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Abstract: Internet of Things (IoT) applications are becoming more integrated into our society and
daily lives, although many of them can expose the user to threats against their privacy. Therefore, we
find that it is crucial to address the privacy requirements of most of such applications and develop
solutions that implement, as far as possible, privacy by design in order to mitigate relevant threats.
While in the literature we may find innovative proposals to enhance the privacy of IoT applications,
many of those only focus on the edge layer. On the other hand, privacy by design approaches are
required throughout the whole system (e.g., at the cloud layer), in order to guarantee robust solutions
to privacy in IoT. With this in mind, we propose an architecture that leverages the properties of
blockchain, integrated with other technologies, to address security and privacy in the context of IoT
applications. The main focus of our proposal is to enhance the privacy of the users and their data,
using the anonymisation properties of blockchain to implement user-controlled privacy. We consider
an IoT application with mobility for smart vehicles as our usage case, which allows us to implement
and experimentally evaluate the proposed architecture and mechanisms as a proof of concept. In
this application, data related to the user’s identity and location needs to be shared with security
and privacy. Our proposal was implemented and experimentally validated in light of fundamental
privacy and security requirements, as well as its performance. We found it to be a viable approach to
security and privacy in IoT environments.

Keywords: IoT; privacy; security; location; blockchain; MQTT

1. Introduction

Internet of Things (IoT) covers a comprehensive range of applications that fall within
various areas of our daily lives. These applications intend to make our personal or work-
related tasks easier by generating a multitude of data that can be processed for various
purposes, ranging from automation to data analysis. Despite the various benefits these
applications offer when being part of our daily lives, privacy concerns emerge in various
situations. These concerns are mostly related to the generation of privacy-sensitive informa-
tion, which can be prone to leakages and lead to potential attacks. The data transmitted and
processed by devices supporting such applications can frequently contain personal details,
and as a result, the user should be able to control their exposure. In fact, user-controlled
data exposure and privacy is becoming increasingly important and even legally imposed
worldwide, as it is the case with requirements identified in the General Data Protection
Regulation (GDPR) [1] legislated by the European Union (EU).

The expansion of IoT does not seem to stagnate soon. According to the International
Data Corporation (IDC), it is estimated that 55.7 billion IoT devices will be connected
worldwide in 2025 [2], generating 73.1 zettabytes (ZB) of data. Therefore, it is important to
develop robust solutions that preserve the privacy of the users’ identity and allow them to
control the exposure and usage of their data. Existing approaches to security and privacy
in IoT involve techniques such as obfuscation [3,4] and one-time passwords (OTP) [5],
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but mostly focus on the privacy of the data, and not on the privacy or the exposure of the
user himself. Furthermore, another important aspect is to guarantee the privacy of the
data while it is stored and processed in the underlying systems and devices supporting the
application. Thus, the solutions should not only focus on the edge layer, but also on the
cloud layer, where the data is exchanged, stored and processed in the context of the IoT
application. In this context, we may identify blockchain as a promising technology, which
can be explored to enhance the privacy of the users [6]. Since users can remain anonymous
in this system, information can be shared without disclosing the owner’s identity, while we
may note that may not apply to every decentralised application, since some of those need
to employ mechanisms such as Know Your Customer (KYC) and Anti-Money Laundering
(AML) for security purposes.

In contrast with classical architectures where a centralised trusted authority is em-
ployed, blockchain is a decentralised system, which makes it less vulnerable to single points
of failure. The participating nodes are responsible for its proper functioning and validation,
making it a network with immunity properties that is able to mitigate malicious actions au-
tonomously (e.g., information tamper). In essence, the blockchain functions as a ledger that
stores information (transactions) in blocks connected in a sequential format, resembling a
chain. This feature allows exchanging crypto assets between users, and it also registers and
keeps track of the blockchain’s state (e.g., how many crypto assets each entity possesses)
securely and with high tamper resilience, thus also providing non-repudiation properties.
Moreover, depending on the implementation, blockchain can also be employed to support
user privacy, by providing anonymity. Despite all its benefits, this technology would not
be as relevant if it was not applicable in contexts other than the exchange of crypto assets.
In fact, one of its most important features is the possibility to create distributed applica-
tions through smart contracts, as we explore in our proposed architecture. This allows
the mitigation of some risks inherent in centralised architectures and human-controlled
systems, e.g., single points of failure, data loss, human errors and data corruption.

Some proposals in the literature take advantage of blockchain technology to enhance
the privacy of IoT applications [4,7–10], although we verify that such works do not ad-
dress all the core aspects of user privacy. We build on such proposals while addressing
open issues related to security and privacy. Other than blockchain, we also consider the
integration of other technologies to complement the functionalities provided by the pro-
posed architecture. Among such technologies employed to mitigate particular limitations,
we note the usage of the Message Queue Telemetry Transport (MQTT) [11] protocol for
lightweight and resilient communications [12], and of Storj [13] for decentralised cloud
storage. The main focus of our proposal is to implement and validate a proof of concept
that employs such technologies, to enhance the users’ privacy and security in IoT appli-
cations, and also to enhance the interoperability between constrained IoT devices and
the blockchain. To achieve such goals, the proposed architecture employs anonymisation
that conceals the user’s identity and their data throughout the whole system, as well as
user-controlled privacy allowing the user to configure the level of exposure of their data
(e.g., which data type is shared and with whom), together with other classical security
mechanisms (e.g., cryptography and access control). In addition, we consider an example
application for which the proposed architecture could address security and privacy: a
smart vehicle application in which data is shared, stored and exchanged in the system.
In this application, our proposal helps in addressing security and privacy, particularly in
concealing geolocation information generated by mobile users.

The paper is organised as follows. In Section 2, we identify and discuss the main
requirements related to security and privacy that motivate our proposal. In Section 3,
we discuss the proposed architecture and its main functionalities, which are evaluated in
Section 4, particularly in relation to security, privacy and performance. Section 5 discusses
related work and, finally, in Section 6, we address future research opportunities.
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2. Background and Motivation

In our following discussion, we identify the main security and privacy issues and
requirements in IoT, with a particular focus on applications requiring mobility. After that,
we proceed to discuss the proposed architecture and the security and privacy mechanisms
employed in its context.

