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ABSTRACT The Xanthomonas genus includes many Gram-negative plant-associated
bacteria. Here, we report a virulent Xanthomonas siphophage called Samson. A si-
phophage isolated from sewage, Samson contains a 43,314-bp genome with 58 pre-
dicted genes. Samson has high nucleotide identity with Pseudomonas phage
PaMx42.

The Xanthomonadaceae are a diverse family of plant-associated Gram-negative
bacteria (1). Some species within both the Xanthomonas and Xylella genera result

in devastating diseases among important food crops (2). Recent efforts using bacte-
riophage application to mitigate Pierce’s disease caused by Xylella fastidiosa in grape
vines were successful (3). Several broad-host-range phages infecting both Xylella and
Xanthomonas species have been reported (4) and provided the motivation for our
discovery of Samson, the phage reported here.

Bacteriophage Samson was isolated from filtered (pore size, 0.2 �m) wastewater
samples collected in College Station, Texas. Samson was propagated by the soft-agar
overlay method of Adams (5) on a rice isolate of Xanthomonas (ATCC PTA-13101), as
described by Ahern et al. (4). Morphology was acquired by negative staining of phage
samples with 2% (wt/vol) uranyl acetate and viewing with transmission electron
microscopy at the Texas A&M Microscopy and Imaging Center (6). Genomic DNA was
purified by the shotgun library modification of the DNA Wizard kit (Promega) reported
by Summer (7). An Illumina TruSeq paired-end 250-bp library was prepared with the
Nano low-throughput kit for sequencing on the Illumina MiSeq platform using the v2
500-cycle chemistry. Quality control was performed on the 414,121 total reads with the
FastQC method (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After
trimming with the FastX Toolkit v0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/), the
phage genome was assembled into a single contig with SPAdes v3.5.0 (using default
parameters) at a coverage of 182.7-fold (8). The raw contig was confirmed complete by
Sanger sequencing of a PCR product amplified off the contig ends (forward, 5=-TGTGATC
GGTCTTGCTGAAATC-3=; reverse, 5=-CACCTGTTCGCCCTTCTT-3=). Gene calls were made
based on analyses with GLIMMER v3.0 and MetaGeneAnnotator v1.0, while tRNA genes
were detected by ARAGORN v2.36 (9–11). Putative terminators (rho independent) were
annotated from TransTermHP v2.09 (12). Gene functions were then predicted using
searches for conserved domains with InterProScan v5.33-72 and by similarity searches
with a 0.001 maximum expectation value cutoff in the NCBI nonredundant database
and the UniProtKB Swiss-Prot/TrEMBL databases by BLAST v2.2.31 (13–15). Potential
transmembrane domains were inspected with TMHMM v2.0 (16). Structural predictions
were done with the HHSuite v3.0 HHPred tool (multiple sequence alignment [MSA]
generation with HHblits using the ummiclus30_2018_08 database and modeling with
the PDB_mmCIF70 database) (17). The genomic terminus type was assigned from
PhageTerm analysis (18). Whole-genome sequence similarity alignments were carried
out by the progressiveMauve v2.4.0 algorithm (19). All tools listed above were executed
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with default parameters, unless otherwise stated. Access to these tools (with the
exception of HHPred) is provided through the Center for Phage Technology Galaxy and
Apollo instances, hosted at https://cpt.tamu.edu/galaxy-pub/ (20, 21).

Samson is a 43,314-bp siphophage with a G�C content of 54.47%. The 94.94%
coding density derives from 58 predicted protein-coding genes. PhageTerm predicts
that Samson uses a headful-type packaging mechanism. The most closely related
phage to Samson, with 95.9% nucleotide identity, is Pseudomonas phage PaMx42
(GenBank accession no. JQ067092), with which it shares 56 similar proteins.

Data availability. The genome sequence and associated data for phage Samson

were deposited under GenBank accession no. MN062187, BioProject no. PRJNA222858,
SRA no. SRR8892199, and BioSample no. SAMN11411460.
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