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Abstract: All dsDNA phages encode two proteins involved in host lysis, an endolysin and a holin
that target the peptidoglycan and cytoplasmic membrane, respectively. Bacteriophages that infect
Gram-negative bacteria encode additional proteins, the spanins, involved in disruption of the
outer membrane. Recently, a gene located in the lytic cassette was identified in the genomes of
mycobacteriophages, which encodes a protein (LysB) with mycolyl-arabinogalactan esterase activity.
Taking in consideration the complex mycobacterial cell envelope that mycobacteriophages encounter
during their life cycle, it is valuable to evaluate the role of these proteins in lysis. In the present work,
we constructed an Ms6 mutant defective on lysB and showed that Ms6 LysB has an important role in
lysis. In the absence of LysB, lysis still occurs but the newly synthesized phage particles are deficiently
released to the environment. Using cryo-electron microscopy and tomography to register the changes
in the lysis phenotype, we show that at 150 min post-adsorption, mycobacteria cells are incompletely
lysed and phage particles are retained inside the cell, while cells infected with Ms6wt are completely
lysed. Our results confirm that Ms6 LysB is necessary for an efficient lysis of Mycobacterium smegmatis,
acting, similarly to spanins, in the third step of the lysis process.

Keywords: bacteriophage lysis; mycobacteriophage; Ms6; LysB; mycobacteria; spanins;
cryo-electron microscopy

1. Introduction

Bacteriophages, the viruses of bacteria, are key elements for biosphere equilibrium, playing
a fundamental role in bacterial evolution through constant interactions with their hosts [1,2].
To guarantee their own survival, double-stranded DNA (dsDNA) phages, which represent more
than 95% of known bacterial viruses [3], must lyse their hosts. At the end of a lytic cycle, the new
phage particles need to be released into the environment, where new host bacteria are potentially
available for new infection cycles. The main barrier to phage release is the bacterial cell envelope,
and thus, compromising this barrier is the main goal of the lytic process. To accomplish this goal,
dsDNA phages synthesize two essential lysis proteins, endolysins and holins. Endolysins are enzymes
that disrupt the bacterial cell wall (CW) by cleaving one or more of the five bonds in peptidoglycan (PG).
Holins are small proteins that accumulate in the cytoplasmic membrane (CM) and that, at a genetically
defined time, form holes in this cell membrane allowing the access of active endolysins to the PG layer
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or the activation of previously exported endolysins [4,5]. Phages that infect Gram-positive hosts only
require the synthesis of these two proteins to compromise the bacterial envelope and consequently
for cell burst. However, phages that infect Gram-negative hosts have to face an additional barrier,
the outer membrane (OM). It has been shown recently that disruption of this barrier is also required for
cell lysis [6]. This is achieved by a third class of lysis proteins named spanins. The best studied spanins
are the λ Rz and Rz1 proteins which are an inner membrane and outer membrane protein, respectively.
These two proteins form a complex that spans the entire periplasm mediating the fusion of the CM
with the OM. This results in the elimination of the last barrier to phage release and consequently,
lysis of the host [7–9]. Spanin genes, which may encode a sole protein (T1 Gp11) or two subunits
like the λ Rz and Rz1 proteins, have been identified in nearly all phages infecting Gram-negative
hosts [10,11]. This indicates that, for phages infecting Gram negative hosts, lysis is a three-step event
where each component of the cell envelope, i.e., CM, CW and OM is sequentially attacked by holins,
endolysins and spanins, respectively [9].