2.1. Privacy and Security in IoT

Many of the current and envisioned IoT applications generate many security privacy
concerns, in particular, due to the amount of sensitive data that is generated, transmitted,
processed and finally stored in the context of such applications. In reality, we may realise
that privacy concerns apply to applications with very different goals and contexts, in areas
such as health care [14], smart parking [15,16] and smart vehicles [12,17,18], among others.
In our proposal, we focus in particular on IoT applications in the context of which mobility
is a requirement, and geolocation data is shared by the user along with the goals of the
application, in the smart vehicles’ sector.

In itself, privacy is a concept which needs to be precisely defined in order to contex-
tualise a particular approach and application context. In our proposal, we address the
privacy of the user, which is related to the necessity of sharing different types of data,
such as telemetry, location and personal user information. Therefore, it is imperative to
materialise strategies to safeguard the sharing of such data, otherwise the user, as well
as the application itself, may be subjected to various threats. Among such threats, we
may find user tracking (e.g., obtaining a person’s daily activity history) and user profiling.
Cryptography [4,7,8,10,19] and access control [3–5,19] mechanisms are commonly imple-
mented to improve the privacy of the data. However, the identity of the users is not always
concealed in such solutions.

Focusing now on applications that require mobility and precise location, and in partic-
ular, in the smart vehicles’ sector, we can observe that the data generated and exchanged
can put the identity of the user at stake if its disclosure is not precisely controlled. Thus,
robust privacy-preserving solutions are required to deal with all the aforementioned threats.
Current data storage and exchange solutions are typically centralised and as such represent
single points of failure, which are prone to data tamper and service downtime, among other
threats. Furthermore, the privacy of the users’ identity and the data is not guaranteed
in many of such approaches and, hence, the need to implement solutions that enhance
privacy by design arises. With this in mind, our motivation is to consider the adoption
of blockchain as a central component of our architecture to address security and privacy.
Blockchain offers a distributed and decentralised ledger and helps in addressing some
limitations observed in centralised approaches. In addition, blockchain supports privacy by
design properties that allow its users to remain anonymous, since no sensitive information
is required to create an identity in the blockchain [6,17,18].

In line with the previously discussed privacy requirements, security also presents
fundamental enabling factors for the majority of IoT applications. This is also the case in
the context of the proposed architecture, as we detail later in the article since we enable
encryption for the data transported with MQTT and stored in the blockchain. Access
control is also necessary since it allows enforcing access rules according to the role of
the user in the context of the application, and, in this context, we explore the usage of
smart contracts. Authentication and authorisation are also implemented based on the
blockchain and MQTT. Finally, we note the importance of resilience, and, in this case, we
explore the decentralised nature of the blockchain, as well as the usage of decentralised
storage mechanisms.

We proceed by discussing the application considered for the identification of the
security and privacy requirements that motivate our proposal. This application also guides
our experimental evaluation of the proposed mechanisms, as we address later in the article.
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2.2. Use Case

In order to contextualise the proposed architecture, as well as to identify its critical
security and privacy requirements, we consider a crowd-sensing IoT mobile application,
in the context of which smart vehicles (and its users) share information about road condi-
tions and road events, which need to be shared with the other parties involved. The main
goal of our proposal is to offer a system in which the data generated by such entities is
stored and shared privately and securely. Thus, the data subjects (vehicle user) identity
needs to remain anonymous, since we consider that no details are required or disclosed
about the source of the information. The user should also be able to control the level
of exposure of their data through an access control list (ACL) mechanism, in which the
authorised end users (e.g., service providers and authorities) are identified.

We consider that, by default, vehicle users are required to define ACL, as appropriate
to their requirements in terms of sharing data. Thus, in the first setup phase, an ACL needs
to be defined and stored. This definition triggers the creation of a secret key that is shared
with the authorised nodes. After the conclusion of this setup phase, data transmission can
start. In the considered application, a smart vehicle’s image recognition system can detect
a relevant event on the road, for example, an accident. In this situation, the event can be
appropriately tagged, in a way that, when data related to the event is shared, only the
nodes present in the corresponding ACL of that data type are able to access the data. This
strategy can thus be used to guarantee that only certified authorities, emergency service
nodes or other entities can access specific data, as intended. In addition, the shared data
can contain coordinates to locate the incident and more relevant information as defined by
the application at hand (e.g., the number of cars involved and the level of severity).

Another important aspect of the considered application is that shared data needs
to be kept confidential. With this goal in mind, we employ symmetric encryption with
pre-shared secret keys. When the shared data is stored, a log event is broadcast to the
public, which contains information about the data type and other non-sensitive details.
For example, the authority’s agent node parses the event and checks that it is a data type of
interest. The agent node can then make a data request which, after authorisation, gives
them access (after decryption) to data details for internal system purposes (e.g., to dispatch
a team to the location of the accident). We detail the previously described operational
procedures and requirements next, in the context of our discussion on the functionalities
and technological decisions of the proposed architecture.

2.3. Functionalities and Technological Decisions

The next subsection identifies the main functionalities and technological decisions
considered in the operation and implementation of the proposed architecture, in order to
cope with the previously identified security and privacy requirements.

2.3.1. Anonymisation and Information Exchange Using Blockchain

As previously discussed, we consider the usage of blockchain [20] to anonymise
the identity of the user and their data. Furthermore, we also employ blockchain as a
decentralised system to store and exchange non-sensitive information, as well as to store
the privacy preferences of users (as defined by ACL) to ultimately perform access con-
trol through smart contracts. The actual vehicle users’ data is stored off-chain in Storj,
as detailed later. Storj mitigates some of the inherent problems of centralised systems,
such as single points of failure, the possibility of information tampering and centralised
governance. In addition, we implement anonymisation of users using the addressing
system of blockchains, which by design enhances the privacy of the users’ identity, since no
sensitive information is attached to their address. With this approach, the user is identified
by their blockchain address throughout the whole system, whether in MQTT, Storj or
smart contracts.

Blockchains may be divided into two categories: permissionless and permissioned
blockchains. Permissionless blockchains, as the name suggests, allow any node to partic-
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ipate and interact with it. In contrast, permissioned blockchains can impose restrictions
on the nodes for the access, such as mining or validating blocks and, in addition, employ
a trustful approach, meaning that nodes are considered trustworthy only if properly au-
thorised. The security of this system depends on the correct operation of the consensus
protocol implemented, which dictates how a blockchain’s state is maintained and verified.
The most popular blockchains use Proof of Work (PoW), currently used by Bitcoin [21]
and Ethereum [22], and Proof of Stake (PoS), used in Cardano [23] and, in the future,
in Ethereum 2.0 [24]. On the other hand, smart contracts [20] allow to extend the functional-
ities and applicability of blockchains. Smart contracts extend the functionalities supported
by the blockchain, in fact enabling automated, secure, and tamper resilient tasks (e.g.,
controlling access to a certain function).

