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Macrophages represent a heterogeneous cell population and are known to display a

remarkable plasticity. In response to distinct micro-environmental stimuli, e.g., tumor

stroma vs. infected tissue, they polarize into different cell subtypes. Originally, two

subpopulations were defined: classically activated macrophages or M1, and alternatively

activated macrophages or M2. Nowadays, the M1/M2 classification is considered

as an oversimplified approach that does not adequately cover the total spectrum of

macrophage phenotypes observed in vivo. Especially in pathological circumstances,

macrophages behave as plastic cells modifying their expression and transcription profile

along a continuous spectrum with M1 and M2 phenotypes as extremes. Here, we

focus on the effect of chemokines on macrophage differentiation and polarization in

physiological and pathological conditions. In particular, we discuss chemokine-induced

macrophage polarization in inflammatory diseases, including obesity, cancer, and

atherosclerosis.

Keywords: macrophage polarization, chemokines, tumor-associated macrophage, leukocyte migration,

inflammation and cancer

INTRODUCTION

Monocytes arise in the bone marrow from hematopoietic stem cells (HSCs) and develop through
a series of sequential differentiation stages. Common myeloid progenitor cells develop into
granulocyte/macrophage colony forming units (GM-CFU), which in turn can commit to the
macrophage colony-forming unit (M-CFU) or the granulocyte colony-forming unit (G-CFU).
The M-CFU differentiates sequentially into monoblasts and promonocytes, which leave the bone
marrow and enter the bloodstream, where they differentiate into mature monocytes (1). Mature
monocytes represent about 10% of the leukocyte population in human peripheral blood and can
circulate in the blood stream for up to 1–2 days before they undergo apoptosis. Alternatively,
monocytes can migrate into the tissues and differentiate into specific macrophages (2). The
major driver for the homeostatic control of monocyte/macrophage development is macrophage
colony-stimulating factor (M-CSF), present in the blood circulation and produced by stromal cells
in tissues (3–5). In inflammatory conditions, also other cytokines such as granulocyte-macrophage
colony-stimulating factor (GM-CSF) and the chemokine CXCL4 influence the differentiation
and/or survival of mononuclear phagocytes (6–8).

In contrast to the classical model of macrophage development, where macrophages
differentiate from circulating monocytes as described above, recent studies provided evidence
that tissue-resident macrophages arise from yolk sac or fetal liver-derived progenitors (9). These
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tissue resident macrophages appear to have stem cell-like
capacities as they persist independently of monocytes by self-
renewal in situ (10). One of the major hallmarks of macrophages
is their heterogeneity, which is reflected by their specialized
function in a particular microenvironment. According to
their tissue location, macrophages can take different names
including microglia [central nervous system (CNS)], Kupffer
cells (liver), alveolar macrophages (lung), osteoclasts (bone),
histiocytes (spleen and connective tissue), Langerhans cells
(skin), and tissue macrophages in the gut (11). Resident
macrophages promote tissue homeostasis, whereas monocyte-
derived macrophages primarily assist in host-defense. Moreover,
macrophages recruited during and after embryogenesis co-exist
in different organs (10, 12).

Besides their heterogeneity, macrophages are known to
display remarkable plasticity. In response to different micro-
environmental stimuli, a fully differentiated macrophage
can adopt a polarized phenotype with specific functional
characteristics. Traditionally, macrophages are subdivided into
two subpopulations: the classically activated or M1 macrophages
and the alternatively activated or M2 macrophages (13). M1
macrophages can be induced by the Th1 cytokines tumor
necrosis factor (TNF)-α, interferon (IFN)-γ and bacterial
components such as lipopolysaccharide (LPS). Activated M1
macrophages phagocytose and destroy microbes, eliminate
tumor cells and present antigens to T cells to evoke an adaptive
immune response. As such, they play an important role in
protection against pathogens. The pro-inflammatory phenotype
is characterized by the increased production of reactive nitrogen
intermediates (RNI) and reactive oxygen species (ROS), which is
essential for bacterial killing (14). In response to inflammatory
mediators, M1 macrophages express the inducible nitric oxide
synthase (iNOS), which uses L-arginine as a substrate to produce
nitric oxide (NO) (15). Furthermore, classically activated
macrophages release high levels of pro-inflammatory cytokines
such as TNF-α, interleukin-6 (IL-6) and IL-1β to deal with
infections and thereby promote Th1 responses (16).