Studies of mycobacteriophage Ms6, a phage that infects Mycobacterium smegmatis, have shown
that the lysis cassette composition reflects the complexity of the cell envelope of its host [12].
Although mycobacteria are classified as Gram-positive bacteria, they have a complex cell envelope
composed of a CM, similar to other bacterial CMs [13,14], surrounded by a peptidoglycan layer
covalently linked to arabinogalactan (AG) which is in turn esterified to a mycolic acid (MA),
forming the mycolyl arabinogalactan-peptidoglycan (mAGP) complex [15]. The MAs are long fatty
acids that constitute the inner leaflet of a true OM. The outermost leaflet is composed of various
glycolipids, including trehalose mono and dimycolate, phospholipids and species-specific lipids [16,17].
Finally, a capsule is composed of proteins, polysaccharides and a few lipids [18,19]. Thus, phages
that infect mycobacteria have to overcome this complex envelope for a successful infective cycle.
The Ms6 lysis cassette is composed of five genes [20] (Figure 1). In addition to the holin and the
endolysin functions, Ms6 encodes a chaperone-like protein (Gp1) that is involved in the delivery of the
endolysin to the PG [21–23] and an additional lysis protein, Lysin B (LysB), identified as a lipolytic
enzyme with the ability to cleave ester bonds of both short and long fatty acids [24]. Experiments with
components of the mycobacterial cell envelope showed that Ms6 LysB is a mycolyl-arabinogalactan
esterase that cleaves the ester bond between the mycolic acids and the arabinogalactan, and this allows
the separation of the OM from the CW [25]. Analogies can be made between Ms6 LysB and the spanins,
where Ms6 LysB functions to mediate the final step of host cell lysis.

In the present work, we examine the importance of Ms6 LysB in phage lysis and taking advantage
of cryo-electron microscopy (cryo-EM) and tomography (cryo-ET), we compare the Ms6 wild-type
lysis phenotype with that of a Ms6 mutant lacking the lysB gene. We present evidence that absence
of LysB in the Ms6 infection cycle results in incomplete lysis and suggest that the LysB role in lysis
parallels that of spanins.
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Figure 1. Cell envelopes of bacteria (left) and representative lysis cassettes of their infecting phages 
(right). (A) Gram-positive bacteria; (B) Gram-negative bacteria; (C) Mycobacteria. The white segments 
in holin-like genes indicate the number and position of transmembrane domain coding sequences. 
Abbreviations: CapGlu, capsular glucan CM, cytoplasmic membrane; LA, lypoteichoic acid; LAM, 
lipoarabinomannan; LP, lipoprotein; LPS, lipopolysaccharide; P, protein; PG, peptidoglycan; PIMs, 
phosphatidylinositol mannosides; PLs, phospholipids; PO, porin; Pp, periplasm; TDM, trehalose 
dimycolate; TMM, trehalose monomycolate. Adapted from reference [5] with permission. 

2. Materials and Methods 

2.1. Bacterial Strains, Phages, Plasmids and Culture Conditions 

Mycobacteria strains, phages, plasmids and oligonucleotides used in this study are listed in 
Table 1. M. smegmatis strains were propagated in 7H9 medium (BD Biosciences, San Jose, CA, USA) 
with shaking or Middlebrook 7H10 (BD Biosciences), supplemented with 0.5% glucose, at 37 °C. 
When appropriate, 1 mM CaCl2 or 15 µg/mL kanamycin was also added to the media. For induced 
conditions, cells were grown in 7H9 supplemented with 0.2% succinate and induced with 0.2% 
acetamide. 
  

Figure 1. Cell envelopes of bacteria (left) and representative lysis cassettes of their infecting phages
(right). (A) Gram-positive bacteria; (B) Gram-negative bacteria; (C) Mycobacteria. The white
segments in holin-like genes indicate the number and position of transmembrane domain coding
sequences. Abbreviations: CapGlu, capsular glucan CM, cytoplasmic membrane; LA, lypoteichoic acid;
LAM, lipoarabinomannan; LP, lipoprotein; LPS, lipopolysaccharide; P, protein; PG, peptidoglycan;
PIMs, phosphatidylinositol mannosides; PLs, phospholipids; PO, porin; Pp, periplasm; TDM, trehalose
dimycolate; TMM, trehalose monomycolate. Adapted from reference [5] with permission.

2. Materials and Methods

2.1. Bacterial Strains, Phages, Plasmids and Culture Conditions

Mycobacteria strains, phages, plasmids and oligonucleotides used in this study are listed
in Table 1. M. smegmatis strains were propagated in 7H9 medium (BD Biosciences, San Jose,
CA, USA) with shaking or Middlebrook 7H10 (BD Biosciences), supplemented with 0.5% glucose,
at 37 ◦C. When appropriate, 1 mM CaCl2 or 15 µg/mL kanamycin was also added to the media.
For induced conditions, cells were grown in 7H9 supplemented with 0.2% succinate and induced with
0.2% acetamide.
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Table 1. Bacterial strains, phages, plasmids and oligonucleotides used in this study.

