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Abstract

Protein kinase D (PKD) is a family of stress-responsive serine/threonine kinases implicated in the 

regulation of diverse cellular functions including cell growth, differentiation, apoptosis, and cell 

motility. Although all three isoforms are expressed in keratinocytes, their role in skin biology and 

pathology is poorly understood. We recently identified a critical role for PKD1 during reversal of 

keratinocyte differentiation in culture, suggesting a potential pro-proliferative role in epidermal 

adaptive responses. Here, we generated mice with targeted deletion of PKD1 in epidermis to 

evaluate the significance of PKD1 in normal and hyperplastic conditions. These mice displayed a 

normal skin phenotype indicating that PKD1 is dispensable for skin development and homeostasis. 

Upon wounding however, PKD1-deficient mice exhibited delayed wound re-epithelialization 

correlated with a reduced proliferation and migration of keratinocytes at the wound edge. In 

addition, the hyperplastic and inflammatory responses to topical phorbol ester were significantly 

suppressed suggesting involvement of PKD1 in tumor promotion. Consistently, when subjected to 

two-stage chemical skin carcinogenesis protocol, PKD1-deficient mice were resistant to papilloma 

formation when compared to control littermates. These results revealed a critical pro-proliferative 

role for PKD1 in epidermal adaptive responses, suggesting a potential therapeutic target in skin 

wound and cancer treatment.
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INTRODUCTION

Protein kinase D is a family of stress-responsive serine/threonine kinases, involved in the 

regulation of diverse biological and pathological processes including, cell proliferation, 

differentiation, adhesion, migration, stress-induced cardiac hypertrophy, pathological 

angiogenesis, tumor cell proliferation and metastasis (Rozengurt, 2011). PKDs are effectors 

of diacylglycerol (DAG) and PKCs and are activated by a variety of stimuli, including 
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growth factors, neuropeptides, hormones, and phorbol esters (Fu and Rubin, 2011). PKD 

isoforms (PKD1, PKD2 and PKD3) share highly homologous regulatory subdomains and 

can be activated by the same stimuli, however, they also have distinct functions based on 

their level of expression, tissue specificity and their interacting proteins (Fu and Rubin, 

2011).

Despite recent progress in understanding the biological functions of PKD enzymes and their 

involvement in disease processes, the role of PKD in skin biology and pathology is poorly 

understood. PKD1 is the most studied member of the family. Earlier studies have shown 

correlation of PKD expression with proliferation status of cultured keratinocytes suggesting 

a pro-proliferative role for PKD1 in normal keratinocytes (Ernest Dodd et al., 2005; 

Rennecke et al., 1999). In addition, PKD expression was shown to be up-regulated in mouse 

carcinomas and human basal cell carcinomas, although the functional significance of PKD 

activation or up-regulation in these processes was not determined (Rennecke et al., 1999; 

Ristich et al., 2006). However, these biochemical and immunohistochemical studies have 

been difficult to interpret because of the presence of antibody cross-reactivity and a failure 

to distinguish between individual isoforms.

We have recently shown a critical pro-proliferative role for PKD1 in differentiated cultures 

of epidermis during de-differentiation in response to a low calcium switch (Jadali and 

Ghazizadeh, 2010). Specific knockdown of PKD1 to 20% of its normal level by RNA 

interference was sufficient to block re-initiation of proliferation and reversal of 

differentiation without affecting normal proliferation and differentiation of mouse 

keratinocytes (Jadali and Ghazizadeh, 2010). Notably, neither PKD2 nor PKD3 could 

compensate for the loss of PKD1 function in this process, suggesting a major role for PKD1 

in stress-induced responses in keratinocytes.

Although there is compelling evidence in cell culture demonstrating a unique and critical 

role for PKD1 in keratinocyte de-differentiation, the in vivo relevance of these findings and 

the physiological role of PKD1 in skin remain to be determined. In the present study, we 

generated a conditional knockout of PKD1 in mouse stratified epithelia in order to 

characterize unique functions of PKD1 in skin. Our results identified a crucial role for PKD1 

in wound healing, phorbol ester-induced hyperplasia and skin tumor formation.