M2 activation occurs in response to stimulation with IL-4,
IL-10, and IL-13. These macrophages display high surface
levels of scavenger, mannose and galactose type receptors
involved in debris clearance. Furthermore, they show a
more immunosuppressive phenotype characterized by decreased
antigen presentation to T cells and production of cytokines
that stimulate a Th2 response. In contrast to M1 macrophages,
M2 macrophages constitutively express the enzyme Arginase
1 (ARG1), which hydrolyzes L-arginine to L-ornithine (13).
L-ornithine is the main precursor for polyamines, essential for
cell survival. Furthermore, L-ornithine can also be used as a
building block to make proline and hydroxyproline, essential
amino acids for the production of collagen, a crucial protein
in tissue damage repair (17). As such, these macrophages are
involved in long-term tissue repair, promote tumor growth and
exert antiparasitic effects (18).

Nowadays the M1/M2 classification is considered as an
oversimplified approach that does not fully cover the total
spectrum of in vivo macrophage phenotypes. Especially, in
pathological circumstances macrophages behave as plastic cells

modifying in space and time their expression and transcription
profile along a continuous spectrum, having M1 and M2
macrophage phenotypes as extremes (19, 20).

The interaction of chemokine receptors on circulating cells
with their ligands enables the selective tissue-specific recruitment
of subsets of circulating cells such as monocytes. Chemokines
are a family of low molecular weight, secreted proteins with
a prominent role in leukocyte activation and chemotaxis.
Based on the NH2-terminal motif of two conserved cysteine
residues, chemokines can be classified into 4 subfamilies: C,
CC, CXC, and CX3C chemokines. Chemokines signal via G
protein-coupled receptors (GPCRs), which are named XCR,
CCR, CXCR, CX3CR according to the chemokine nomenclature
(21). Additionally, chemokines can bind with high affinity to
atypical chemokine receptors (ACKRs), a subgroup of seven-
transmembrane receptors highly related to the classical GPCRs.
Since these ACKRs lack or have a modified canonical DRYLAIV
motif, activation of ACKRs does not lead to typical GPCR-
mediated signaling and chemotactic functions (22).

THE EFFECT OF CHEMOKINES ON
MACROPHAGE DIFFERENTIATION AND
POLARIZATION IN PHYSIOLOGICAL AND
PATHOLOGICAL CONDITIONS

Neurological Diseases
Microglia, the resident, long-living macrophages in the central
nervous system (CNS), act as the major inflammatory cell type
in the brain and similar to peripheral macrophages they respond
to pathogens and injury (23). Under physiological conditions,
microglia are in a “quiescent” state or have a non-activated
phenotype (24). Butofsky et al. demonstrated that this “resting”
cell’ phenotype is different from M1 or M2 microglia and
expresses genes associated with neuronal development (25). This
particular phenotype was found to be important for synaptic
growth, maintenance, and neuronal growth. Furthermore, the
“quiescent” state enables the intimate connection between
neurons and microglial cells, which is tightly controlled by
the CX3CL1-CX3CR1 axis (26). CX3CL1/fractalkine is the only
member of the CX3C chemokine subfamily and differs from
most other chemokines, as it can exist as a membrane-associated
molecule with the chemokine motif being attached to a long
mucin stalk. Alternatively, CX3CL1 is secreted as a soluble
variant (27). CX3CL1 is expressed on healthy neurons, whereas
the transmembrane protein receptor CX3CR1 is present on
microglia (23, 28, 29).

The CX3CL1-CX3CR1 axis is an important neuroimmune
interaction in the CNS and has been implicated in many
neurophysiological and neuropathological conditions (Figure 1).
For instance, in animal models of Parkinson’s disease and
amyotrophic lateral sclerosis (ALS), loss of CX3CR1 increased
neuronal cell death (30). Using a murine model of diabetic
retinopathy, Cardona et al. showed that in the absence
of CX3CR1 the microglial response is dysregulated and
associated with increased IL-1β cytokine release (Figure 1B) (31).
Additionally, Mattison et al. found that CX3CL1 suppressed
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FIGURE 1 | CX3CL1-CX3CR1 interaction between neurons and microglial cells in the CNS. CX3CL1 is released from the neurons and interacts with the CX3CR1

receptor expressed on CNS microglia. CX3CL1 signaling induces (dashed arrow) a neuroprotective state (A), characterized by the suppressed release of

pro-inflammatory cytokines (TNF-α, IL-1β) and upregulation of heme oxygenese 1 (HMOX1). In several murine models of neurodegenerative diseases, genetic

deficiency of CX3CR1 is associated with potentially detrimental secretion of pro-inflammatory cytokines and reactive nitrogen species (NO) causing (dotted arrow)

neurotoxicity (B).