Name Description Source or Reference

Bacteria

Mycobacterium
smegmatis mc2155

High-transformation-efficiency mutant of
M. smegmatis ATCC 607 [26]

Bacteriophages

Ms6wt Temperate bacteriophage from M. smegmatis [27]

Ms6∆lysB 996 bp in-frame deletion of the Ms6 lysB gene This study

Plasmids

pJV53
pAG1

Derivative of pLAM12 with Che9c 60 and 61 under
control of the acetamidase promoter; Kanr

lysB gene cloned into pVVAP

[28]
This study

pVVAP
Mycobacteria shuttle vector carrying the

acetamidase promoter; Kanr [29]

Oligonucleotides Sequence 5’-3’ a

Pr∆lysB
CTCGGCGGAAAAACCCTCCTCGTGGACGCGGTAGC
AGAACTGTTGGGCCACTGATAGGAGGCACCCATG
CTGACACGTTCATTCTGGATCGACGCCGCCGAGCG

Ms6∆lysB

PrExt∆lysBFw
CGAGATCCTGCGGCAACTGCGCGGATACAACCT
CACTGGCTGGCCGCAGCTCGGCGGAAAAACCCT

CGTGGACG
Extend Pr∆lysB

PrExt∆lysBRv
CCCCGGCGCCGAGGGTGGCGATCGCGGTTTGGGC
GAATGTGCGTATGGCACGCTCGGCGGCGTCGATC

CAGAATG
Extend Pr∆lysB

PrlysBFw GCGGATCCATGAGCAGAACTGTTGGGCC Includes BamHI site to
clone in pVVAP

PrlysBRv GGAAGCTTTGTGCGTAGGTAGTCGATG Includes HindIII site to
clone in pVVAP

DADA ∆lysB PCRFw GCGCTAGCAGAACTGTTGGGCCACTGATAG Ms6∆lysB

DADA Ms6-PCRRv CGTCTCGTACTGCACGTACCGGTTCTTC Ms6∆lysB
a Restriction sites are underlined.

2.2. Construction of Ms6 Mutant Phage

Construction of Ms6 mutant phage was performed using Bacteriophage Recombineering of
Electroporated DNA (BRED) in M. smegmatis as described previously [21,30]. Briefly, for deletion
of gene lysB from the Ms6 genome, a 100 bp oligonucleotide (Pr∆lysB), with 50 bp of homology to
either flanking region to be deleted was generated. This fragment was extended by PCR to a 200 bp
dsDNA substrate using two 75 bp extender primers, PrExt∆lysBFw and PrExt∆lysBRv, sharing 25 bp
of homology with either end of the 100-mer. After purification, using MinElute PCR Purification
Kit (QIAGEN, Hilden, Germany), the 200 bp substrate was co-electroporated with Ms6wt DNA into
electrocompetent recombineering cells of M. smegmatis mc2155:pJV53. Cells were resuspended in 7H9
supplemented with glucose and CaCl2, incubated at 37 ◦C for 2 h (prior to lysis) and plated on top agar
lawns with M. smegmatis mc2155. Individual plaques were recovered and eluted in 100 µL of phage
buffer (10 mM Tris-HCl, pH 7.5, 10 mM MgSO4, 68.5 mM NaCl, 1 mM CaCl2), for two hours at room
temperature and analyzed by Deletion Amplification Detection Assay (DADA)-PCR [30] with primers
DADA ∆lysB-PCRFw/DADA Ms6-PCRRv to detect lysB deletion. Mixed primary plaques containing
both wild-type and mutant alleles were eluted as described above, and serial dilutions were plated
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with M. smegmatis. Individual secondary plaques were screened by DADA-PCR using the same pair
of primers.

2.3. Plasmid Construction

To construct plasmid pAG1, a DNA fragment containing the lysB gene was obtained by PCR
amplification using Ms6 genomic DNA as template, with primers PrlysBFw/PrlysBRv and Pfu
high-fidelity polymerase (Promega®, Madison, WI, USA). Primers were designed in order to have the
restriction sites that allow the correct insertion into the shuttle vector pVVAP (V. Visa and M. McNeil;
unpublished). All oligonucleotides used were purchased from Thermo Scientific (Waltham, MA, USA)
and are listed in Table 1. DNA amplification, plasmid isolation and electrophoresis were carried
out using standard techniques [31]. All constructs used in this study were validated and verified by
nucleotide sequencing.

