs is significantly stronger than the other influences, we

can neglect them. In particular, in the following sections, we show

both theoretically and experimentally that if the unknown

regulatory influence is additive and independent from the effect

of TFs, then the model coefficients âa‘k can be inferred correctly.

This holds even if the amount of non-TF influence is large so that

the predictive performance of the model is low.

Secondly, note that an identical motif combination in promoters

does not always guarantee identical expression. Processes like

DNA methylation and protein phosphorylation can interfere with

binding, also the strength and location of the binding site might be

of importance. Nevertheless, according to our current knowledge

the second assumption is still a rather viable approximation.

The third assumption of linearity is the most questionable. We

can regard the linearisation (3) as a result of the first-order Taylor

approximation of the predictor function f . Although higher order

approximations provide higher accuracy, the number of unknown

parameters grows exponentially wrt model order. As a result,

common parameter estimation methods become unstable or

require practically infeasible amounts of microarray data. In fact,

already the second-order Taylor approximation of f yields a

model with more than n2
Mn2

T parameters and is thus practically

unusable for all reasonable motif and TF counts. Of course, the

linear approximation has its limitations. For instance, it cannot

properly capture the combinatorial regulatory effects involving

more than one TF.

Some of these secondary effects can be corrected by adding new

terms into the G = MAT model. For instance, if a certain chemical

compound is known to have significant impact on gene

transcription, we can add its expression level to the G = MAT

model as a predictor. Similarly, if a certain pair of TFs is known to

act synergically, we can explicitly incorporate in the model the

product of their expression values. Finally, if the expression data is

a time series, we can introduce a time lag in the model by adding

delayed signals as the rows of the matrix T.

Parameter Estimation Methods
Next, we present a number of methods for parameter estimation

for the G = MAT model. Our main emphasis is on the reliable

detection of nonzero model coefficients a‘k, as they indicate

putative relations between motifs and TFs. In the description of all

parameter estimation methods we explicitly assume that matrices

G = MAT
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G, T and M have correct dimensions. The proofs of all the results

mentioned in this section are available in the supplementary text

(Text S1).

Least Squares Regression. The most natural way of

approaching the estimation problem is to search for parameter

matrix A, for which the mean squared error of model predictions

is minimal. More formally, the least squares fit for the parameter

matrix ÂALS is defined as follows

ÂALS~ argmin
A

G{MATk k2, ð5Þ

where :k k2
here denotes the sum of squares of the elements of a

given matrix. Although the problem (5) always has a solution,

sometimes the solution is not unique. To solve this ambiguity,

statisticians commonly consider only the minimum-norm fit: a

solution ÂALS� that has the least possible sum-of-squares ÂALS�

��� ���2

.

The following two theorems describe the general solution to the

problem (5) and provide sufficient and necessary conditions when

the solution is unique.

Theorem 1. All solutions to the problem (5) can be computed as

ÂALS~MzGTzz(MzM{I)KzL(TTz{I), ð6Þ

where (:)z denotes the Moore-Penrose pseudoinverse of a matrix, I
denotes a properly-sized identity matrix and K and L are any two nM|nT

matrices. The minimum norm solution to the problem (5) can be computed as

ÂALS�~MzGTz: ð7Þ

Theorem 2. The problem (5) has a unique solution if and only if the

columns of M and the rows of T are linearly independent, that is,

rank(M)~nM and rank(T)~nT. The corresponding solution can be

computed as

ÂALS~(MT M){1MT GTT (TTT ){1, ð8Þ

where (:)T denotes matrix transposition.

The solution to the least squares regression problem can be

computed with reasonable efficiency. Namely, the time complexity

of the computation depends linearly on the number of genes nG

and the number of microarrays nA, and is cubic in the number of

motifs and TFs nM and nT. Memory requirements are linear in nG

and nA, and quadratic in nM and nT. This is important, as in many

practical cases the number of genes nG is significantly larger than

nA, nM or nT.

Often, one can improve the stability of estimates by proper

preprocessing of the data. The same is true for the G = MAT

model. Let DM be the column-wise centered matrix M, DT be the

row-wise centered matrix T, and DG be the centered matrix G.