RESULTS

Epidermal PKD1 is dispensable for mouse skin homeostasis

Disruption of the mouse pkd1 gene causes embryonic lethality (Fielitz et al., 2008), 

therefore to investigate the role of PKD1 in skin epithelia, mice with targeted disruption of 

PKD1 in keratinocytes (PKD1-cKO) were generated. These mice were carrying three 

genetic modifications: (i) homozygously floxed pkd1 allele (PKD1fl/fl), (ii) Keratin 14 

(K14)-Cre, and (iii) a Cre reporter, flox-STOP-flox-ROSA26-YFP. PKD1-cKO mice were 

born at expected Mendelian ratio and appeared indistinguishable from their PKD1fl/fl 

littermates. As shown in Figure 1, K14-regulated recombination in PKD1-cKO mice was 

highly efficient and specific resulting in uniform YFP expression in skin epithelia (Figure 

1d-lower panel). Analysis of transcript and protein levels of three PKD isoforms confirmed 
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efficient and specific loss of PKD1 in PKD1-CKO keratinocytes (Figure 1a-b). A lack of 

alteration in the expression of PKD2 and PKD3 indicated no compensatory upregulation of 

these closely related isozymes in the absence of PKD1. The observed residual PKD1 mRNA 

and protein in PKD1-cKO epidermis is most likely reflective of PKD1 expression in 

melanocytes and fibroblasts contaminating the primary epidermal cultures.

Previous studies have suggested a pro-proliferative and/or anti-differentiation role for PKD1 

in normal keratinocytes (Ernest Dodd et al., 2005). Histological analysis of dorsal skin of 

adult mice showed no significant difference in the skin and hair morphology, or in the 

number of proliferating epithelial cells (Ki67 staining) between PKD1-cKO and PKD1fl/fl 

mice (Figures 1c and 3d). Furthermore, analysis of K14, an epidermal basal cell marker and 

that of differentiation markers including K10, involucrin (INV) and loricrin (LOR) by either 

immunofluorescent (Figure 1d) or westen blot analysis (data not shown) did not indicate any 

alteration in epidermal proliferation and differentiation . Overall, these data indicated that 

under normal conditions PKD1 is dispensable for skin development and homeostasis.

Impaired wound healing by PKD1-deficiant keratinocytes.

PKD1 is a stress-responsive kinase and has been implicated in cell proliferation and motility 

suggesting a potential role during wound healing (Olayioye et al., 2013). To investigate the 

role of epidermal PKD1 in wound healing, the dorsal skin of PKD1-cKO and age-and sex-

matched PKD1fl/fl mice were wounded with one 6 mm circular, splinted, full-thickness 

excisional wounds, and monitored daily. As shown in Figure 2a, the kinetics of wound 

healing in PKD1-cKO mice was slightly but significantly slower than control. Histological 

analysis of wounds at 10 days post-wounding indicated the presence of a migrating tongue 

(Figure 2b, arrows) with a gap averaging 0.96±0.47 mm (n=3) in PKD1-deficient wounds, 

while control wounds were completely re-epithelialized (Figure 2b). Immunohistochemical 

analysis of 7-day-old wounds when epidermal hyperplasia and a migrating tongue of 

keratinocytes are present in both groups (Figure 2c, arrows), demonstrated a lower 

proliferation rate (BrdU labeling index) for PKD1-deficient keratinocytes at the wound edge 

when compared to the control (Figure 2c-d). These data indicated a correlation between 

delayed wound healing and reduced proliferative response of keratinocytes in PKD1-cKO 

mice.

To confirm the involvement of PKD1 in wound re-epithelialization independent of wound 

inflammation and contraction, a skin explant culture assay that mimics the behavior of 

keratinocytes at the edge of skin wounds was used (Mazzalupo et al., 2002). As shown in 

Figure 2e-f, the areas of keratinocyte outgrowths were significantly smaller in PKD1-cKO 

explants (25±8 mm2) when compared to that of PKDfl/fl (52±12 mm2), confirming a role for 

PKD1 in wound re-epithelialization. Re-epithelialization of skin wounds results from 

increases in both mitotic activity and migration of keratinocytes at the wound edge (Gurtner 

et al., 2008). To determine if keratinocyte migration was affected by the loss of PKD1, 

control or PKD1-cKO explants were treated at 48 hours post-seeding with mitomycin C to 

irreversibly block mitosis, and the area of outgrowth was measure 5 days later. As shown in 

Figure 2g, although mitomycin treatment resulted in a significant reduction in the outgrowth 

area in both control and PKD1-deficient explants, the effects were more pronounced on the 
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latter (45% in PKD1-deficient vs. 37% in control) indicating a defect in migration of PKD1-

deficient keratinocytes. These data supported pro-proliferative and pro-migratory roles for 

PKD1 during wound healing.