2.4. One Step Growth and Single Burst Experiments

One-step growth curves and burst size determination assays [32] were adapted to mycobacteria
and carried out in exponential growth phase cell cultures [21]. Briefly, 108 M. smegmatis cells were
suspended in 1 mL of a phage suspension at 108 plaque forming units (PFU)/mL. After 50 min
of adsorption at 37 ◦C, nonadsorbed phages were inactivated with 100 µL of 0.4% H2SO4 for 5 min
followed by neutralization with 100 µL of 0.4% NaOH. The mixture was diluted 1:100 in 7H9 media and
aliquots were taken at intervals of 30 min to quantify the number of phage particles [21]. The obtained
results are means of three independent experiments.

A similar procedure was used for burst size determination except that 10 µL of infected cells
were diluted in supplemented 7H9 in order to obtain one infected cell/mL. Then, 50 mL of the
infected culture was aliquoted into 1 mL volumes and incubated for 3 h at 37 ◦C. Each sample was
plated with 200 µL of M. smegmatis cells and top agar (4 mL) on 7H10 medium and incubated at
37 ◦C for 24 h. Phage plaques were counted, and the Poisson distribution of (P(n)) was applied to
determine the burst size (BS): P(n) = (e−c × cn)/n! (e < 1), where P(n) is the probability of samples
having n infected cells, c is the average number of infected cells per tube, and BS (total plaque
count in the 50 plates)/(total number of infected cells) [21]. The obtained results are means of three
independent experiments.

2.5. Determination of the Number of Phage Particles Released during the Infection Cycle

To determine the number of phage particles released into the supernatant or retained in cells,
M. smegmatis was grown up to an OD600 = 0.5, infected with Ms6wt or Ms6∆lysB at a MOI of 1 and
incubated at 37 ◦C for 3 h. Aliquots were taken at 90 min and 180 min post adsorption and separated
by centrifugation into supernatant and pellet fractions. The pellets were suspended in ice-cold phage
buffer and sonicated twice for 5 s, with a 30 s interval. Each supernatant and the sonicated pellets were
serially diluted using phage buffer and plated on a top agar lawn of M. smegmatis to determine the
number of phage particles. Data represent the mean of three independent experiments.

2.6. Cryo-Transmission Electron Microscopy Sample Preparation, Imaging and Image Processing

To observe the lysis phenotype of Ms6wt or Ms6∆lysB, cells were infected as described above
for the one step growth experiment except that the phage input was 100-fold higher. At each time
point, 200 µL aliquots were mixed with 10-nm gold nanoparticles (Sigma-Aldrich®, St. Louis, MO,
USA). The nanoparticles were later used for image alignment in the 3D tomographic reconstruction
process [33,34]. Four µL of the pre-mixed samples were applied to TEM grids that were vitrified by
rapid immersion in liquid ethane using a Gatan CryoPlunger3 (Cp3) apparatus (Gatan, Pleasanton,
CA, USA). Cryo-grids were transferred to a Gatan 914 high-tilt holder maintained at −178 ◦C.
Cryo-specimens were imaged with JEOL JEM-2200FS 200-kV field emission gun transmission
electron microscope (JEOL Ltd., Tokyo, Japan) equipped with an in-column Omega energy filter
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(slit width 20 eV), a Gatan US4000 4k × 4k CCD camera, and a Direct Electron DE-20 direct detector
(Direct Electron, LP, San Diego, CA, USA). Projection images and tilt series were acquired using
SerialEM software (http://bio3d.colorado.edu/SerialEM/) [35]. Single-axis tilt series were collected
over an angular range of −62◦ to 62◦, with a 2◦ tilt increment using the DE-20 direct detector.
The total electron dose applied to the specimens did not exceed 120 e−/Å2. Tilt series images were
acquired at 10,000× nominal magnification (calibrated pixel size of 0.614 nm) with −4 to −8 µm
defocus applied. Tomographic reconstructions were generated with IMOD using the r-weighted
back-projection algorithm [33,34].

2.7. Nucleotide Sequence Accession Numbers

The phage genome sequences provided in Figure S1 were obtained from GeneBank. The accession
numbers are AF022214 for D29, DQ398047 for PBI1; AF319619 for Ms6, DQ398042 for Halo, AY129338
for Omega, GU580941 for ReqiPepy6, GU580940 for ReqiDocB7, KU963246 for SoilAssassin, KX557278
for Ghobes and KR053196 for TPA4.