Then the corresponding minimization task

ÂACLS~ argmin
A

DG{DMADTk k2 ð9Þ

gives rise to the centered least squares method. Informally, row- and

column-wise centering of matrices T and M transforms the input

variables of the model (3) from the form m‘tk to the form

(m‘{m‘)(tk{tk). This reduces the correlations between the

variables, yet preserves the correlations of the variables with the

output. Consequently, the variances of the estimated coefficients

for the centered G = MAT model are smaller.

In Text S1, we give a more detailed analysis and demonstrate

that the centered least squares method can reliably estimate

coefficients even if the dataset is incomplete, i.e., some motifs and

TFs are missing, provided that the transcription factor expression

values and the motif presence values are statistically independent.

Regularized Least Squares Regression. Least squares

estimate is reliable only if the number of data points is much

larger than the number of parameters. In many cases, the

expression data we have does not satisfy this premise and we have

to use regularization to stabilize estimates. The idea of

regularization is to enforce the solution with the smallest possible

parameter values by penalizing the Frobenius norm of the

parameter matrix A. The most common regularization method

is based on the ‘2 norm. The corresponding regularized least squares

fit is defined as follows

ÂARLS~ argmin
A

G{MATk k2
zl Ak k2

� �
, ð10Þ

where l§0 is the regularization parameter. Various values of l provide

different trade-offs between stability and prediction accuracy. Setting

l~0 will give us the best possible prediction, but low stability for

noisy data – it is just the usual least squares solution. Setting l??
will result in a constant solution ÂARLS~0, which is very stable, but

useless for predicting. By choosing l somewhere in between, we can

obtain both satisfactory stability and prediction quality.

Unfortunately, the closed analytical solution for the problem

(10) most probably cannot be expressed in terms of elementary

algebraic operations on matrices G, M and T (i.e. without having

to recast matrices as vectors). We therefore propose an alternative

regularized solution, to which we refer as ridge regression

ÂARR~(MT MzlMI){1MT GTT (TTTzlTI){1, ð11Þ

where lM,lT§0 are the regularization parameters and I is the identity

matrix. Similarly to the centered least squares, it is also possible to

define centered ridge regression as ridge regression applied to the

properly centered matrices G,M,T.

Sparse Regression. Another common method of

regularization is to penalize the (entry-wise) ‘1-norm of the

parameter matrix. This tends to produce sparse solutions (i.e.,

redundant parameters will be forced to zero values), hence the

name of the method: sparse regression. The corresponding estimate is

defined as follows

ÂASR~ argmin
A

G{MATk k2
zl Ak k1

� �
, ð12Þ

where

Ak k1~
X

i,j

jaij j, ð13Þ

and l§0 is the regularization parameter. As the solution to this

problem cannot be expressed in closed form, iterative methods

must be used. For example, following the iterative thresholding

technique [27], the solution ÂASR can be computed as a limit of the

following sequence of iterations.

Anz1~S(AnzmMT (G{MAnT)TT ), ð14Þ

G = MAT
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where m is the step size and S is the function which, elementwise,

processes its argument as follows:

S(x)~
0, if xj jvml=2,

(jxj{ml=2)sign(x), otherwise:

�
ð15Þ

Alternatively, it is possible to show that as l ranges from ? to 0
the solution ÂASR follows a piecewise-linear path, with parameters

becoming nonzero one by one. It is then possible to recover the

whole path as well as the order at which the parameters enter the

model using the Least Angle Regression (LARS) algorithm [28]. The

straightforward, albeit very inefficient way to perform LARS for

the G = MAT model is to regard it as a linear model with nM|nT

features and nG|nA observations. The matrix structure of the

model can be exploited to optimize the algorithms slightly,

although the overall complexity still remains fairly high. Our

implementation of GMAT-LARS (see Text S1) requires up to

O(n3
Tn3

Mz(nTznM)nGnA) operations per iteration.
Correlation-based Estimate. As the set of all relevant TFs

and motifs is not known and is likely to vary across different

studies, a good parameter estimator method should recover

coefficients a‘k even if we have omitted some TFs and motifs from

the data. The correlation based estimate derived in this subsection

is ideal with this respect, since it reliably reconstructs a‘k given

only the data about the TF tk and the motif m‘, and the expression

levels of all target genes. Moreover, it is possible to show that the

centered least squares is in fact a good approximation to the

correlation-based estimate and thus can handle missing TFs and

motifs, as well. Further details are given in Text S1.