PKD1 is a major mediator of TPA-induced epidermal hyperplasia and inflammation

To determine the significance of PKD1 in epidermal hyperplastic responses to other stimuli, 

the responses of PKD1-deficient epidermis to a tumor promoter, 12-O-

tetradecanoylphorbol–13-acetate (TPA) was examined. TPA is a DAG analogue and a 

known inducer of PKD activation in mouse keratinocytes (Ernest Dodd et al., 2005; Jadali 

and Ghazizadeh, 2010). Topical application of TPA is known to induce hyperplasia and 

inflammation, and is necessary for skin tumor development in two-stage chemical 

carcinogenesis (Rundhaug and Fischer, 2010). To determine the potential role of PKD1 in 

TPA-induced mitogenic responses in skin, PKD1-cKO and PKDfl/fl were treated with a 

single dose of TPA or acetone (control), and analyzed 48 hours later. As shown in Figure 3, 

a single dose of TPA in PKD1fl/fl skin induced a robust proliferative response leading to a 

four-fold increase in the number of Ki67-positive keratinocytes and more than a five-fold 

increase in the epidermal thickness. In PKD1-cKO mice however, these responses were 

blunted with only a two-fold increase in proliferating basal keratinocytes and in the 

epidermal thickness. In addition, analysis of skin sections showed a marked suppression of 

TPA-induced inflammation in PKD1-cKO mice (Figure 3a). Immuofluorescent analysis of 

skin sections for S100A9, which is constitutively expressed on monocytes and neutrophils 

(Lagasse and Weissman, 1992), showed a five-fold reduction in the number of infiltrating 

leukocytes in PKD1-cKO mice (Figure 3e-f). These data indicate a critical role for PKD1 as 

a positive regulator of epidermal hyperplasia and inflammation in response to phorbol esters, 

suggesting a role in tumor promotion.

PKD1-deficient mice are resistance to tumor formation in two-stage chemically-induced 
skin carcinogenesis

To examine the potential effects of epidermal PKD1 in tumor promotion, two-stage 

chemical carcinogenesis experiments were carried out in PKD1-cKO and their normal 

littermates. The use of 7,12-dimethylbenz[α]anthracene (DMBA), to introduce oncogenic 

mutations primarily on the Hras1 gene, and TPA as a tumor promoter, to allow selective 

outgrowth of initiated cells, is a well-established chemical carcinogenic treatment that leads 

primarily to papilloma formation in the skin (Abel et al., 2009). Groups of 15 mice at 7-8 

weeks of age were treated with DMBA followed a week later by twice weekly TPA for 20 

weeks. Animals were examined weekly to determine tumor incidence and multiplicity. Six 

weeks after the last TPA treatment, tumors were quantified, harvested and analyzed. As 

shown in Figure 4, mice lacking PKD1 in the epidermis were refractory to papilloma 

formation. While all control mice develop tumors by 16 weeks of promotion, more than 

60% of PKD1-deficient mice did not develop any tumor during the entire 26 weeks of 

observation (Figure 4a-b). In addition, the average number and size of tumors in tumor-

bearing PKD1-cKO mice were markedly reduced (Figure 4 c-d). Histological analysis of 

tumors revealed that most of the tumors formed in both groups were benign papillomas and 

keratoacanthomas (data not shown). At 26 weeks, the frequency of malignant conversion of 

these benign tumors was less than 3% and was restricted to the control mice. Malignant 
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conversion in PKD1-cKO mice however, may have remained undetected because of the 

lower total number of tumors developed in these mice. The PKD1-cKO mice resistance to 

carcinogen-induced tumorigenesis was not the result of increased apoptosis in PKD1-

deficient keratinocytes as the number of apoptotic keratinocytes following 24 hrs of DMBA 

treatment was comparable between the two groups (data not shown). These data identified 

PKD1 as the key transducer of the tumor promoting effects of TPA in chemically-induced 

skin carcinogenesis.