3. Results

3.1. Ms6 LysB Deletion Decreases Viral Progeny Release

To understand how Ms6 LysB contributes to phage-induced lysis, we took advantage of the
Bacteriophage Recombineering of Electroporated DNA (BRED) strategy [30] and constructed an Ms6
derivative mutant lacking gene lysB. The Ms6∆lysB was able to form plaques on M. smegmatis at
equivalent efficiencies to that of the wild-type (wt); however, a reduction in plaque size produced
by the mutant was observed (Figure 2A). In a complementation assay, where LysB production was
provided from plasmid pAG1, the wild-type phenotype was restored, indicating that plaque size
reduction is a consequence of LysB absence.

To test whether this phenotype results from changes in the phage growth parameters, one-step
growth and single-burst experiments were performed. M. smegmatis cells were infected with Ms6wt or
Ms6∆lysB at a multiplicity of infection (MOI) of one. The one-step growth curves (Figure 2B) obtained
for Ms6wt and Ms6∆lysB show that the latent period is similar and that LysB has no effect on the lysis
timing; however, the number of infective particles released after Ms6∆lysB infection was lower than in
an Ms6wt infection. Single-burst experiments performed to compare the viable progeny released from
single cells show that a Ms6wt infection released an average of 147 ± 27 viable phages per bacterium,
while Ms6∆lysB yielded a reduced burst size of approximately 53 ± 14, where the ± values indicate
the mean SD of three independent experiments. Again, when LysB was provided in trans, the wt burst
size was restored. These results show that, although Ms6∆lysB can accomplish lysis of the host cell,
the overall process seems to be less efficient.

http://bio3d.colorado.edu/SerialEM/
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Figure 2. (A) Phage plaques formed by Ms6 (top) or Ms6ΔlysB (bottom) on a lawn of M. smegmatis. 
The plaques formed by Ms6ΔlysB phage are smaller than the ones formed by the wild-type Ms6; (B) 
one-step growth curves of Ms6wt (circles) or Ms6ΔlysB (squares) on M. smegmatis mc2155 show a 
lower number of plaque-forming units (PFU) released from Ms6ΔlysB infection. Both curves show 
similar progression up to 90 min post-adsorption showing no differences in the timing of lysis. T0 
marks the end of the adsorption and start of the one-step experiment. The PFU/mL at t = 0 was used 
to normalize PFU/mL of each time point. For each time point, the mean ± SD of four independent 
assays is indicated. 

3.2. Ms6 Is Trapped in Cell Debris in Absence of LysB 

Taking into consideration the observed lysis defect and that: (i) LysB is produced at a late stage 
of the infection cycle as other lysis proteins, (ii) this protein is a lipolytic enzyme that cleaves the 
linkage of the mycobacterial OM to the mAGP complex; we hypothesize that the reduced burst size 
results from a release defect and not from a reduction in the number of synthesized phage particles. 
To address this question, we performed a time course infection assay with either Ms6wt or Ms6ΔlysB 
and at each time point the cell pellet was separated from the supernatant and the number of phage 
particles in each fraction was determined. As observed in Figure 3, at 90 min post-adsorption the 
majority of the phage particles are not yet released and the number of PFU in the supernatant is 
similar for both phage infections. However, at 180 min post-adsorption, for the wt phage infection 
over 90% of phage particles are free in the supernant and only 7% are in the pelleted fraction, while 
for the Ms6ΔlysB infection, a remarkable 47% of total phage progeny is retained in the pellet. These 
results confirm that the reduced number of phage particles obtained for the mutant phage, in the 
single burst experiment, results from a deficient cell lysis, where part of the newly synthesized virions 
are trapped in incompletely lysed cells. 

Figure 2. (A) Phage plaques formed by Ms6 (top) or Ms6∆lysB (bottom) on a lawn of M. smegmatis.
The plaques formed by Ms6∆lysB phage are smaller than the ones formed by the wild-type Ms6;
(B) one-step growth curves of Ms6wt (circles) or Ms6∆lysB (squares) on M. smegmatis mc2155 show
a lower number of plaque-forming units (PFU) released from Ms6∆lysB infection. Both curves show
similar progression up to 90 min post-adsorption showing no differences in the timing of lysis. T0 marks
the end of the adsorption and start of the one-step experiment. The PFU/mL at t = 0 was used to
normalize PFU/mL of each time point. For each time point, the mean ± SD of four independent assays
is indicated.