To start, note that the equation (3) can be interpreted as a a

generative probabilistic model, where the measurements of all TFs

in a given experiment aj and presence of motifs in a given gene gi

determine the gene expression level Gij . More formally, let

(Tk)k[f1...nTg be a vector of random variables corresponding to the

expression levels of TFs and (M‘)‘[f1...nMg a vector of random

variables corresponding to the presence of motifs. Then we can

define a random variable corresponding to the gene expression

level as follows

G~
XnM

‘~1

XnT

k~1

a‘kM‘Tkze, ð16Þ

where e is a random error term with zero mean, independent of

M‘ and Tk for all ‘ and k.

Now, it is possible to establish connection between variable

covariances and the unknown parameters a‘k of the generative

model. As usual, let �XX~E(X) denote the mean and DX~X{�XX
the corresponding centered variable. Let D(X)~E(DX2) denote

the variance of a random variable X. Let cov(X,Y)~E(DX:DY)
denote covariance between random variables X and Y. Then we

can state the following theorem.

Theorem 3. Assume that random variables satisfy the condition (16). If

the variables M‘ and Tk are not constant and are pairwise independent from

other random variables M1, . . . ,MnM
,T1, . . . ,TnT

, then

a‘k~
cov(G,DM‘

:DTk)

D(M‘)D(Tk)
: ð17Þ

Note that the pairwise independence assumption is rather mild

and is likely to be satisfied in many data sets. Hence, we can

estimate a‘k, given only realizations of G, Tk and M‘. In other

words, we need only the gene expression matrix G, the k-th row of

T, and the ‘-th column of M. Of course, we have to replace

theoretical estimates with the empirical estimates and thus the

inferred coefficients âa‘k are only approximations, but the results

are statistically stable.

The computation of a single coefficient with this method

requires a covariance computation involving the whole matrix

G, therefore, estimation of the whole matrix A requires

O(nGnMnAnT) operations. It is one order of magnitude less

efficient than the least squares or ridge regression estimates, but

still quite tolerable for many datasets. This method lends itself

easily to nearly unlimited parallelization, i.e., each coefficient can

be computed independently of the others, and the covariance

computation for each coefficient is highly parallelizable.

Randomization-based Attribute Selection. For all

methods described above, we must separately decide which

inferred coefficients âa‘k are significantly different from zero to

discover putative associations between motifs and transcription

factors. For that, we can compare how different are the inferred

parameters âa‘k from the ones we would obtain if the gene

expression values would be independent from motif and TF data.

More formally, let Grnd be a reordering of the matrix G that is

obtained by a random permutation of rows and columns. Let A be

a parameter inference method that given matrices G, M and T
outputs an estimate for G = MAT parameters ÂA/A(G,M,T).
Then we can compare its behaviour using standard methods like

p-values and z-scores. Here, we formalize only the z-score based

attribute selection method, as other methods based on p-values

have similar performance. See Text S1 for these alternative

attribute selection techniques.

Let Arnd/A(Grnd,M,T) be the estimate obtained on the

randomized dataset. Then we can define the z-score for the

coefficient a‘k as

z‘k~
âa‘k{E(Arnd

‘k )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D(Arnd

‘k )

q : ð18Þ

The value z‘k naturally measures the deviation of the true

parameter estimate from the value one might obtain if the data

were random.

In practice, we obtain the z-score estimate by shuffling the values

of G several times, computing the mean and standard deviation of

each coefficient on these randomized samples and using these values

to normalize the true estimate according to the equation (18). This

way, for each estimated coefficient we obtain a score of how large it

is in comparison to estimates, obtained on randomized data.

Results and Discussion

Model Performance
To demonstrate and assess the applicability of the model to

biological data we first of all applied it on a dataset of yeast

microarray measurements by [4]. The Spellman data is a rather

popular benchmark for similar methods (e.g. [14,16]), and it is thus

possible to make comparisons. Besides, baker’s yeast is a well-

studied model organism, and the dataset quantifies the well-

understood cell-cycle processes, which makes it easy to interpret

the results. To further examine method stability, we have

performed a number of tests on artificially simulated data.

Performance on the Spellman Dataset. The dataset by [4]

consists of 77 microarray experiments measuring gene expression

in the cells of the baker’s yeast (Saccharomyces cerevisiae) at different

G = MAT
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phases of the cell cycle. We combined this data with the Transfac

motif matches in the 800bp upstream genomic sequences obtained

from the SGD website to get the G, M and T matrices for the

analysis. We then applied the basic least squares estimation

method on this data and considered the model coefficients with the

highest (most positive) values. Table 1 lists the 5 top-scoring pairs.