FIGURE 2 | Phenotypic features of CXCL4- and CXCL4L1-induced macrophages. CXCL4-induced macrophages display a pro-atherogenic phenotype, characterized

by the downregulation of the hemoglobin-haptoglobin scavenger receptor CD163 and the consequent downregulation of the HMOX1 enzyme compared to

M-CSF-treated monocytes. Remarkably, the downregulation of HMOX1 is not observed in CXCL4L1-induced macrophages, which also show reduced expression of

CD163. Both phenotypes show a downregulation of the mannose receptor (MRC) CD206. The expression of the chemokine receptors CCR2 and CCR5 and the

secretion of pro-inflammatory chemokines CXCL8 and CCL2 are higher on CXCL4L1-treated monocytes compared to CXCL4-stimulated monocytes, thereby

indicating more pro-inflammatory characteristics for CXCL4L1- than CXCL4-stimulated monocytes.
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FIGURE 3 | Schematic representation of chemokines involved in recruitment, differentiation and positioning of TAMs. Tumor-derived factors such as the chemokines

CCL2, CCL3, CCL4, CCL5, CCL18, CCL20 actively recruit (red arrow) monocytes to the tumor, where they differentiate into tumor-associated macrophages (TAMs).

In addition to several growth factors, a particular role in TAM polarization (blue arrow) has been described for the chemokines CCL2, CXCL12 and the chemokine-like

protein MIF. In hypoxic areas, higher amounts of CXCL12 and increased expression of CXCR4 on macrophages enhance migration to and retention in these particular

sites with low oxygen tension.

the release of pro-inflammatory and neurotoxic factors such as
TNF-α and NO in activatedmicroglia during neuroinflammation
(Figure 1B) (32). Controlling neuroinflammation via CX3CR1
signaling was particularly beneficial in the pathogenesis of
Alzheimer’s disease (33). Furthermore, CX3CL1 promotes
microglial phagocytosis of neuronal debris and increases the
expression of heme oxygenase 1 (HMOX1), resulting in an anti-
oxidant effect, which indirectly promotes neuronal survival (34).
Conversely, some studies showed a neurotoxic role for CX3CL1
in CX3CR1

−/− mice models for Alzheimer’s disease (35) and
stroke (36). Fuhrmann et al. also reported that neuronal loss
neuronal loss in a model of Alzheimer’s disease was prevented
in CX3CR1 knock out mice (37).

The atypical chemokine receptor CCRL2 was identified as
an important regulator of microglial activation and polarization
in experimental autoimmune encephalomyelitis (EAE) (38).
Similar to ACKRs, CCRL2 lacks conventional GPCR signaling
and chemotactic activity (39). More specifically, it was found
that during the chronic disease phase microglia in CCRL2 KO
mice develop a profound M1 phenotype compared to wild type
(WT) mice after induction of EAE (38). These results highlight
a potential role of CCRL2 in EAE-associated inflammatory
responses and as such, provide a new potential target to control
neuroinflammation.

Finally, using a neuron/microglia co-culture system, Yang
et al. found that CCL2/MCP-1 (40) was able to activate microglia
and stimulated production of pro-inflammatory cytokines such
as TNF-α and IL-1β (41).

Fibrosis
Upon infection, activated macrophages use a set of innate
immune defense strategies such as phagocytosis, release of
proteases and production of antimicrobial mediators, such as

reactive oxygen and nitrogen species. An important side effect of
this efficient inflammatory response is partial tissue destruction,
which is normally followed by a repair response to regenerate the
tissue (42). However, when this repair phase is persistent, it leads
to fibrosis or so-called scarring of the tissue, which is defined by
the accumulation of excess extracellular matrix components. In
the end, this causes progressive loss of function of the affected
organ(s) (43, 44). Alternatively activated (M2) macrophages are
known to play an important role in wound healing and acquire a
pro-fibrotic phenotype (45, 46). Since this phenotype is observed
during the peak of the fibrotic immune response, it is suggested
that suchM2macrophages are important inducers and regulators
of fibrosis (44). For instance, by producing transforming growth
factor-β1 (TGF-β1), M2 macrophages directly stimulate collagen
production inmyofibroblasts (47, 48) and enhance the expression
of tissue inhibitors of metalloproteinases (TIMPs) that block the
degradation of extracellular matrix (ECM) (48). Additionally,
M2-derived chemokines play a role in fibrosis. For instance,
CCL18/PARC is pro-fibrotic by promoting collagen production
in lung fibroblasts (49–51). Increased collagen deposition, in
turn, can enhance CCL18 production in alveolar macrophages,
thereby suggesting a positive feedback loop between alveolar
macrophages and fibroblasts (50). In idiopathic pulmonary
fibrosis (IPF), one of the most common types of interstitial
lung disease, CCL18 levels correlated with severity of fibrosis
(52). More recently, CCL18 was identified as a marker for
early identification of progressive interstitial lung disease in
systemic sclerosis (SS) (53). Pechkovsky et al. showed that
the Th2 cytokines IL-4 and IL-10 induce M2 polarization of
alveolar macrophages (54). Interestingly, IL-10 enhanced the
IL-4-induced CCL18 expression (54).