In conclusion, blockchain is used to anonymise the identity of the user and also as a
medium to store and exchange non-sensitive information and to support access control to
data requests, through smart contracts. The tamper resilience and transparency features are
interesting for applications where privacy and data management are not relevant, contrary
to the integrity of the stored data. Therefore, storing sensitive information in the blockchain
is not an option, even if a strong cryptographic algorithm is in place.

2.3.2. Lightweight Communications Using MQTT

In order to provide appropriate support for lightweight and resilient communications
in the context of the proposed architecture, we adopt the MQTT [25] communications
protocol. The main goal in this context is to promote resource savings in constrained
environments and devices, by not requiring the support of blockchain in such nodes.
The support of blockchain in devices with resource constraints is a well-known problem
since its support is recognised to be resource-intensive [6]. MQTT is typically used in IoT
applications, due to its small footprint in terms of the size of the messages employed, as well
as its asynchronous nature. MQTT uses a publish and subscribe model that stores messages
in topics to be transmitted to MQTT subscribers. It uses Transmission Control Protocol
(TCP) as the transport protocol, which adds reliability to communications. It also provides
resilience mechanisms, such as durable connections and Quality of Service (QoS), which
are advantageous for applications with volatile environments (e.g., blind spots and signal
degradation), as may be the case in smart vehicles. Therefore, MQTT facilitates the enabling
of failover and reliability properties. Furthermore, MQTT enhances the interoperability
between constrained devices that do not support blockchain.

2.3.3. Decentralised Cloud Storage

The tamper resilient and transparent nature of blockchains makes them unsuitable for
storing sensitive information, especially user data. With this aspect in mind, we employ
an off-chain storage solution in the proposed approach. More precisely, Storj [13] has
been employed for this purpose. This storage system is used to store the vehicle users’
data, and it allows for deletion and modification of data on-demand, an important aspect
to promote the compliance of our proposal with requirements related to user-controlled
privacy and data exposure. Storj is a decentralised and S3-compatible storage platform,
implementing default data encryption using AES-256-GCM, as well as redundancy and
resilience. Using Storj, data is stored as individual fragments distributed throughout
various servers, in a globally decentralised network. Thus, it prevents data breaches and
provides resilience to data loss, since only a percentage of those fragments are needed to
reconstruct data in case of necessity. Data stored is accessible via a serialised interface,
identified by a string that can be used in the uplink application or defined for using
the libuplink library. It is this string that we store in the blockchain and exchange with
authorised nodes. In the next section, we discuss, in greater detail, the functionalities
implemented by the blockchain in the context of the proposed architecture.



Sensors 2021, 21, 5931 6 of 22

3. An Architecture for Security and User-Controlled Privacy in Mobile
IoT Applications
3.1. Proposed Architecture

We start by presenting the proposed architecture, which has been designed to cope
with the previously discussed requirements. The components that enable the architec-
ture illustrated in Figure 1 support the various functionalities required to enable storage,
management and exchange of data produced by vehicle users with security and privacy,
among others. The main technological components employed are blockchain, MQTT and
Storj. Blockchain functions as a medium to store non-sensitive information (such as ACL)
and metadata (e.g., related with access requests), and to exchange information. Since
blockchain is tamper resilient, the information is not easily modified. MQTT is used as
a lightweight communication protocol and a middleware between the constrained IoT
devices and the blockchain core. On the other hand, Storj is the storage system employed
to store sensitive data. In the next section, we provide a more in-depth overview of
these technologies, together with the motivation for their employment in the context of
our architecture.

Figure 1. An architecture for security and privacy in mobile IoT applications.

The main requirements considered in the design of our proposal are focused on
providing enhanced privacy and security to IoT with mobility, and we must note in
particular the following:

• User anonymity: the system focuses on providing privacy to the vehicle user’s identity
through the use of blockchain, given that the blockchain account of each vehicle user
cannot be correlated with their personal information. Furthermore, the blockchain
address of the user is only used for identification purposes in the Private Blockchain
of Vehicle Users (PBVU). Therefore, linking attacks can be prevented.

• Location and data privacy: inherently from the user’s anonymity, data generated by
users is anonymous. Therefore, the privacy of the user is enhanced, which prevents
profiling and tracking attacks.

• User-controlled privacy: vehicle users have to define a specific list of nodes that are
authorised to access their data. Each type of data (e.g., related to an accident, road or
traffic conditions) possesses an ACL that defines the rules for controlling accesses.

• Data confidentiality: security and privacy of the data in all processes where data is
used and transmitted is enforced via symmetric encryption.
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• Authentication and Authorisation: provide authentication of vehicle users when
communicating with the MQTT broker to send requests, and restrict their operations
to enhance each vehicle user’s data security.

We process our discussion by analysing in detail the operation and the technological
aspects of the various components enabling the proposed architecture, as well as their role
in fulfilling the aforementioned requirements.

3.2. A Blockchain Tiered Architecture

In the architecture illustrated in Figure 1, we employ two types of blockchains: public
and private blockchains (PBVU). The two blockchains are connected via a bridge device,
in particular a smart contract proxy. This approach was an architectural decision to enhance
the security of the system, since using only one public or private blockchain would have
limitations in terms of security and accessibility. With this approach, each blockchain has
a different and complementary goal, which takes advantage of their benefits, improves
privacy and security of certain information (e.g., privacy preferences and data serials),
decentralises the system even more to reduce congestion, and enhances scalability.

The PBVU is a closed and permissioned blockchain offering more privacy and secu-
rity when compared to permissionless blockchains, and as a result it is suitable to store
information that should not be available publicly. Therefore, in our architecture, this chain
stores serialised access strings of data to be shared with authorised public nodes, and the
users’ access control lists (ACL) to perform access control in its smart contracts. The public
blockchain is a permissionless blockchain (open to the public) that advertises information
to the public nodes and relays requests to the private blockchain through its smart contracts
and the smart contract proxy. The bridging nodes participate in both types of systems to
handle requests and allow intermediation. They are:

• A smart contracts proxy: this entity is responsible for interconnecting the PBVU
with the public blockchain. It listens and handles requests made in both blockchains.
For security reasons, this node only handles requests created by smart contracts to
prevent the forging of requests by malicious nodes.