It is easy to see that at least three of the the five pairs obtained are

indeed associated: both the F$GAL4 01 motif and the GAL1,

GAL3 and GAL80 genes are related to the same family of

galactokinase genes, known to be regulated by the same

mechanisms [29]. It is also worth noting the considerable

importance of the galactokinase genes to the cell cycle. Nothing

of this kind of relevance could be obtained by the BDTree

algorithm on the same data. See Text S1 for more details.

Another strong indication in favor of the biological meaning-

fulness of the results was provided by a split-set experiment. If a

method were overly sensitive to noise, its output would vary

abruptly over different datasets even if all of them captured the

same biological processes. Such behaviour would significantly

reduce the practical applicability of any method. To detect such

instability, we divided the Spellman dataset experiment-wise into

two non-intersecting parts of 40 and 37 experiments and used our

methods to find and rank TF-motif pairs for both data sets.

Depending on the chosen inference parameters, the overlap

between top-ten of these lists was from 3 to 4 elements – a result,

which is significantly better than random (p-valuev10{8). This

shows a considerable statistical stability of the model – something

that has not been demonstrated for most of the competing

approaches.

Although the results are biologically meaningful and stable, the

predictive error of the model is rather large (0:1494), not differing

much from the variance of the data (0:1576). The latter can be

explained by the small number of motifs used for prediction.

Indeed, as we use just 38 well-known yeast motifs, we restrict the

predictions for the columns of G to a 38-dimensional subspace. As

a result, it is almost impossible to fit column vectors with 5766

components precisely. In fact, in statistical terms, a linear model

that is capable of explaining 0:0082 units of variance out of 0:1576
using just 38 parameters out of a maximum 5766, is indeed highly

significant – the corresponding p-value of the F-test is p%10{5.

To show that the low predictive power does not compromise the

reliability of parameter estimates, we conduct a number of

experiments on artificial data. These experiments convincingly

demonstrate this fact, and in addition help to quantify the

performance of the different parameter estimation methods.

Statistical Validation on Artificial Data. We generated

randomly a number of datasets according to the equation (4),

trying to keep the statistical characteristics of the generated data as

close as possible to the Spellman dataset. Next, we attempted to

estimate the matrix A given only the matrices G, M, and T using

the parameter estimation methods described previously under

various perturbations of the data. We discovered that if the matrix

G contains significant amount of additive gaussian noise and some

rows/columns are missing from the matrices M and T, the

parameters A can nonetheless be estimated quite accurately.

Despite the accurately estimated parameters, the predictive error

of the resulting model can nonetheless be unacceptably large – a situation

similar to the one observed in the analysis of the Spellman dataset.

These results allow us to conclude that the large model error in the

first experiment can be regarded as a result of noisy and

incomplete data, rather than the general incorrectness of the

model.

We already noted the fact, that 38 motifs are not enough to

linearly explain the variance of 5766 genes. Introduction of latent

motifs allows to theoretically ‘‘fix’’ the predictive performance,

leaving the model parameters and their interpretation intact.

Indeed, suppose that, in addition to the nM known motifs

fm1,m2, . . . ,mnM
g, a number of other, unknown motifs

fm’1, . . . ,m’nM0 g is participating in the regulation. Let M ’i‘ denote

the presence of the unknown motif m’‘ in the promoter of gene gi

and let a’‘k denote the regulatory interaction of motif m’‘ with TF

tk. The unknown motifs can now be included into the model as

follows:

G~MATzM0A0Tze

~MATzBTze,
ð19Þ

where the term BT accounts for most of the noise in the original

model. Despite the additional term, the parameters A in the

augmented model (19) can be estimated exactly as before. For

example, the application of the least squares method with

appropriate regularization penalty to the model (19) produces

the same estimate (6) for A as the application of least squares to the

original G = MAT model (4). The estimation of latent parameters

B (or even M0 and A0) is also possible [30,31], yet, without

additional information, will only produce anonymous links

between genes and TFs, which do not allow meaningful

interpretation. Consult Text S1 for more details.

Experiments on artificial data allowed us to compare the

parameter estimation performance of the different methods. We

Table 1. G = MAT analysis of the Spellman dataset.