Besides CCL18, also CCL2 directly mediates a pro-fibrotic
effect on fibroblasts by affecting TGF-β signaling, which in
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turn stimulates collagen production (55). Mice lacking CCR2,
the cognate receptor for CCL2, showed reduced infiltration of
inflammatory macrophages in two models of hepatic fibrosis
(56, 57). These CCR2−/− mice also developed less severe
pulmonary fibrosis (58). Macrophages derived from CCR2 KO
mice showed reduced production of matrix metalloproteinase
(MMP)-2 and MMP-9 (59). Finally, the CCL2-CCR2 axis in
macrophages has also been found to be important in renal
fibrosis, where mononuclear cell infiltration and expression of
chemokine receptors CCR1, CCR2, and CCR5 was enhanced in a
spontaneous model of lupus nephritis (60).

Interestingly, in a commonly used model of bleomycin-
induced lung fibrosis, CCR4−/− mice showed a decreased
inflammatory and fibrotic response compared to WT mice.
Further analysis revealed that CCR4 KO alveolar and bone
marrow-derived macrophages exhibited a more pronounced
M2 activation state, as evidenced by increased expression of
the typical M2 markers ARG1 and “found in inflammatory
zone 1” (FIZZ1). Further experiments showed that the CCR4
ligand CCL17/TARC (61) plays a role in CCR4-dependent
M1 activation leading to iNOS induction and oxidative
injury, thereby affecting the development of bleomycin-induced
pulmonary fibrosis (62). Additionally, FIZZ1 activates fibroblasts
and induces myofibroblast differentiation in bleomycin-induced
pulmonary fibrosis (63, 64). Chvatchko et al. reported that
CCR4−/− mice were more resistant to the effects of LPS
compared to CCR4 WT mice (65). Further analysis revealed
that peritoneal macrophages from CCR4 deficient mice possess
an altered phenotype, more resembling M2 macrophages with
elevated secretion of type 2 cytokines/chemokines and FIZZ1
protein (66). This study underscores the possible role of CCR4
in M1 activation.

In two different murine models of liver fibrosis, Heymann
et al. demonstrated a protective role for the CCR8 receptor.
Interestingly, hepatic macrophages from CCR8 KOmice showed
an altered phenotype with more pronounced dendritic cell-like
characteristics and enhanced CCL3 secretion (67).

Macrophage Polarization by Chemokines
in Metabolic Disorders
Nowadays it is generally accepted that the immune system
and metabolism are tightly connected and recent studies have
demonstrated that macrophages, in particular, are critical effector
cells in metabolic inflammation (68). Resident macrophages
in the adipose tissue of lean mice constitute ∼10–15% of
the total cell population. These adipose tissue macrophages
(ATMs) express predominantly M2 characteristics and were
shown to be critical for maintaining insulin sensitivity in
adipocytes (69, 70). Conversely, in obesity, a state of low-
grade systemic inflammation (71), adipocytes secrete pro-
inflammatory mediators, which recruit monocytes into the
adipose tissue mainly via the CCL2-CCR2 and CCL5-CCR5 axis
(72–74). During obesity the number of macrophages in white
adipose tissue increases fourfold (69) and macrophages acquire
an M1 phenotype that contributes to the pro-inflammatory
environment (75). Via secretion of pro-inflammatory cytokines,

M1 ATMs contribute to insulin resistance by counteracting the
insulin sensitizing action of the adipokines adiponectin and
leptin (69, 76, 77). More recently, it has been shown that
macrophage polarization in obesity can also be modulated by
chemokines and their receptors. Kitade et al. demonstrated that
inactivation of CCR5 not only resulted in a reduced number
of ATMs, but the recruited ATMs switched toward an M2
phenotype (73). Additionally, obesity-induced insulin resistance
was attenuated in obese CCR5−/− mice (73). The question
how CCR5 regulates M2 polarization is still unanswered. Obese
mice with a genetic deficiency in CCR2 showed a reduced
number of ATMs combined with a decreased expression of
pro-inflammatory genes, compared to matched WT mice (72).
Besides the CCR2 and CCR5 ligands, a recent study showed
that during obesity CXCL12 recruits macrophages via CXCR4
to the adipose tissue (78). Moreover, CXCL12-CXCR4 signaling
induced M1 macrophage accumulation and blocking this
signaling diminished secretion of pro-inflammatory cytokines
and improved insulin resistance (79).