• The agent: this node is managed by entities (e.g., governments or companies using
the application), it connects the entity’s systems to the public blockchain, whether it is
a private blockchain or a more centralised infrastructure. Its main purpose is to make
data requests and retrieve the data to the infrastructure.

The public blockchain, as the name implies, uses a permissionless network that is
already deployed and available, in particular, the mainnet of Ethereum [22] or Cardano [23].
Thus, the nodes can easily participate in the system. The PBVU is a permissioned blockchain
that is formed by a set of trusted high-level nodes, which can be MQTT brokers, smart
contract proxies and other types of nodes.

The blockchain protocol selected for our solution was Ethereum [22], a mature
blockchain that provides a wide range of functionalities, such as smart contracts, creation
and configuration of private networks and testnets (Ethereum-based public blockchains
for tests [26]). We proceed to discuss the usage of smart contracts in the context of the
architecture illustrated in Figure 1.

3.3. Smart Contracts

Smart contracts are the essential components that allow other devices to interact with
the system, in order to execute certain system processes. Each system’s blockchain type
has a smart contract designed with different purposes, and consequently possessing a
different set of functions. The main functionalities they provide to this system are storing
information in-chain and broadcasting events to interact with the software in the nodes.

Smart contracts are deployed in the blockchains with a specific blockchain address and
are responsible for executing a certain number of programmed functions. The functions
available to be called by the blockchain nodes are:
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1. defineACL: receives as parameters the owner address, the data type and the list of
blockchain addresses of the public blockchain nodes authorised to receive data of
this type, which each vehicle user generates. When executed, this function creates a
transaction and stores the list of authorised blockchain addresses in the PBVU.

2. exchangeKey: receives the symmetric key encrypted with a public key of an authorised
node as a parameter. This function is responsible for requesting the creation of
an event on the public blockchain, addressed to the node allowed to decrypt the
symmetric key. A request is sent to the smart contract proxy to create this event,
which executes the setKey function to generate it in the public blockchain.

3. addData: this function receives the data information (owner address, data type and
ID) and the serial of the data. Since the MQTT broker previously authenticated the
blockchain address of the owner, the smart contract does not need to check that
he is authorised to add data. Then, it proceeds to store the data, which generates
a transaction inside the PBVU and creates an event to request the proxy node to
generate log information about the data in the public blockchain.

4. setLog: receives the information about newly stored data, sent by the proxy nodes,
to create a log event. The public blockchain nodes use the log events to fetch informa-
tion about the data, including its ID, to make access requests.

5. setKey: is responsible for generating the event to broadcast the encrypted symmetric
key in the public blockchain to be parsed by the destination node. It receives the
address of the destined public node and the encrypted symmetric key.

6. getPrivData: receives the ID of the data requested by the public blockchain node as
a parameter. This function also receives a specific amount of cryptocurrency, as a
fee to pay for the subsequent transaction needed to request the data and prevent
request flooding from public nodes. Next, a request is made to the proxy as an event
to request the data to the PBVU’s smart contract.

7. getData: this function is executed by the smart contract proxy, which receives the ID of
the data and the blockchain address of the requester as a parameter. Next, if the node
is authorised to receive the data, its serial is sent back to the proxy, which forwards it
to the public blockchain’s smart contract by executing the setNewDataLog function.

8. setNewDataLog: this function sends the get data request response as an event to the
public blockchain, addressed to the data requester.

We employ two types of smart contracts in the proposed architecture: PBVU’s smart
contract and public blockchain smart contract. The former is responsible for storing the
serials of the vehicle users’ data, exchanging secret keys, managing access control and
responding to data requests from the public blockchain (functions number 1, 2, 3 and 7 in
the previous list). On the other hand, the latter receives access requests from public nodes
(users and agents) and requests to broadcast events (functions 4, 5, 6 and 8).

3.4. Request Handlers

As Figure 1 illustrates, the proposed architecture comprises various intermediary
nodes, namely the MQTT broker, smart contract proxy and agent. Each of these nodes
contains software that awaits events or requests to be handled. Contrary to the other
handlers, the MQTT broker does not process events broadcasted in the blockchain. Instead,
it listens to MQTT messages sent by the sensor controller (a device responsible for sending
the data generated in the vehicle). These messages contain specific commands that instruct
what actions the broker shall perform.

The system’s requests are composed of a dictionary with three keys. These keys can
change if the request is sent in-chain (blockchain event) or off-chain (MQTT messages).
The common keys are command (identifies the command) and dataInfo (data information).
The third key is destinationAddr, which may optionally be used to identify the destina-
tion blockchain address in in-chain requests, or value, used for encrypted data or other
information in off-chain requests.
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3.5. Symmetric and Asymmetric Cryptography

Symmetric and asymmetric encryption algorithms are conjugated to guarantee data
confidentiality. On the one hand, the data is encrypted using a symmetric key, which
is pre-shared via the blockchain, as previously discussed. Each vehicle user’s data type
has a unique symmetric key and only the nodes authorised by an ACL are allowed to
access this key. On the other hand, asymmetric encryption is used to exchange the key
securely, with the symmetric key being encrypted with the public key of each authorised
node. Therefore, only the node with the corresponding private key has access to the
shared symmetric key used for encryption of communications. Regarding symmetric
cryptography, we employ the Advanced Encryption Standard (AES) [27] with 256-bit keys,
and Transport Layer Security (TLS) is enabled for MQTT communications.

In order to take advantage of the underlying cryptographic scheme provided by
Ethereum, we use the Elliptic Curve Integrated Encryption Scheme (ECIES) framework
with secp256k1 [28]. Since the key pair of each account created in Ethereum uses Elliptic
Curve Digital Signature Algorithm (ECDSA) with the secp256k1 algorithm [22,28], they can
be leveraged to use ECIES. This way, the symmetric key can be encrypted and exchanged
securely to the authorised nodes, using their public key.