Motif TF Score

F$GAL4_01 (Binding site for GAL4) GAL1 (Galactokinase, phosphorylates alpha-D-galactose to alpha-D-galactose-1-phosphate in
the first step of galactose catabolism.)

0.30

F$GAL4_01 (Binding site for GAL4) GAL3 (Transcriptional regulator involved in activation of the GAL genes in response to galactose.) 0.26

F$GAL4_01 (Binding site for GAL4) GAL80 (Transcriptional regulator involved in the repression of GAL genes in the absence of galactose.) 0.18

F$MCM1_02 (Binding site for MCM1 and SFF) SFG1 (Nuclear protein, putative transcription factor required for growth of superficial pseudohyphae
(which do not invade the agar substrate) but not for invasive pseudohyphal growth.)

0.12

F$MCM1_02 (Binding site for MCM1 and SFF) ACE2 (Transcription factor that activates expression of early G1-specific genes, localizes to daughter
cell nuclei after cytokinesis and delays G1 progression in daughters, localization is regulated by
phosphorylation.)

0.12

The table presents five motif-TF pairs having the largest (most positive) values of the corresponding parameters âa‘k . Motifs are in the leftmost column and are identified
by their Transfac identifiers. The middle column contains TFs, which are identified by their gene names. The rightmost column contains the corresponding values âa‘k .
doi:10.1371/journal.pone.0014559.t001
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generated reasonably noisy datasets, estimated the parameters

using different methods, ordered the model coefficients according

to their estimated values and assessed the ROC AUC score of such

ordering. The resulting scores are presented in Figure 2. The

conclusion from the experiments is that although all estimation

methods perform rather well, the centered least squares and

centered ridge regression approaches seem to show the best

performance.

Applications and Case Studies
As explained and illustrated in the previous sections, the

G = MAT analysis can be used to discover putative associations

between motifs and transcription factors. However, this is not the

only task that can be addressed using the G = MAT model. In this

section, we present a number of examples demonstrating various

other applications of the G = MAT analysis in practical settings.

The detailed results of all the experiments are available via the

supplementary web tool.

Discovering Process-specific TFs and Motifs. The most

obvious application for the G = MAT model is the discovery of

putative TF-motif associations from gene expression and motif

presence data. An example of such analysis has already been

presented in section ‘‘Model Performance’’. However, quite often

the discovered associations are rather indirect and require

extensive biological knowledge to be verified. The results are

easier to interpret if we consider the top-scoring TFs and the top-

scoring motifs as two separate lists. These lists contain TFs and

motifs that are specific to the processes measured in the

microarray data.

Such an approach was taken in the work of Middendorf et al.

[17], where the authors applied their GeneClass algorithm to yeast

stress response data. The GeneClass algorithm works in the same

setting as the G = MAT model. Namely, it is a predictive model

that uses TF-motif pairs to predict expression of target genes.

Unlike the G = MAT model, the GeneClass algorithm is based on

a much more complex model – an alternative decision tree.

The GeneClass algorithm is reported to predict expression

values quite well, but its main use is the ranking of most influential

TF-motif pairs. In their paper, the authors apply this algorithm to

a yeast stress response dataset. They observe that the TFs and the

motifs in the top-scoring pairs are indeed known to be related to

stress response. We applied the G = MAT model on the same

dataset and observed similar results (Table 2).

Data. Unfortunately, it was not possible to obtain exactly the

same data as the one that was used in the GeneClass experiments due

to a minor, but unrecoverable error in the supplementary materials of

the GeneClass paper. However, following the instructions provided in

the paper, we reconstructed a similar dataset. The dataset consists of

microarray data [32] and known yeast binding sites from Transfac,

matched on 500bp upstream sequences from SGD using the PATCH

tool that comes with Transfac.

Results and comparison to GeneClass. We applied the

G = MAT model on the dataset and examined the top-scoring

coefficients of the model. In general, the exact ranking of the

coefficients varied depending on the chosen G = MAT estimation

method and its parameters. Nonetheless, a certain small set of TFs

and motifs consistently occupied the top-scoring positions. This is

rather similar to the situation in the GeneClass paper, where the

exact ranking varied depending on the scoring algorithm, yet

several TFs were consistently present in the top.