DISCUSSION

Most of the functions assigned to PKD1 have been characterized in cell culture systems and 

their in vivo relevance has yet to be determined. Using a conditional knockout of PKD1 

targeted to stratified epithelia, we investigated the non-redundant role of PKD1 in epidermis. 

Although PKD1 was found to be dispensable for skin development and homeostasis, our 

study identified a critical role for this enzyme during wound healing and in the TPA-induced 

hyperplastic/inflammatory responses that are necessary for tumor development. Our findings 

are consistent with the PKD function as a stress-responsive kinase and provide direct genetic 

evidence supporting a pro-proliferation role for PKD1 in skin tumor development. PKD 

isoforms share high sequence homology and all isoforms could be activated by TPA (Fu and 

Rubin, 2011). Despite expression of all three PKD isoforms in mouse keratinocytes (Jadali 

and Ghazizadeh, 2010), disruption of PKD1 gene alone resulted in marked reduction in 

TPA-induced responses and tumor promotion. This indicated that PKD2 and PKD3 cannot 

fully compensate for the loss of PKD1 function during this process. The TPA-induced 

responses in PKD1-cKO mice however, were not completely blocked and may reflect some 

redundant functions of PKD2 and PKD3 during tumor promotion.

Previous studies using primary cultures of mouse keratinocytes have suggested a pro-

proliferative and/or anti-differentiation role for PKD1 in normal keratinocytes (Ernest Dodd 

et al., 2005). The normal skin architecture and unaltered expression of proliferation and 

differentiation markers in PKD1-deficient epidermis did not support this hypothesis. 

Moreover, the growth and differentiation of primary cultures of PKD1-deficient 

keratinocytes was comparable to that of control littermates, arguing against a general pro-

proliferation/anti-differentiation role for PKD1 in keratinocytes (data not shown). This is 

consistent with our previous studies using small inhibitory RNA to knock down PKD1 in 

mouse keratinocytes (Jadali and Ghazizadeh, 2010). Although there was no compensatory 

up-regulation of PKD2 and PKD3 in PKD1-null keratinocytes (Figure 1), the possible 

functional redundancy of PKDs or other stress-responsive kinases acting on common targets 

during normal growth and differentiation of keratinocytes cannot be excluded.

Using two complementary ex vivo and in vivo approaches we showed that disruption of 

PKD1 impaired re-epithelialization during wound healing. PKD1 has been implicated as an 

inhibitor or a promoter of directed cell migration depending on the cell type and the 

experimental condition (Olayioye et al., 2013). Consistent with our studies, PKD1 has been 

shown to be involved in regulation of hemidesmosome dynamics through direct 

phosphorylation of integrin β4 on its signaling domain, a process important in promoting 

keratinocyte migration and proliferation (Frijns et al., 2012; Nikolopoulos et al., 2005). In 
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addition to the PKD1 regulation of hemidesomosomes in the basal keratinocytes, PKD1 has 

been shown to play a distinct pro-proliferation function during reversal of differentiation in 

keratinocytes (Jadali and Ghazizadeh, 2010). It is plausible to assume that PKD1 activation 

in differentiated cells in vivo, may increase the size of proliferative cell pool during wound 

healing where normal differentiation process may be reversed (Morasso and Tomic-Canic, 

2005).

PKDs are involved in a diverse set of signaling pathways important to tumor development 

and cancer progression and have been shown to be dysregulated in several cancer types 

(LaValle et al., 2010; Sundram et al., 2011). Our study underlines a role for PKD1 in skin 

tumor formation. The two-stage chemical carcinogenesis is widely used to study the 

mechanism of epithelial carcinogenesis (Rundhaug and Fischer, 2010). Our data identified 

PKD1 as a major downstream target of TPA/DAG, and a key mediator of skin tumor 

promotion. TPA is known to activate PKDs via a PKC-dependent mechanism. The PKCs, 

directly bind, phosphorylate and activate PKDs, although classical PKCs specifically PKCα 

can also activate PKDs (Rozengurt et al., 2005). δ, ε, η isoforms are expressed in mouse 

keratinocytes, however, δ and η isoforms are thought to be anti-tumorigenic, and the role of 

PKCε appears to be more complex (Rundhaug and Fischer, 2010). Mice overexpressing 

PKCε have been shown to be resistant to papilloma formation but develop papilloma-

independent metastatic carcinomas independent of TPA treatment (Reddig et al., 2000). 