The recruitment of macrophages, which stimulate the
development of insulin resistance in obesity, is also critical
in associated metabolic comorbidities such as nonalcoholic
fatty liver disease (NAFLD) and nonalcoholic steatohepatitis
(NASH). NAFLD is characterized by excessive fat accumulation
in the form of intrahepatic triglycerides in the liver. NAFLD
exhibits as a spectrum ranging from steatosis of the liver to
a more necro-inflammatory form, NASH, which may develop
into hepatic fibrosis, cirrhosis, or hepatic carcinoma (80). In
the liver, macrophages consist of distinct populations, namely
the resident, self-renewing Kuppfer cells and the inflammatory
monocyte-derived macrophages (81–83). Kuppfer cells line the
liver sinusoids and are involved in cholesterol metabolism by
taking up and clearing modified low-density lipoprotein (LDL)
and bacterial endotoxins through their scavenger receptors (84).

In line with the improved insulin resistance in CCR2−/−

obese mice, also hepatic steatosis was ameliorated (72). Besides
CCR2, Karlmark et al. found that the CX3CL1-CX3CR1 axis
is involved in the differentiation and survival of intrahepatic
monocytes (85). The CX3CR1-mediated survival depends on
the activation of the anti-apoptotic protein BCL2. Furthermore,
in the absence of CX3CR1, hepatic macrophages showed a
more pro-inflammatory phenotype characterized by increased
TNF-α and iNOS production. These in vivo findings confirm
earlier published data on elevated Tnfα expression and reduced
ARG1 expression in CX3CR1-deficient macrophages in a carbon
tetrachloride (CCl4)-induced NAFLD mouse model (86). The
increased pro-inflammatory response of liver macrophages
was associated with enhanced liver fibrosis (85). This latter
observation suggests that activation of the CX3CL1-CX3CR1 axis
can work as an antifibrotic liver therapy.

Macrophage Polarization in
Cardio-Vascular Diseases
Cardiovascular disease (CVD) is the most common cause
of mortality worldwide and accounts for 45% of all deaths
in Europe (87). Atherosclerosis, an arterial narrowing due
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to plaque formation, is most often the underlying cause
of myocardial infarction (88). The starting point of this
pathology is the accumulation of lipoprotein particles in the
intimal layer of the blood vessel. These lesions are mostly
found at arterial branching points and bends, which are
especially prone for local endothelial cell dysfunction. The
stored lipoproteins are modified by several mechanisms such as
oxidation, enzymatic processing, desialylation and aggregation,
become pro-inflammatory and activate surrounding endothelial
cells. Activated endothelial cells, in turn, release chemokines
which recruit monocytes into the intimal and subintimal space of
the artery where they differentiate into macrophages (89). These
macrophages actively ingest cholesteryl ester-rich lipoproteins
and eventually become “foam cells.” Although the uptake of
lipoproteins by macrophages seems to be beneficial, these “foam
cells” aggravate the disease through their secretion of pro-
inflammatory mediators including cytokines and ROS and finally
through their eventual death by necrosis or apoptosis. These
latter processes result in the release of lipids and the formation
of a pro-thrombotic core, which is a key-component of unstable
plaques. Rupture of these plaques leads to the initiation of
thrombosis, which limits or even blocks the flow of oxygen-rich
blood to organs and other parts of the body (90, 91).

The first chemokine implicated in atherosclerosis was CCL2,
which is normally not found in the blood vessel wall, but is
induced in the early phase of atherosclerosis (92–94). Evidence
for a prominent role of the CCL2-CCR2 axis came from a study
by Boring et al. who reported that CCR2−/− mice exhibit severely
reduced atherosclerotic lesions (95). Later on, CXCR2, CX3CR1
and CCR1 have been implicated in monocyte/macrophage
accumulation in atherosclerotic plaques (96, 97).