Table 2 presents the result of centered ridge regression (with

lM~lT~1), applied to the dataset. The top-scoring transcription

factor, USV1 coincides with the top-scoring regulator obtained by

GeneClass. The remaining regulators differ from those reported

by GeneClass, yet we believe our list to make no less sense. Indeed,

the discovered TFs and motifs are known to be involved in the

processes related to stress response.

N The RSF2 gene is known to be involved in glycerol-based

growth and respiration [33]. These processes have a clear

relation to stress response, because use of glycerol is one of the

reactions of yeast to hyperosmotic stress [34].

Figure 2. The ROC AUC score of different estimation methods, averaged over 100 runs. Note the increase in performance of the basic
techniques brought by the use of randomization and a further increase due to centering. Also note the high performance of the correlation-based
estimate.
doi:10.1371/journal.pone.0014559.g002
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N The SHP1 gene has been predicted to have a role in stress

response [8].

N The MSN1 gene is known to be involved in hyperosmotic stress

[35].

N It is thought that the major function of the MIG1 regulator is to

repress the transcription of genes that are responsible for sugar

utilization [36].

N The gene ABF1 encodes a multifunctional regulator particu-

larly involved in different chromatin-related events [37]. The

highly-scoring binding site Y$HSP12_01 of this protein was

originally discovered in the promoter of the HSP12 heat shock

gene [38].

Other G = MAT estimates produced different, but still mean-

ingful results. For instance, the heat shock factor HSF1 occupies

several top-scoring positions in the G = MAT correlation-based

results. As several of the microarray experiments were measuring

the response of yeast to heat shock, this result makes sense.

Motif Discovery. So far, we used a rather small set of well-

known motifs and aimed at identifying the most influential out of

these. Alternatively, we can use a large set of motifs encompassing

all the substrings of a given length. Finding the most influential out

of that set is equivalent to identifying biologically meaningful

sequences in DNA – a task known as motif discovery. A good

overview of motif discovery methods and applications is provided

in [7].

An approach similar to the G = MAT model has already been

used for motif discovery in the work of Bussemaker et al. [14],

where the authors applied their REDUCE algorithm for yeast

promoter sequences. In brief, the idea of the REDUCE algorithm

is to correlate gene expression with motif presence to score motifs

and select the highest scoring ones as biologically significant. In

their paper, the authors applied this idea to microarray data by

[4]. Their approach was to iteratively construct a set of 7-

nucleotide motifs that correlate most with the gene expression

values. Conceptually, this is quite similar to what is done using the

G = MAT model.

Data. We considered all possible 7-mers of letters {A,T,C,G}

and matched them on the promoters (800bp upstream sequences)

of the 5766 genes of the Spellman dataset. The resulting motif

matrix contained 47~16384 motifs, which was significantly larger

than the number of genes nG~5766 and could lead to overfitting.

To reduce the number of motifs, we selected roughly 4000 of the

most frequent 7-mers (i.e. those which were present in the most

promoters, there were 3995 such motifs after excluding ties). The

microarray dataset that we used is the one described in section

‘‘Performance on the Spellman Dataset’’.

Results and comparison to REDUCE. The motif corres-

ponding to the largest coefficient of the least squares estimate was

AAATCTT. This does not differ much from the two top-scoring

results of the REDUCE algorithm: AAAATTT and AAATTTT.

Also interesting was the top-scoring motif of the G = MAT

correlation-based estimate, CGATGAG. This motif is the fourth

highest on the REDUCE result list. Notably, both motifs have

also been discovered from the same data by various other studies

[39].

Automatic GO Annotation. Automated assignment of

relevant Gene Ontology (GO) annotations to genes is an important

problem and a popular research direction in contemporary

computational biology [40]. In this section, we demonstrate how

the G = MAT model can be employed for this purpose.

In all our previous experiments, the values of model parameters

could be interpreted as follows: a high âa‘k indicates that the

expression of transcription factor tk correlates well with the

expression of genes that have motif m‘ in their promoter. In this

experiment, we propose to replace motifs with GO terms, and the

motif matrix M with the binary matrix of GO annotations.