These studies suggest, at least in part, distinct roles for PKCε and PKD1 in tumor formation. 

Another highly expressed PKC in epidermis, PKCα is a major target for TPA in 

differentiated keratinocytes (Dlugosz et al., 1994). Similar to PKD1, disruption of PKCα 

gene in mice have been shown to result in impaired TPA- and wound-induced epidermal 

hyperplasia. However, PKCα-null mice were more susceptible to tumor formation (Hara et 

al., 2005). The apparent divergence of PKC and PKD1 signaling in response to TPA may be 

explained by distinct substrate-specificity of PKCs and PKDs or, by the time and context 

dependent activation of PKD1 by PKC-dependent and –independent mechanisms as 

previously described (Jacamo et al., 2008; Rybin et al., 2009). Clearly, further studies are 

necessary to delineate the mechanism by which PKD1 mediates its pro-proliferative effects 

in epidermis.

In summary, the results presented here underlines the importance of PKD signaling in 

epidermal adaptive responses including wound healing and skin carcinogenesis, suggesting 

another therapeutic target to alter wound healing or suppress skin tumor formation. 

Consistent with our findings, PKD1 signaling has been suggested as a target for the cancer-

preventive activity of green tea- constituents in mouse skin (Chiou et al., 2013).

MATERILAS AND METHODS

Mice

PKD1-cKO mice were carrying three genetic modifications: (i) homozygously floxed pkd1 

allele from exon 12 to 14 encoding part of the catalytic domain of PKD1 which is essential 

for kinase function and PKD mRNA stability (Fielitz et al., 2008), (ii) K14-Cre which 

targets Cre recombinase to keratinocytes (Dassule et al., 2000), and (iii) a Cre reporter, flox-

STOP-flox-ROSA26-YFP (Srinivas et al., 2001) to identify PKD1-cKO mice from PKD1fl/fl 
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littermates. The specific knockdown of PKD1 in primary cultures of epidermis was verified 

with semi-quantitative RT-PCR and immunoblotting. Total RNA was isolated using Trizol 

Reagent (Life Technologies, Grand Island, NY) and analyzed by One Step RT-PCR kit 

(Qiagen ,Valencia, CA). The following primers were used: PKD1, 5’-

CACTGTGACCTCAAGCCAGA-3’ and 5’-CCAACAGACCACATGTCCAG-3’; PKD2, 

5’-AGAGTGCTCTCCATGCCAGT-3’ and 5’-GACAGCGGGATTTCCTTGTA-3’; PKD3, 

5’-AATGTGCAGGGTCAAAGTCC-3’ and 5’-CCCCTACTGCCATCACTGTT-3’. RNA 

levels of the target genes were normalized against the β-actin transcript levels. PKD1 and 

PKD2 protein levels in 30 μg of protein lysates were analyzed by immunoblotting using 

antibodies against PKD1/2 (CS-2052), PKD3 (CS-5655) (Cell signaling Technologies, 

Danvers, MA), and β-actin (SC-1615) as a loading control. PKD1-cKO and control mice 

were maintained on a mixed 129/Sv × C57BL/6 background. Animals were housed under 

standard conditions and all animal experiments were performed in accordance with 

institutional guidelines set forth by the State University of New York.

Wounding healing Analysis

For in vivo analysis, a well-established and reproducible, excisional wound healing model 

was used (Galiano et al., 2004). Dorsal hair of 7- to 9-week-old mice (age- and sex-

matched) was clipped and a full thickness 6 mm circular wound was generated in the upper 

back. A 10 mm circular splint was placed around the wound perimeter and secured with 

Krazy glue and 6 interrupted sutures to fix the splint to the skin. Wounds were covered with 

sterile Tegaderm dressings (3M Healthcare, St. Paul, MN) which were changed every other 

day until wounds were closed. Digital images were obtained at the time of dressing changes. 