Relatively large numbers of pro-inflammatory macrophages
were found in plaques and M1 macrophages are associated
with unstable plaques (98, 99). M2 macrophages have only
been detected later on and are more common in asymptomatic
lesions and the stable zones of plaques (100). In addition to
M1 and M2 macrophages, atherosclerotic plaques also contain
specific macrophage subtypes, which are different from the
phenotypes suggested by the classical activation model. For
instance, inmice, oxidized lipids induce a distinct proatherogenic
phenotype, referred to as Mox macrophages (101). These are
characterized by reduced phagocytic and chemotactic capacities
compared to M1 and M2 macrophages (101). So far, this
phenotype is only observed in mice, whether Mox macrophages
are also present in human lesions remains to be investigated.
Upon intraplaque hemorrhage, due to rupture of invaded
microvessels in the plaque, red blood cells lyse quickly and
release hemoglobin and free heme. These heme products can
directly polarize macrophages toward the Mhem or M(Hb)
phenotype. Functionally, these subtypes are resistant to lipid
accumulation and foam cell formation (102). Macrophage
polarization to the M(Hb) phenotype occurs via exposure
to the hemoglobin-haptoglobin complex (102, 103). This
M(Hb) subset expresses high levels of the scavenger receptors
CD163 (the hemoglobin-haptoglobin complex receptor) and
CD206 (the mannose receptor) and is resistant to cholesterol
accumulation because of the increased expression of the

cholesterol efflux receptors ABCA1 and ABCG1 (104). Heme
induces atheroprotective Mhem macrophages, which have high
levels of HMOX1 (105) and are able to engulf extravasated
erythrocytes (erythrophagocytosis) (106).

Besides lipids and their derivatives, heme products and also
chemokines and growth factors present in atherosclerotic lesions
can contribute to macrophage phenotype determination. During
the early atherogenic phase, platelets can adhere and act as
a rich source of chemokines. The platelet-derived chemokine
CXCL4/PF-4 (107), similar to M-CSF, has been shown to prevent
monocyte apoptosis and to promote the differentiation into
macrophages in vitro (8). Later on it was found that CXCL4-
induced macrophages acquire a specific phenotype, with a
mixture of M1 and M2 characteristics and distinct from their
M-CSF-induced counterparts. These so-called M4 macrophages
express the pro-inflammatory chemokines TNF-α and IL-6,
MMP-7, and MMP-12 and the calcium binding protein S100A8
(108, 109). The complete loss of the hemoglobin-haptoglobin
scavenger receptor CD163, which is required for effective
hemoglobin clearance after plaque hemorrhage (108, 110) and
low expression of the antigen-presenting molecule HLA-DR (8)
are typical characteristics of these so-called M4 macrophages.
When hemoglobin or the hemoglobin-haptoglobin complexes
bind the CD163 receptor, the atheroprotective HMOX1 is
induced. Consequently, HMOX1 activity is also completely
abolished in CXCL4-stimulated monocytes (111). Interestingly,
the marked downregulation of CD163 and the novel phenotype
induced by CXCL4 was reported to be irreversible (108). The
presence of M4 macrophages within human atherosclerotic
lesions is associated with advanced plaque morphology (112).
M4 macrophages can be considered pro-atherogenic, since
these may promote destabilization of the plaque fibrous
cap (113).

More recently, our group studied the effect of
CXCL4L1/PF-4var (114), the non-allelic variant of CXCL4,
on the differentiation of monocytes into macrophages (Figure 2)
(115). Both variants are secreted by activated platelets and differ
only in 3 amino acids near the carboxy-terminal end. The unique
3D structure of CXCL4L1 results in a decreased affinity for
glycosaminoglycans (GAGs) and a more outspoken angiostatic
potential compared to CXCL4 (116). Differently to M-CSF
and CXCL4, CXCL4L1 is not a survival factor for monocytes.
CXCL4L1-exposed monocytes display higher expression levels
of the inflammatory chemokine receptors CCR2 and CCR5,
suggesting that CXCL4L1 promotes a higher responsiveness
to inflammatory chemokines, such as CCL2 and CCL3.
Additionally, significantly higher amounts of CCL2 and CXCL8
(M1marker) were measured in CXCL4L1-stimulatedmonocytes,
whereas CXCL4 did modulate chemokine production in the
same way as M-CSF. Finally, we found a lower expression
of IL-1 receptor antagonist (IL-1RA) in CXCL4L1-treated
monocytes, compared to CXCL4-treated monocytes, which is
in line with the more inflammatory phenotype of macrophages
generated in the presence of CXCL4L1 (115). Similar to CXCL4-
treated monocytes, CXCL4L1-stimulated monocytes have a
significantly lower expression of the CD163 receptor and the
mannose receptor (MRC/CD206) compared to M-CSF treated
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monocytes (117). Interestingly, in contrast to M4 macrophages
we found that HMOX1 expression was significantly increased in
CXCL4L1-treated monocytes (Figure 2) (115). So far, the role of
CXCL4L1 in atherosclerosis is not further investigated. However,
we showed that patients with stable coronary artery disease have
a worse prognosis when CXCL4L1 levels in the serum are low
(118).