3.6. Processes and Interactions

We find it important to analyse in greater detail how the various components of the
proposed architecture operate, in order to materialise the functionalities defined in line
with the requirements previously discussed. Figure 2 illustrates an overview of the various
processes involved, which are detailed in Figures 2–7 and discussed next, starting with the
initial phase of ACL definition by the end-user of the application.

Figure 2. Overview of the system’s processes.

3.6.1. Definition of Access Control Rules

Figure 3 illustrates how the vehicle user may define a list of users that can receive their
data. This process begins in the sensor controller, which sends an MQTT publish message
to the vehicle user’s topic, and, as mentioned before, these messages contain a dictionary
to identify the request type and other relevant information. In this case, the message is
formed by the following fields: defineACL “data type” “ACL”. The ACL is sent in the clear
because it is assumed that the encryption enabled for MQTT communications provides
adequate confidentiality. When successfully sent, the MQTT broker fetches the message
and proceeds to handle the request. Next, the MQTT broker executes a function available
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from the PBVU’s smart contract, which is defineACL (owner, dataInfo, acl). Finally, the smart
contract stores this information in the vehicle user’s privacy preferences.

Figure 3. Vehicle user’s ACL definition.

3.6.2. Key Exchange

The definition of an ACL triggers another process, which is the symmetric key ex-
change with the nodes defined in the ACL. The secret key is generated in the sensor
controller as a unique 256-bit key, and it is encrypted using the public key of the destination
authorised node. As illustrated in Figure 4, the sensor controller sends the encrypted
pre-generated key to the MQTT broker as a message that is composed of the fields key
“blockchain address” “encryptedKey”. This message instructs the MQTT broker to execute the
smart contract’s function exchangeKey (destNode, encKey). When executed, the smart contract
creates a request for the proxy to create an event in the public blockchain, addressed to the
authorised node. This process is executed every time a new ACL is defined by the vehicle
user, to renew the symmetric key when new nodes are added or removed from the list.

Figure 4. Exchange of the symmetric key with authorised users.

3.6.3. Publishing and Storing Data

Figure 5 illustrates the process of sharing data, in which the sensor controller sends
the data to be stored and exchanged in the system. Similarly to the previous processes,
the data transmitted by the sensor controller is transported in a message addressed to the
MQTT topic to which the user (vehicle) is subscribed. Before sending the message, data
is encrypted with the corresponding pre-shared symmetric secret key, and the message
contains the values publish “data type” “encrypted data”, which instruct the MQTT broker
to store the data using Storj, and generate a serialised access string for the new data entry.
This serial is what is stored in-chain and, for this purpose, the MQTT broker executes
the function addData (owner, dataInfo, serial, ID) defined in the smart contract. The ID is a
Universally Unique IDentifier (UUID) generated by the broker for each data entry stored
in the distributed database. The smart contract stores the serial and generates an event to
request the proxy to create a log event in the public blockchain, as previously discussed.
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This log event broadcasts information about the newly added data, such as the ID and the
data type.

Figure 5. Data published by a sensor controller to be stored in Storj and in the blockchain.

3.6.4. Data Access Requests

One operation also required in the context of the proposed architecture is when a
public node (an agent or a user device) requests access to a particular data record stored
in the PBVU, as illustrated in Figure 6. To support this type of request, it executes the
getPrivData(ID) function of the smart contract. Next, the smart contract generates an event
to request the data serial from the smart contract proxy, and in consequence, the proxy
executes the getData (reqAddr, ID) function of the smart contract in the PBVU. This function
performs the access control check for the node request and, if the node is authorised in
the ACL, the serial of the requested data is retrieved by the proxy, which executes the
setNewDataLog (requester, response) function, again defined in the smart contract of the public
blockchain. This function retrieves the serial to the requester node as an event. Finally,
the requester is able to decrypt the received data using the pre-shared symmetric key.

Figure 6. Data access request by an authorised node of the public blockchain.

3.6.5. Data Management

The final process considered in the context of our architecture is related to on-demand
management procedures that the vehicle user can perform over their data. Similarly to
the previous processes, the vehicle user can request the broker to access, delete or modify
a previously shared data entry, through commands sent in MQTT publish messages. It is
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important to note that only the owners of the data entry can perform such actions, which is
guaranteed using the authorisation features of MQTT. Such mechanisms are also important
to implement the aforementioned security requirements, in particular for the enabling of
control of the user over their data. Figure 7 illustrates the data erasure procedure performed
by a vehicle user, to erase one of their data entries identified by the corresponding ID.
In the next section, we proceed by discussing in detail the experimental implementation
and evaluation of the proposed system architecture, in the light of the previously identified
security and privacy requirements.

Figure 7. Data erasure request.

4. Experimental Evaluation of the Proposed Architecture

We begin by addressing the experimental scenario considered for the implementation
and evaluation of the proposed mechanisms, after which we address the evaluation metrics
and analyse the obtained results.

4.1. Experimental Scenario and Test Conditions

The experimental scenario is illustrated in Figure 8, where we consider the various
technologies employed, as well as the logical and physical connections used to support
communications between the various entities involved. In broad terms, we can observe
that the components of the architecture consist of one physical machine hosting 4 virtual
machines (VM), one local area network supporting 1 Gbps Ethernet communications
between the router and the host machine, and a 200 Mbps uplink to the internet for
communications with the public blockchain and Storj distributed storage service.

Figure 8. System architecture of the experimental evaluation scenario.

The host machine is powered by an i7-7700HQ 8-core processor running at 2.80 GHz
and 16 Gb of RAM. We use Linux Ubuntu 16.04 in each VM in runlevel 3, in order to
save resources. We now analyse in greater detail the technical implementation of the
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various components of the proposed architecture, as implemented in the experimental
evaluation setup:

• Private blockchain: this blockchain was created and supported locally using Go
Ethereum (geth) (version 1.10.3) [29] on the MQTT broker and the Smart contract
proxy. The consensus protocol employed is Proof of Authority (PoA), since it is
more resource-efficient than with alternative PoW [20] approaches. In this consensus
protocol, signers are the nodes that are allowed to mine and validate blocks. Thus,
they should be trustworthy nodes, which is why the MQTT broker and the smart
contract proxy were assigned as signers. The protocol was configured to mine new
blocks every 3 s, with the rest of the configurations assumed to be the default.