Formally, let fm1,m2, . . . ,mnM
g be a set of GO terms, and let

Mi‘~
1, if the gene gi is annotated with the term m‘,

0, otherwise:

�
ð20Þ

In this case, the interpretation of model parameters changes to

the following: a high âa‘k indicates that the expression of

transcription factor tk correlates well with the expression of genes

that are annotated with the GO term m‘. Therefore, a high value

of âa‘k suggests that the TF tk is also somehow related to the term

m‘. This allows to use G = MAT for discovering putative GO

annotations. We illustrate the idea with an experiment.

Data. We used the Spellman dataset, described in section

‘‘Performance on the Spellman Dataset’’, for the G and T

Table 2. G = MAT analysis of the Gasch dataset.

Motif TF Score

Y$GAL1_15 (Binding site for MIG1) USV1 (Putative transcription factor containing a C2H2 zinc finger; mutation affects
transcriptional regulation of genes involved in protein folding, ATP binding, and
cell wall biosynthesis.)

0.63

Y$HSP12_01 (Binding site for ABF1) USV1 (Putative transcription factor containing a C2H2 zinc finger; mutation affects
transcriptional regulation of genes involved in protein folding, ATP binding, and cell
wall biosynthesis.)

0.52

Y$HSP12_01 (Binding site for ABF1) RSF2 (Zinc-finger protein involved in transcriptional control of both nuclear and
mitochondrial genes, many of which specify products required for glycerol-based
growth, respiration, and other functions.)

0.50

Y$CHA1_04 (Binding site for ABF1) SHP1 (UBX (ubiquitin regulatory X) domain-containing protein that regulates Glc7p
phosphatase activity and interacts with Cdc48p. SHP1 interacts with ubiquitylated
proteins in vivo and is required for degradation of a ubiquitylated model substrate.)

0.50

Y$GAL1_15 (Binding site for MIG1) MSN1 (Transcriptional activator involved in regulation of invertase and glucoamylase
expression, invasive growth and pseudohyphal differentiation, iron uptake, chromium
accumulation, and response to osmotic stress; localizes to the nucleus.)

0.48

The table presents five motif-TF pairs having the largest values of the corresponding parameters âa‘k . The parameter values are given in the rightmost column.
doi:10.1371/journal.pone.0014559.t002
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matrices. To construct the matrix M, we selected 200 GO terms

that had the greatest number of genes associated with them and

created a 5766|200 binary matrix of annotations as described

above.
Results. Ridge regression with lM~lT~1, produced quite

interesting results on this dataset. Out of the ten top-scoring pairs

of TFs and GO terms, one corresponded to a known GO

annotation. Moreover, the ten pairs with the lowest (i.e., most

negative) scores contained two known annotations. The discovery

of 3 true positive associations in a set of 20 predictions in this case

is statistically significant (p-valuev0:0011). Finally, consider the

five top-scoring pairs presented in Table 3. The discovered pairs

are, at the very least, quite consistent. For example, the KAR4 gene

is associated to the terms ‘‘conjugation with cellular fusion’’ and ‘‘mating

projection tip’’. Both terms are related to the mating process, and the

KAR4 gene is actually known to be involved in this process. In fact,

its current true annotation is ‘‘karyogamy during conjugation with cellular

fusion’’.

Also, note that we can regard the obtained result as two separate

lists, as we did it in section ‘‘Discovering Process-specific TFs and

Motifs’’. In this case, the list of top-scoring GO terms represents

the important processes that were measured in the expression

data.

Conclusion
Efficient computational analysis of microarray data as well as

the discovery of putative associations between transcription factors

and DNA binding sites are issues of prominent importance in

bioinformatics. We proposed a statistical model to address these

problems. Our method can detect potential DNA-binding

candidates together with the binding sites that might participate

in the regulatory processes.

In particular, we studied the applicability of the model to

biological data. Experiments on both real and artificial data

demonstrated that our model is not predictive, but purely

descriptive. That is, the prediction error of the model is very

large, but the estimated parameters are still reliable and

biologically meaningful. For instance, we have shown that

associations discovered using our model from the well-known

Spellman microarray dataset correspond to known indirect

relations between transcription factors and motifs. Additionally,

we illustrated how the G = MAT model can be applied in several

other contexts besides the discovery of TF-motif associations. We

demonstrated how the G = MAT model can be applied for the

discovery of process-specific TFs and motifs, for motif discovery

and for GO annotation.

Supporting Information

Text S1 Supplementary detailed mathematical development and

analysis of the method.

Found at: doi:10.1371/journal.pone.0014559.s001 (0.36 MB

PDF)
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