Wound area was quantified using the splint to normalize the wound size. Wound area was 

calculated as percent area of the original wound. Representative wounds were biopsied 

following a 2-hr BrdU pulse (50 μg/g body weight), bisected and fixed in 10% formalin for 

routine histological processing and immunostaining.

For ex vivo analysis, the quantitative explant outgrowth assay of mouse skin was used as 

previously described (Mazzalupo et al., 2002). Briefly, dorsal skin of 2-day-old pups were 

removed, and 4 mm punch biopsies were cultured for 7 days. To assess keratinocyte 

outgrowth, explants were immunostained using an antibody against K14 and Supersensitive 

IHC Detection kit (Biogenex Laboratories, San Ramon, CA). Plates were photographed and 

the total area of outgrowth was measured using NIH-image J software. A subset of explants 

were treated with mitomycin C (5 ug/ml for 2 hrs; Sigma-Aldrich) or PBS (as controls) at 48 

hours post-seeding and analyzed 5 days later as described above.

TPA-induction of epidermal hyperplasia

The dorsal skin of 7-9-week old male mice were shaved and the next day were treated with 

either a single dose of 5 nmole TPA (LC laboratories, Woburn, MA) in 100 μl acetone or 

100 μl acetone (carrier control). Two days later, mice were euthanized, the treated skin was 

biopsies and fixed for histological processing. Skin samples were analyzed following H&E 

staining or immunostaining using antibodies specific for Ki67 (proliferation marker; 

Novocastra, New Castle, UK) or S100A9 (leukocyte marker; Axxzel Biosystem LLC, 
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Houston, TX). The epidermal thickness was measured in sections stained with H&E at a 

minimum of 6 different regions in sections prepared from three different mice.

Two stage chemical carcinogenesis experiments

A dorsal area of 7-8-week old mice (10 males and 5 females/group) was shaved, and a day 

later treated with a single application of DMBA (100 μg in 200 μl acetone; Sigma Aldrich, 

St. Louis, MO) as an initiating agent. A week later, mice were treated with TPA (20 

nmole/200 μl acetone) twice weekly for 20 weeks to promote tumor formation. There was 

no significant difference between the average number of tumors developed in male and 

females. Tumor defined as raised lesions with a minimum of 1.5 mm in diameter, were 

assessed weekly for 26 weeks. At this time tumor were harvested for further analysis.

Statistical Analysis—Statistical analysis was performed using the GraphPad Prism 

version 5.0 (GraphPad Software). Student's t-test was used for comparing two groups of 

data. For analysis of tumor incidence, comparison of the curves showing the mice with 

tumors was performed using log-rank χ2 test. Tumor multiplicity was analyzed using 

repeated measures analysis of variance (ANOVA) for overall differences between the two 

groups and Mann–Whitney test for comparing differences at each week between PKDfl/fl 

and PKD1-cKO. Only values with p<0.05 were accepted as significant.
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Abbreviations

DMBA 7,12-dimethylbenz[α]anthracene

TPA 12-O-decanoyl-phorbol-13-acetate

PKD protein kinase D

cKO conditional knockout

K keratin

YFP Yellow florescent protein

BrdU 5-bromo-2'-deoxyuridine
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Figure 1. PKD1 is dispensable for mouse skin homeostasis
(a) Primary cultures of epidermal cells isolated from PKDfl/fl or PKD1-cKO mice and 

cultured for 5 days were analyzed for expression of PKD isozymes by semi-quantitative RT-