• Public blockchain: in order to promote more realistic results, the public blockchain
was not implemented locally (e.g., via simulation of the Ethereum mainnet with geth
nodes). Instead, the Ropsten Ethereum testnet was employed for this purpose. This
approach was chosen because it is the testnet that is the most similar to Ethereum
mainnet, given that it provides the same consensus protocol (PoW) and configurations.
Moreover, since it is a testnet, its cryptocurrency is used for test purposes, meaning that
the transactions and interactions with smart contracts do not have a real monetary cost.
On the other hand, the mainnet (Ethereum) was not considered because it requires
real ether, and as a result is considered to be out of the scope of the experimental
evaluation study considered.

• MQTT broker: This VM is responsible for handling sensor controller requests received
via MQTT. The MQTT broker server used for this purpose is HiveMQ, together with a
python (version 3.8) script with the Web3.py library to use the geth instance to interact
with the private blockchain. The python script also uses the libuplink-python library
to communicate with the Storj storage system. Since it only works at the private
blockchain level, it only runs one geth node instance. In terms of resources, 4 CPU
cores and 3 Gb of ram were allocated for this purpose.

• Smart contract proxy: As mentioned previously, it is the middleware between the
private and public blockchain. Therefore, this component is connected to both
blockchains via two geth instances. This node is also running a python script in
conjunction with Web3.py (version 5.19.0), which allows interaction with geth nodes
to handle simultaneous requests from both blockchains (listen to events and execute
smart contract functions). Since this VM handles the most resource-intensive tasks,
4 CPU cores and 4 Gb of ram were allocated.

• Agent: This VM works at the public blockchain layer; therefore, it runs only 1 geth
node instance. Similarly to the two previous nodes, it also runs a python script with
the Web3.py library to listen to events, and make data requests to smart contracts.
The resources allocated for this purpose were 4 CPU cores and 3 Gb of ram.

• Sensor controller: this device uses a web application to communicate with the MQTT
broker and process its requests. The user of the IoT application can define various
ACL, as appropriate for the data types that he needs to handle and perform data
management requests, such as access, modification or deletion. In this context, an
add data option was added to the application, in order to simulate the vehicle’s
behaviour, which was used to test the publishing of data, as well as for load testing.
A direct blockchain communication option was also implemented in our application,
using the Web3.js (version 1.3.6) API, together with a geth instance. This alternative
communication method allows us to compare alternative communication approaches
with the blockchain, either directly or via the MQTT middleware. A cellular network
emulator was also employed [30], to provide a more realistic testing environment.
This emulator consists of a NetEm (Network Emulator) [31] profile to emulate mobile
data communications in 4G network environments with roaming. The profile used
imposes a delay distribution on the network interface, which emulates the connectivity
latency of the cellular access network. As this VM represents a constrained device,
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we have considered the allocation of 1 processor with 2 Gb of RAM to support the
previous functionalities.

The tests were run with a fixed duration of 300 s, and considering various requests
rates, in particular 1, 10 and 50 req/s. This allows us to test the system’s performance in
various load scenarios. Each one of the test runs was executed five times, in order to build
a more representative result sample, while also contributing to reduce experimental errors.
The requests used for the performance tests were the publish data in the sensor controller,
and the get data in the agent node. We note that these requests simulate the submission
of data by smart vehicles in the context of the application (by using publish data), as well
as the request of data (using get data) by public nodes (agents and users), which represent
the majority of requests expected to be performed in a real implementation of the system.
Therefore, it is considered the most relevant in order to ascertain the performance and
scalability of the proposed approach.

In the sensor controller, two communication methods were considered: MQTT and
direct blockchain communication. As previously discussed, the NeTem profile was em-
ployed to emulated 4G connectivity with good cellular coverage and roaming, in order
to simulate a mobile environment where devices communicating with the infrastructure
roam between different cellular towers.

4.2. Evaluation Metrics

To evaluate the viability of the proposed approach, a set of metrics was considered in
our experimental evaluation study, as we proceed to discuss in detail:

• Time overhead: obtained using the python’s time library, used to measure the time
required to handle particular requests. We also note that the sensor controller publish
data request results are dependent on clock synchronisation with the MQTT broker,
which can add a 1–2 s error. Despite the experimental evaluation scenario being limited
in terms of computational resources, this metric allows inferring on the performance
of the system.

• Bandwidth consumption: this was quantified using NetHogs (version 0.8.6) in Kbps,
which allows measuring the bandwidth used by each process running in the operating
system. This metric was measured in the sensor controller, for comparison between
the two communication approaches. The goal in this evaluation is to obtain the
network overhead of different communications approaches, in particular via MQTT
and direct blockchain communications, and consequently be able to assess which is
the most lightweight approach.

• CPU and memory usage: such resources were measured in each of the system nodes
(in %) using the psutil (version 5.8.0) python library. Similarly to the previous met-
rics, it measures the computational overhead, to infer how the system behaves in
congested scenarios.

4.3. Result Analysis

We next analyse the results obtained in our experimental evaluation study of the pro-
posed architecture. We start by analysing results related to the transmission of the request
publish data between the sensor controller and the MQTT broker, to infer what is the most
beneficial communication method for resource-constrained environments, in particular
MQTT communication (the default scenario) versus direct blockchain communications
between the sensor controller and the PBVU (the considered alternative approach). We next
proceed to analyse the system’s overall performance, with the goal of verifying its current
performance and identify future work that can be considered to improve the performance
and scalability of the proposed approach.

4.3.1. Alternative Communication Approaches in the Sensor Controller

Table 1 illustrates the results obtained in the evaluation study performed to compare
MQTT against direct blockchain communications. The table also considers two indepen-
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dent variables: request frequency rate (in req/s) and the communication method employed.
In this table, we also show the median and standard deviation results for the 5 runs
performed under each test condition. The first scenario corresponds to the default commu-
nication procedure explained in Section 3.6.3, in which the sensor controller uses the MQTT
broker as an intermediary with the blockchain to handle its requests. In the alternative
communication scenario, the sensor controller communicates directly with the blockchain,
using Web3 and a geth node.

Table 1. Resource consumption results (measured in the sensor controller) for alternative communication approaches.