Role of TAMs in Cancer
It is generally accepted that macrophages are the most abundant
component of the leukocyte infiltrate that is influencing
tumor development. Macrophages that infiltrate the tumor
microenvironment are usually referred to as tumor-associated
macrophages (TAMs) (119). TAM infiltration is correlated with
a poor prognosis in numerous cancers, suggesting that they
promote tumor progression (1, 81, 120, 121). Indeed, TAMs
can stimulate proliferation, invasion, metastasis of tumor cells,
promote angiogenesis and suppress the anti-tumor response
(122). Poor anti-tumoral activities are a consequence of the
higher production of IL-10, TGF-β and prostaglandin E2 (PGE2)
and reduced synthesis of inflammatory cytokines such as TNF-α
and IL-6. Furthermore, TAMs display poor antigen-presenting
capacities, leading to suppression rather than stimulation of T
cell activation and proliferation (13). The decreased production
of inflammatory mediators in TAMs is associated with a
defective nuclear factor-kappa B (NF-κB) activation in response
to LPS and proinflammatory cytokines (123). In addition to the
production of the most potent angiogenic factor VEGF, TAMs
were shown to produce platelet-derived growth factor (PDGF)
(13) and VEGF-C (124), which was suggested to play a role
in peri-tumoral lymphangiogenesis and subsequent lymphatic
metastasis. As such, TAMs are generally characterized as M2-like
macrophages (125).

However, extensive TAM density is associated with increased
survival in some specific tumor types. These findings suggest
that TAMs comprise multiple distinct pro- and anti-tumoral
subpopulations with overlapping features depending on different
micro-environmental stimuli. In an explant model of colorectal
cancer liver metastasis, CCR5 blockade with Maraviroc, a highly
specific CCR5 inhibitor originally developed to treat HIV
patients (126), induced a repolarization from an M2 toward an
anti-tumoral M1-like phenotype (127). This phenotypic switch
was mediated via increased levels of the signal transducer and
activator of transcription 3 (STAT3), which is commonly linked
to an M1 activation state, due to abrogation of the suppressor
of cytokine signaling 3 (SOCS3) activity (128). This so-called
re-education of macrophages induced by CCR5 inhibition in
human cancer patients could possibly contribute to the further
development of chemokine-based anti-cancer therapy.

TAMs originate from circulating monocytes, which are
recruited to the tumor by several growth factors and especially
by chemokines, produced by stromal and tumor cells (120).
Besides M-CSF, the CC chemokines CCL2, CCL3, CCL4, and
CCL5 are well-recognized chemotactic factors for macrophage
populations in the tumor (Figure 3) (129–133). CCL2 is
dominantly expressed by many human carcinomas (134,
135) and detection of CCL2 in TAMs themselves even

indicates the existence of an amplification loop for their
recruitment (13, 136). Interestingly, once macrophages have
entered the tumor microenvironment, the corresponding CCR2
is downregulated. It is suggested that receptor downregulation
is a mechanism to trap recruited macrophages in the tumor
micro-environment (137). Furthermore, in colon cancer models
CCL20/LARC (138) chemoattracts monocytes that differentiate
into TAMs. Additionally, in human breast cancer models CCL18
in collaboration with CSF-2 was involved in mobilization
and recruitment of monocytes (139). Finally, VEGF-A was
identified as a macrophage recruitment factor in an in vivo
xenograft model, possibly acting indirectly through induction of
chemoattractants (140).

Once differentiated, TAMs preferentially accumulate in the
hypoxic areas of the tumor (141). Casazza et al. found that the
protein Neuropilin-1 (Nrp-1) is essential for TAM mobilization
toward Semaphorin 3A (SEMA3A), which is upregulated in
hypoxic regions of the tumor. When TAMs enter these hypoxic
areas, Nrp-1 expression is downregulated and TAMs are trapped
in the hypoxic environment (142). Further, these hypoxic
TAMs upregulate hypoxia-regulated genes and alter the gene
expression profile, acquiring an even more pronounced pro-
angiogenic, immunosuppressive, and pro-metastatic phenotype
(143). This hypoxia-induced response is partly mediated via
the key transcription factor hypoxia-inducible factor (HIF)-
1α (144). Interestingly, in endothelial cells HIF-1α induces
CXCL12 expression, which is in direct proportion to the oxygen
tension in hypoxic areas (145). Additionally, hypoxia induces
the expression of CXCR4 on monocytes and macrophages,
thereby highlighting a possible role of the CXCL12-CXCR4
axis for TAM trafficking to the hypoxic tumor areas (Figure 3)
(146).