3.2. Ms6 Is Trapped in Cell Debris in Absence of LysB

Taking into consideration the observed lysis defect and that: (i) LysB is produced at a late stage
of the infection cycle as other lysis proteins, (ii) this protein is a lipolytic enzyme that cleaves the
linkage of the mycobacterial OM to the mAGP complex; we hypothesize that the reduced burst size
results from a release defect and not from a reduction in the number of synthesized phage particles.
To address this question, we performed a time course infection assay with either Ms6wt or Ms6∆lysB
and at each time point the cell pellet was separated from the supernatant and the number of phage
particles in each fraction was determined. As observed in Figure 3, at 90 min post-adsorption the
majority of the phage particles are not yet released and the number of PFU in the supernatant is similar
for both phage infections. However, at 180 min post-adsorption, for the wt phage infection over 90%
of phage particles are free in the supernant and only 7% are in the pelleted fraction, while for the
Ms6∆lysB infection, a remarkable 47% of total phage progeny is retained in the pellet. These results
confirm that the reduced number of phage particles obtained for the mutant phage, in the single burst
experiment, results from a deficient cell lysis, where part of the newly synthesized virions are trapped
in incompletely lysed cells.
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the total amount of PFU counted in both fractions. The values indicate the mean ± SD of three 
independent experiments. 
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used cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). This method 
allows us to visualize the host cell lysis and the viral progeny in their native environment and to 
examine the lysis behavior of M. smegmatis infected with Ms6wt or Ms6ΔlysB. From each infected M. 
smegmatis culture, with either Ms6wt or Ms6ΔlysB, aliquots were plunge frozen on copper grids for 
cryo-EM assessment. 

Figure 4 shows collected images of infected cells at 90 and 150 min post-adsorption. At 90 min, 
no lysis is yet observed (Figure 4A,C). At 150 min post-adsorption, cells infected with Ms6wt burst 
and release almost all the phages (Figure 4B), while cells infected with Ms6ΔlysB show incomplete 
lysis and many phages are not released (Figure 4D). Incompletely lysed cells are still captured up to 
240 min post-adsorption with the mutant phage, while for the wild-type infection only free phage 
particles and cell debris are observed. 

Figure 3. Distribution of phage particles in the supernatant and pellet of M. smegmatis infected with
Ms6wt or Ms6∆lysB. Ms6 is trapped in cell debris in absence of LysB. At the indicated time points,
the distribution of phage particles in the pellet and in the supernatant was determined as a percentage
of the total amount of PFU counted in both fractions. The values indicate the mean ± SD of three
independent experiments.

3.3. Cryo-EM Shows Incomplete Cell Lysis in Absence of Ms6 LysB

To prove that the unreleased phage particles remained trapped in incompletely lysed cells,
we used cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). This method
allows us to visualize the host cell lysis and the viral progeny in their native environment and to
examine the lysis behavior of M. smegmatis infected with Ms6wt or Ms6∆lysB. From each infected
M. smegmatis culture, with either Ms6wt or Ms6∆lysB, aliquots were plunge frozen on copper grids for
cryo-EM assessment.

Figure 4 shows collected images of infected cells at 90 and 150 min post-adsorption. At 90 min,
no lysis is yet observed (Figure 4A,C). At 150 min post-adsorption, cells infected with Ms6wt burst and
release almost all the phages (Figure 4B), while cells infected with Ms6∆lysB show incomplete lysis
and many phages are not released (Figure 4D). Incompletely lysed cells are still captured up to 240 min
post-adsorption with the mutant phage, while for the wild-type infection only free phage particles and
cell debris are observed.