Rate
Communication

Method
Bandwidth Consumption (Kbps)

/Standard Deviation
Mean CPU Usage (%)
/Standard Deviation

Mean Memory Usage (%)
/Standard Deviation

MQTT 0667/0148 5367/1629 14,456/0063
1 req/s

Blockchain 4073/1965 10,252/7268 69,191/2440

MQTT 7580/7813 8233/4887 15,048/0435
10 req/s

Blockchain 14,744/8654 30,689/21,507 96,098/3360

MQTT 13,217/10,198 12,853/6120 15,817/0444
50 req/s

Blockchain 64,100/28,767 29,997/20,302 98,261/2032

We may observe a clear difference between the two technologies, with blockchain
being more resource-intensive than MQTT for all the considered metrics and test loads.
We may thus observe that MQTT is a more lightweight approach, which is beneficial in
particular for IoT applications employing resource-constrained devices. Furthermore, in the
context of this evaluation, a statistical analysis was considered to provide a rationale for our
conclusions. Since in our evaluation the samples do not comply with the assumptions to
perform a parametric test (homogeneity of variance and normality [32]), a non-parametric
two-way ANOVA alternative was considered, in particular, the randomisation test with
unrestricted permutations [33]. This test examines three null hypotheses simultaneously,
namely: no difference in means due to the communication method, no difference in means
due to the request rate and no interaction of factors. The statistical test was performed
for each dependent variable (bandwidth consumption, CPU usage and memory usage)
with a significance level of 5%. The obtained p-value, in all hypotheses, was less than 5%,
which rejects all the null hypotheses. Thus, the assumption that the MQTT communication
method is more lightweight than blockchain is sustained in our analysis.

Even though MQTT requires less computational power, it adds more time overhead to
the requests, and the results have more variability, as the frequency of the requests grows
(Figure 9). This behaviour occurs due to the extra layer of latency and queuing required
when using MQTT, making the time overhead results more bursty, as is visible in particular
for a rate of 50 req/s.

In our following analysis, we focus on the evaluation of the performance of the
proposed approach. This allows us to ascertain not only the viability of the architecture
itself, but also to infer its scalability. As we discuss at the end of the article, future work
can also be conducted in order to implement further mechanisms in the context of the
proposed architecture, which will contribute to promote its resiliency and scalability.
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Figure 9. Time overhead measured in the sensor controller with mean values.

4.3.2. Performance Evaluation

In Figures 10 and 11, we present the results obtained when using the get data request
tests, performed in the agent node (the requester) and smart contract proxy (the handler).
This process is detailed in Section 3.6.4 and depicted in Figure 6. The values were measured
starting when the requests are sent until a response is received. We may observe that there
is a distinctive difference in time overhead between these requests and the publish data
requests illustrated in Figure 9. The private blockchain offers much lower latency, with the
mean result for 1 req/s to the private blockchain having been measured at 5.689 s (using
MQTT), and 6.997 s with direct blockchain communications. In the public blockchain, it
has been measured at 35.085 s. We also observe that for the get data request, performed in
the public blockchain and requiring two transactions to be completely handled (request
and response), the mean of each transaction is 17.543 s, which is approximately two times
higher than in the private blockchain.

Figure 10. Resource consumption measured in the smart contract proxy with mean values.
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Figure 11. Time overhead measured in the agent with mean values.

By analysing Figures 10 and 12, we may note that both request handlers (smart contract
proxy and the MQTT broker) follow the same pattern. In particular, as the request rate
increases, the resource consumption also increases, the same applying to the variability of
the measured results. In this specific scenario, we can infer that the system’s throughput is
close to 50 req/s, given that the time overhead has much more variability, and the resource
consumption reaches maximum capacity on particular occasions.

Figure 12. Resource consumption measured in the MQTT broker with mean values.

We should also note that it is excepted that the performance of the Ethereum private
blockchains will increase, as more computational resources are added to the system [34].
However, from our experimental evaluation, we were able to observe the behaviour, as well
as the limitations, of our experimental implementation scenario. Despite the visible impact
of the blockchain, it nevertheless does not prevent its usage to support security and privacy.
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It is important to note that in the experimental evaluation of the proposed architecture,
we consider what is, fundamentally, a proof of concept implementation. In future work,
a cloud implementation will be employed supporting an optimal setup environment, in the
context of which vertical and horizontal elasticity, as well as redundancy mechanisms,
may be enabled. In this context, we realise that, in its current form, some architectural
components employed may prove to impose some limitations. In particular, the MQTT
broker and the smart contract proxy are single points of failure, given that currently such
entities are not supported by resilience mechanisms. The blockchain itself also has an
impact on the throughput of the system, since the consensus protocol enforces a limit on
the number of transactions that are processed per second. Optimisations can also be added
to the software developed. Finally, we recognise that the emulators used in the evaluation
scenario can also impact by adding to overall latency, an aspect we plan to address in future
developments in the implementation of the proposed architecture. Despite such limitations,
we consider that the experimental evaluation study of the proposed architecture herein
described, provides sufficient data to ascertain the viability of the proposed approach.

4.4. Security and Privacy

Our evaluation of the proposed architecture in the light of the considered security and
privacy requirements was supported by the logs generated by the various entities of the
system, as such information allowed us to verify and validate the correct implementation
and operation of the functionalities related to such requirements. The evaluation of these
requirements is summarised in Table 2.

Table 2. Validation of security and privacy requirements.

Requirement Evaluation

User controlled privacy

One of the GDPR policies dictates that the user should be able to specify their privacy preferences over their
data. However, in most classical applications and proposals ([4,8–10]), the user is unable to define their privacy
preferences, which could result in data being used by other entities without their consent. In our proposal, the user
has the freedom to specify the list of public nodes that can access their data, which thus enhances their privacy.

User anonymity

Applications frequently gather information about the user for KYC purposes or other goals. Even if this informa-
tion is being used for legitimate purposes and has the user’s consent, it still opens avenues to potential attacks.
Therefore, implementing enhanced anonymity by design could mitigate such privacy threats, which makes the
blockchain’s addressing system beneficial to improve the overall privacy of users in the system. In particular, we
note that it is only possible to know to whom the address belongs to if the owner advertises it.

Location and data privacy

Other proposals store data in the public blockchain [9], which imposes a threat to data privacy since it is publicly
available to the public nodes or in other storage systems that do not guarantee its security (e.g., in centralised
storage systems). Thus, storing data off-chain and in a decentralised system (as with Storj) improves the overall
privacy and security of data. Furthermore, inherently from the user anonymity, the location information and data
generated by smart vehicles is anonymous across the whole system.