PCR using isozyme-specific primers at 32 cycles for PKD1, 28 cycles for PKD2 and PKD3, 

and 22 cycles for Actin; (b) Western blot analysis of cell lysates described in (a) using an 

antibody cross-reacting to PKD1/PKD2 or one specific to PKD3. Actin served as loading 

control. Shown is representative of at least three experiments. Asterisks in (a and b) indicate 

residual PKD1 expression likely contributed by melanocytes and fibroblasts contaminating 

the primary epidermal cultures. (c) Skin sections prepared from adult PKD1fl/fl or PKD1-

cKO mice were stained with either hemotoxylin and eosin (H&E) for histology or 

immunohistochemical staining with proliferation marker Ki67 (peroxidase, brown nuclear 

staining). (d) Immunofluorescent staining of frozen skin sections with antibody against basal 
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cell marker (K14) or markers of early (K10), intermediate (INV) and late (LOR) epidermal 

differentiation followed by Alexa-594 conjugated secondary antibody (red). Sections were 

counterstained with dapi (blue nuclear staining). YFP expression (green) in LOR panel 

included to show efficient and specific Cre-mediated recombination in keratinocytes. Scale 

bars=50 um.
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Figure 2. Impaired wound healing and re-epithelialization in PKD1-deficient mice and skin 
explants
(a) A 6 mm circular excisional wound was generated in the upper back of PKD1-cKO or 

control mice (n=6) and wound closure was monitored daily. Digital images were obtained 

and wound area was quantified and expressed as percent area of original wound remained 

open at the indicated time. Values represent mean+SEM (n=6), * P<0.05 PKD1-cKO versus 

the control. (b) Healing wounds of PKD1-cKO or control mice were biopsied, sectioned at 

the center and stained with H&E for histology. Sections from two representative mice are 

shown with arrows indicating wound margins in PKD1-cKO. Scale bar = 200 μm. (c-d) 

Sections of 7-day-old wounds when a migrating tongue is present in both groups were 

stained with anti-BrdU antibody (dark brown nuclei). The graph in (d) shows the mean 

percentage of BrdU positive keratinocytes in the wound edge and the migrating tongue. 

Values represent mean+SEM (n=3), * P< 0.001 null versus control. (e) Representative 

PKD1fl/fl and PKD1-cKO skin explants (light brown area in the center) grown in culture for 

7 days and stained for K14 (pink staining) to show keratinocyte outgrowth. (f) K14-positive 

areas were measured and results are shown as mean+SEM (n=48), P<0.01 versus the control 

(g) Graph shows area of explant outgrowth grown with or without mitomycin C 

treatment .Values represent mean+SEM (n=24 explants from 4 mice). * P< 0.001 PKD1-

cKO versus PKD1fl/fl.
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Figure 3. Suppression of TPA-induced responses in PKD1-cKO mouse skin
PKD1fl/fl or PKD1-cKO dorsal skin treated with a single dose of acetone (carrier control) or 

TPA (5 nmole/100 ul aceton) and 48 hrs later skin biopsies were taken and processed for 

histological analysis. Skin sections were stained with (a) H&E for histology, (c) antibody 

against proliferation marker Ki67 (peroxidase, dark brown staining) or (e) antibody against 

leukocyte marker S100A9 followed by Alexa-594 conjugated secondary antibody (red). 

Dapi (nuclear blue staining) was used as a counterstain. A representative of 6 mice from two 

separate experiments is shown. Scale Bars=100 μm. Graphs show the average thickness of 

epidermis (b), the number of Ki67-positive basal keratinocytes (d) and, the number of 

inflammatory S100A9-positive cells (f) in skin sections. Six different regions in sections 

prepared from three different mice were quantified. Values represent mean +SEM (n=3); * 

P< 0.001 TPA-treated PKD1-cKO versus TPA-treated control.
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Figure 4. Reduced skin tumor formation in PKD1-deficient mice
(a) The incidence of tumors in groups of PKD1-cKO and control mice (n=15/group) 

subjected to DMBA/TPA protocol and monitored weekly for tumors >1.5 mm in diameter. 

(b) Representative mice from each group showing reduced tumor number and volume in 

PKD1-cKO at 26 weeks. Arrows in the lower panel indicate small tumors developed in 

PKD1-deficient mice. (c) Kinetics of tumor multiplicity using 15 mice per genotype. 

P<0.0001 for overall differences and P<0.001 for differences between PKD1-cKO mice 

versus PKD1fl/fl at each week. (d) Graph showing average size of tumors developed per 

mouse. Error bars represent standard error of the mean. P<0.001 PKD1-cKO mice versus 

PKD1fl/fl.
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