Cryo-ET data collection was performed on Ms6∆lysB infected cells. In Figure 5A, a central slice
through the 3D tomogram shows phages inside the incompletely lysed cell and what appears to be
lesions throughout the cell envelope. To facilitate the visualization of the phages and to demonstrate
they are inside the cell, segmentations of several 3D tomographic volumes was performed. With this
method, it is possible to render the structures or regions of interest in the tomogram (Figure 5B).
It is clear that many phages are inside the incompletely lysed cell despite the evident deformation of
the cell envelope. It is also clear that most of the CM and PG are absent, while the OM still remains as
a veil surrounding and holding some of the cell content.
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Figure 5. Cryo-electron tomography of M. smegmatis infected with Ms6ΔlysB at 150 min post-
adsorption. (A) Slice through the tomogram of an infected cell; (B) segmented volume of the phage 
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4. Discussion 

It is well known that lysis of the bacterial host is the last event of dsDNA phage lytic cycle, so 
that the new synthesized phage particles may be released into the environment and infect new 

Figure 4. Cryo-EM images of M. smegmatis infected with Ms6wt or Ms6∆lysB. At 90 min post-adsorption,
cells infected with Ms6wt (A) or Ms6∆lysB (C) are still intact and no difference is observed. At 150 min
post-adsorption, the abrupt burst of a cell infected with Ms6wt is clear (B) while cells infected
with Ms6∆lysB (D) do not lyse abruptly and deformations in the cell envelope are clearly visible.
Scale bar (200 nm).
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4. Discussion

It is well known that lysis of the bacterial host is the last event of dsDNA phage lytic cycle,
so that the new synthesized phage particles may be released into the environment and infect new
available hosts. Compromising the bacterial cell barriers is a sine qua non condition to achieve this
final step. Although the role of holins and endolysins has long been well defined, targeting the CM
and the CW respectively, the importance of spanins in lysis has only recently been established [9].
The best characterized spanin is that of phage λ, which is composed of two subunits, the Rz and Rz1
proteins, that, once localized to the inner and outer membranes, respectively interact by the C-termini
of their periplasmic domains to form a complex that spans the entire periplasm [7,10]. For many
years, Rz/Rz1 were considered auxiliary genes, because under laboratory conditions λ lysis could be
achieved in the absence of these genes, unless the OM was artificially stabilized by the presence of
millimolar concentrations of Ca2+ [36]. Recently, Berry et al. [7,9] have demonstrated that, in nature,
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in absence of stabilizing cations, these proteins are required for λ lysis, as induction of λ lysogens
in the absence of a spanin function results in lysis failure. The infection cycle terminates leading to
spherical cells where the CM and PG have been disrupted, but the OM remains intact, indicating
that the latter is an important barrier to lysis. In a λ lytic cycle, the Rz-Rz1 complexes accumulate in
the envelope during the morphogenesis phase. It was suggested that, following PG disruption by
the endolysins, the spanins function by fusing the inner and outer membrane, this results in outer
membrane disruption and consequently cell lysis [7,9].

This spherical phenotype in the absence of spanins has also been observed in infections with
phages P2 [37] and PRD1 [11]. The presence of Rz/Rz1 equivalents in the lysis cassette, of nearly
all bacteriophages that infect Gram-negative hosts, strengthens the idea that to accomplish lysis,
in addition to compromising the CM and the CW through the action of holins and endolysins,
these phages also need to disrupt the OM [7,10].

In this work, we show that mycobacteriophage Ms6, a phage that infects the mycobacterial species,
M. smegmatis, in addition to the holin and endolysin functions also requires an additional lysis protein
to overcome the last cell barrier. We provide evidence that Ms6 LysB parallels the function of spanins.

Mycobacteria, which are members of the Corynebacteriales order, are bacteria that, despite being
classified as Gram-positive, share a complex cell envelope. In addition to a CM and a CW, they also
contain an OM, which is an asymmetrical bilayer where the inner leaflet, composed of long chain
mycolic acids, is linked to the CW through an ester bond to AG. This peculiar OM confers to
mycobacteria their characteristic impermeability and resistance to therapeutic agents, and as so,
is also predicted to be a barrier to mycobacteriophage-induced lysis [13–17]. We have previously
shown that Ms6 LysB is a lipolytic enzyme that cuts the linkage between AG and MA on the
mycolyl-arabinogalactan-peptidoglycan complex [24,25].