Data confidentiality The data is encrypted with symmetric cryptography when it is in transit or stored in Storj, and can only be
decrypted with the specific symmetric key. Thus, the confidentiality of the data is guaranteed.

Authentication and Authorisa-
tion

The Role-Based Authentication Control (RBAC) plug-in integrated into MQTT supports user authentication and
authorisation. Each user has to be pre-registered in the database to authenticate himself, and various roles can be
created to restrict the operations allowed to each particular user, e.g., a vehicle user can only publish or subscribe
to the topic that corresponds to its blockchain address.

Overall, we may conclude that the system manages to deliver high privacy and
security to its users and data. In particular, the tiered architecture of blockchains strengthens
the privacy and security in our approach, since the private blockchain can be used to
store information privately, while the public blockchain is used to exchange information
in a secure and “immutable” approach. Furthermore, we use the addressing system of
blockchains to anonymise the user throughout the whole system, thus enhancing its privacy.
In addition, MQTT also allows the implementation of privacy and security measures
through authentication and authorisation. Finally, the usage of Storj enhances the privacy
and security of the users’ data and allows data management procedures to increase the
compliance of the system with the privacy requirements previously identified.
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In conclusion, we may observe a clear compromise between privacy and performance,
mostly due to the fact that blockchain is still a technology in development, and in particular
due to its limited transaction throughput, which is one of its major drawbacks. Despite
this, blockchain brings important advantages in what respects the fulfilment of critical
security and privacy requirements which, in our opinion, clearly compensate its impact on
performance. As previously discussed, our conclusions do not exclude the opportunity
to evolve the implementation of the proposed architecture in the future, therefore leaving
room for various types of optimisations. We address such opportunities for future work at
the end of the article, while in the next section we focus on related work.

5. Related Work

A panoply of privacy-preserving proposals for IoT are present in the literature. We may
observe that some of these works focus on improving certain technologies, to be adequate
for constrained environments, such as lightweight cryptography [19,35] or enhancing the
security of current technologies [3]. An alternative approach is to address privacy by
design, and, in this context, blockchain can aid in securing IoT applications, as we have
addressed in the article.

In our proposal, MQTT is used as a complementary technology to improve interop-
erability between constrained IoT devices and the blockchain and reduce computational
resource requirements, whereas in the proposal of [5] blockchain is used as a complemen-
tary system to offer a more reliable authorisation and authentication approach, using smart
contracts, applied to MQTT. Furthermore, our system’s users are not bound to only a
system, but both blockchain and MQTT, since their blockchain addresses are also used to
identify them in the MQTT’s authentication and authorisation mechanisms.

The proposal in [7] also targets mobile IoT applications, in particular for the automo-
tive sector, and is also user-centred. The user can decide the data that he wants to share and
to whom; he is also aware of the data being transferred and which data is stored. However,
our solution offers privacy control and data management functionalities to the user, such as
the deletion of data or its modification, which is not supported in [7]. This property is also
lacking in other works ([8,9]), wherein the data is stored directly in-chain, and, therefore,
cannot be managed due to the tamper resilient nature of blockchains.

To solve the in-chain storage problem, data is stored off-chain in [4,7,10]. In [10],
the integration of an external decentralised storage system is proposed, in particular the
Interplanetary File System (IPFS). Similarly to our proposal, data can be accessed in-chain
through an access serial, in this case, IPFS hash stored in a smart contract. Although the
data is being stored in an external solution, IPFS does not support guaranteed modification
nor deletion of data, which is a limitation of the system. Our approach is thus distinguished
by the fact that we implement Storj to mitigate this issue, as well as to support GDPR
policies such as data erasure, as previously discussed.

Contrary to our work, the IoT devices in [4] communicate directly with the blockchain,
which can be a computational overhead for the devices, as we discussed in Section 4.3.1.

As previously observed, existing proposals also do not focus on user-controlled
privacy, as per the goals of our proposal. As discussed throughout the article, user-
controlled privacy is a fundamental enabling aspect of many applications, and one that is
becoming fundamental, also from a legal perspective [1].

6. Conclusions and Future Work

The proposed architecture can certainly evolve in the light of future privacy, security
and functional requirements, which can bring more functionalities and solidify its security
and user-controlled privacy mechanisms. In this context, we may consider various future
research opportunities, as we proceed to discuss.

One is to design privacy-preserving mechanisms to allow the public nodes to identify
the data they can access, without disclosing the ACL of the data entry or other private
information. Reputation systems can also be considered to identify misbehaving nodes,
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which may be required, for example, to pay a higher fee for each request. The transparent
nature of blockchains can also be of help to keep track of the nodes that request access to
data while informing data owners (e.g., via logs).

A possible approach can also be to use blockchain to manage the node’s public keys,
for example via a smart contract for the support of integrity. High availability mechanisms
may also be investigated, for example, to support load balancing between brokers, smart
contract proxies and the PBVU entities of the proposed architecture, thus removing single
points of failure in a future evolution of our system implementation.

Regarding the usage of blockchain, other implementations can also be considered and
evaluated (e.g., Cardano [23] and Solana [36]), that may offer more throughput and other
functionalities. In addition, our system could be implemented in a cloud environment, since
it may help in supporting further availability mechanisms and more performance, also
due to the inherent horizontal elasticity of such environments. A future setup with such
goals could provide an alternative environment for experimental testing and performance
analysis, as previously discussed. In order to have a more complete system, a mechanism
with policies or rules can also be implemented in order to add new nodes into the system,
in particular, in the PBVU. In addition, optimisations of code can also be explored, such as
the smart contracts, to take into consideration the gas fees.

IoT is a notable technology that is becoming more embedded in our daily lives. Thus,
implementing solutions that preserve the privacy of its users and data in line with legal
aspects such as those described in GDPR is becoming a fundamental goal. In this article, we
propose a blockchain-based architecture that focuses on providing user and data privacy
for mobile IoT applications. In our proposal, we leverage the power of blockchain to
support access control, provide anonymity to users, and provide a common channel for
heterogeneous systems to exchange and request information. Additionally, blockchain is
employed in tandem with other technologies, in particular MQTT and Storj, to mitigate
some of the limitations that emerge in these kinds of applications that use constrained
devices and operate with sensitive information.

In conclusion, the proposed architecture paves the road for the support of a robust
privacy-preserving solution, not only for automotive applications, but also for other IoT
applications that require security and user-controlled privacy.
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