Besides functioning as chemoattractants, some chemokines
can also affect TAM polarization. Sierra-Filardi et al. disclosed
an important role for the CCL2-CCR2 axis in regulating
macrophage polarization, since blocking CCL2 led to an
upregulation of M1 polarization-associated genes and decreased
expression of M2-associated markers in human macrophages
(147). Additionally, in several animal models of non–small-
cell lung cancer (NSCLC) CCL2 blockade significantly reduced
tumor growth. Although the total number of recruited
macrophages did not change, there was a clear change in the
polarization state of TAMs toward a more anti-tumor phenotype
after CCL2 blockade (148). These results are in line with the
findings from Roca et al. who showed that CCL2 stimulation
shifts human peripheral blood CD11b+ cells toward a CD206+

M2-polarized phenotype (149).
Furthermore, in multiple myeloma (MM) CCL2, CCL3, and

CCL14/HCC-1 (150) stimulate macrophage polarization into
MM-associated macrophages (139), which induce MM drug
resistance in vitro and in MM mouse models in vivo (151, 152).
Tripathi et al. showed that hypoxic cancer cell-derived oncostatin
M and the chemokine CCL11/eotaxin skewed macrophages
toward an M2 phenotype (153, 154).

Besides factors produced by tumor cells, some chemokines
produced by the macrophages themselves can affect their
polarization. As such, autocrine CXCL12 production modulated
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the differentiation of monocytes toward a proangiogenic and
immunosuppressive phenotype (155).

Interestingly, migration inhibitory factor (MIF), a
cytokine that is not a chemokine but considered to be a
“chemokine-like” molecule, was found to be a regulator of TAM
polarization in melanoma bearing mice. A small molecule
MIF antagonist attenuated tumor-induced macrophage
M2 polarization coinciding with a reduced angiogenic
potential (156).

The final step of cancer progression is metastasis, i.e., the
dissemination of cancer cells from the primary tumor to distant
organs. This highly complex process involves cell detachment
from the primary tumor site, local invasion, intravasation into
adjacent circulatory blood and lymphatic vessels, extravasation
at distant capillary beds and proliferation in/colonization of
distant organs (157). Before metastatic tumor cells are able
to colonize, primary tumor-derived products prepare a primed
microenvironment at secondary sites, also known as the pre-
metastatic niche (158). Soluble factors including VEGF and
placental growth factor (PIGF) induce the recruitment of
VEGF-receptor 1 (VEGFR1) positive myeloid cells, which form
clusters in the lungs and liver, preparing a permissive niche
for disseminating tumor cells. Depletion of these VEGFR1+

cells inhibited metastasis (158). Disseminated cancer cells,
in turn, produce CCL2 that recruits inflammatory CCR2+

monocytes from the blood to the metastatic niche, where they
differentiate into so-called metastasis-associated macrophages
(MAMs) (159). By secreting VEGF-A, these MAMs cause
vessel wall permeabilization, allowing subsequent tumor cell
extravasation (159). Interestingly, activation of CCR2 on MAMs
induces the expression of CCL3 (160). CCL3 signaling via CCR1,
in turn, promotes the retention of MAMs in the lung through
vascular cell adhesion molecule (VCAM1)-α4 integrin mediated
signaling and promotes cancer cell extravasation and retention at
the metastatic site (160). Furthermore, VCAM 1 – α4 signaling
protects cancer cells from pro-apoptotic signals (161).

Thus, TAMs and MAMs are not only a target for chemokines
but also considered as a source of chemotactic mediators. Among

these CCL2, CCL3, CCL17, CCL18, and CCL22 have been
found to be produced by TAMs/MAMs (61, 162). In ascitic
fluid from ovarian cancer patients CCL18, an attractant for
Th2 cells was identified, but this chemokine was not produced
by ovarian carcinoma cell lines in vitro (163). Therefore,
it was suggested that the inflammatory mononuclear cells
infiltrating the tumor were the CCL18-producing cells (164).
Furthermore, CCL17 and CCL22 induce migration of regulatory
T (Treg) cells via interaction with the CCR4 receptor (165).
Thus, attraction of immunosuppressive immune cells through
chemokine production is one of the pro-tumoral characteristics
of TAMs.

CONCLUDING REMARKS

Monocyte-derived macrophages respond to a variety of stimuli
to modulate their phenotype, which underlines their phenotypic
plasticity, one of the major features of macrophages. M1 and
M2 macrophages represent the extremities of a continuum of
macrophage polarization states with M1 and M2 representing
a rather pro-inflammatory and anti-inflammatory phenotype,
respectively. Besides their well-known role in monocyte
migration, chemokines have also been found to play a role
in long-term regulatory processes by inducing macrophage
differentiation and polarization in physiological and pathological
processes.
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