We have observed that, in contrast with Ms6 LysA [23] and in general with phage endolysins,
the Ms6 LysB, under our laboratory conditions, is not essential for the phage life cycle, since the Ms6
derivative mutant lacking gene lysB is viable and capable of forming plaques in M. smegmatis. We have
observed, however, a reduction in the plaque size. In a one-step assay, we could demonstrate that in
absence of LysB there is a defective phage release at the end of an infection cycle. Indeed, in the single
burst experiment a reduction of 64% in the number of free phage particles per bacterium was observed.
This is in agreement with the reduced plaque size of Ms6∆lysB, a phenotype that was reverted to the
wild-type when LysB was provided in trans. Since Ms6 LysB is produced during late gene expression,
from gene lysB, which is part of the lysis cassette, a role in host lysis is obviously expected.

A reduced phage release, together with a reduced plaque size was also reported for the LysB of
mycobacteriophage Giles; however, and in contrast to phage Ms6 where absence of LysB did not affect
the timing of lysis, the authors observed that lysis induced by Giles∆lysB was delayed in 30 min when
compared to the Gileswt [38]. It is not clear so far how the absence of Giles LysB affects the timing
of lysis.

The observation that, at the end of a Ms6∆lysB infection, 47% of the phages are recovered from
the cell pellet against only 7% in a Ms6wt infection, indicates that the reduced burst size results from a
deficient phage release and not from a reduction in the number of new synthesized phage particles.
In the absence of LysB, phage particles are trapped in incompletely lysed cells. Cryo-EM and cryo-ET
of infections in the absence of LysB clearly show unreleased phage particles inside cells infected
with Ms6∆lysB, while at the same time point (150 min post-adsorption) in a Ms6wt infection the cell
completely bursts. The 3D tomogram (Movie S1) also shows deformations of the cell, indicating that
the OM still holds part of the cell content even after disruption of the CM and PG (Figure 5B), following
holin and endolysin action.

Our results support the notion that the role of Ms6 LysB in lysis equates to that of spanins,
however with different modes of action, since the structure of mycobacteria OM is completely different
from that of Gram-negative bacteria. While spanins function either as a complex (λ Rz-Rz1) or
as a single protein (T1 Gp11) by fusing the CM and OM [39], Ms6 LysB protein functions as an
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enzyme that detaches the OM from the CW by cleaving the bond that links these two structures.
As a lipolytic enzyme, Ms6 LysB also acts as an esterase on other lipids containing mycolic acids,
such as the trehalose dimycolate (TDM) [25], a glycolipid with an important role in M. tuberculosis
pathogenesis [40]. However, it is unknown if cleavage of these lipids contributes to lysis.

The fact that the vast majority of mycobacteriophages sequenced so far encode Ms6 LysB
homologous proteins suggests that they have an important role in nature. This is also true for
other phages that infect members of the mycolata group, a bacterial group that also contain a layer of
mycolic acid-containing lipids in their envelope. Examples are the Rhodococcus equi phages ReqiDocB7,
ReqiPepy6 and ReqiPoco6, which encode Ms6 LysB homologues [12,41]. A huge number of genome
sequences from phages infecting the same bacterial group is available at The Actinobacteriophage
Database (http://phagesdb.org/), and here we can also find genes from several phages annotated as
coding for Lysin B as exemplified by gp24 or gp41 from phages SoilAssassin and Ghobes, respectively,
both infecting Gordonae terrae [42]. In other cases, although no LysB annotation exists, we could identify
the GXSXG motif common to lipolytic enzymes in the deduced amino acid sequence of several genes,
such as gp54 from the TPA4 phage, a lytic phage that infects Tsukamurella species (Figure S1).

Collectively our results lead to the suggestion that mycobacteriophage-induced lysis is also
a three-step process where holins subvert the cytoplasmic membrane followed by endolysins
targeting the cell wall and LysB proteins disrupting the last barrier to mycobacteriophage release,
the outer membrane.

Our present knowledge of the mechanism of bacteriophage lysis suggests that the complexity
of phage lytic cassettes depends on their hosts. Hosts with a simpler envelope, like Gram-positive
bacteria, require the phage to possess a simple lytic cassette, with genes encoding proteins targeting
the CM and the PG. For bacteria with a more complex envelope that also contain an OM, degradation
of the cell wall is necessary but not sufficient for lysis and phages need to produce specific proteins to
overcome this barrier. Thus, phages that infect Gram-negative hosts or mycobacteria, in addition to
holins and endolysins, synthesize spanins or lipolytic enzymes, respectively (Figure 1).

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/9/11/343/s1.
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