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Abstract

Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are
important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often
insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending
contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in
flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has
not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been
characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.861.4 m/s.
We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low
ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to
increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show
that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to
produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to
stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final
stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to
the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance
of this system is in line with expectations for a last-ditch escape response.
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Introduction

The roles of identifiable neurons in triggering behaviour are

particularly well understood in fast, reliable escape-triggering

mechanisms such as those of several arthropods [1]. Such

mechanisms presumably evolved as a result of selection pressures

exerted by natural predators. However, the characteristics of

natural predator attacks, and the stimuli that they would provide

to their prey, have rarely been described [2,3,4,5]. This means that

it is often not possible to investigate escape-triggering mechanisms

within the context of escape from a real predator. Where escape-

triggering mechanisms have been studied during real or simulated

predator attacks, these mechanisms confer a variable probability of

successful escape, around 50% or less in many investigations

[6,7,8], perhaps reflecting the finely balanced arms-race between

predator and prey. Here we attempt to characterise the attacks of

a natural predator of flying locusts. We then use simulated stimuli

representing these attacks to investigate emergency behavioural

responses triggered by a locust’s descending contralateral move-

ment detector (DCMD) neuron, one of the most frequently studied

identifiable visual neurons of invertebrates.

When a predator approaches, it can be perceived as a looming

visual stimulus: its image expands over the eye of the viewer with

a rate that increases as the time of collision nears. Looming-

sensitive visual neurons have been found in a huge range of taxa,

both vertebrate and invertebrate [9,10,11,12,13,14,15,16], but

best understood among these is the single bilateral pair of DCMD

neurons of acridid grasshoppers (including locusts) [17,18]. Each

DCMD has its cell body in the protocerebrum of the brain, and its

axon descends to the thoracic ganglia where it excites neurons

controlling leg and wing movements [19,20,21]. Input to each

DCMD is from a uniquely identifiable lobula giant movement

detector (LGMD) neuron [22], which collects visual input from

most of the visual field of one compound eye in the lobula of the

optic lobe [23]. It is at the LGMD that selectivity for looming

arises (e.g. [24,25]), but it is more convenient to record from the

axon of the DCMD, in which spikes follow those in the LGMD

one-for-one [26]. The DCMD responds most strongly to objects

approaching on a direct collision course, and much less strongly to

objects moving along non-collision trajectories [27]. The DCMD

response tracks object approach, producing a train of spikes that

increases in frequency as a looming object expands over the
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locust’s eye [17,28]. For a simple looming disc or square, the

profile of expansion depends on the ratio of the object’s half size to

its approach speed (l/|v|), and peak DCMD spike rate increases as

l/|v| decreases [29,30]. The time of the peak DCMD response

depends linearly on stimulus l/|v|; it occurs earlier before collision

as l/|v| increases, regardless of the object’s actual size or speed

[29], although DCMD peak response timing is affected by arousal

[31].

Startle responses to looming stimuli are common across animal

taxa, and several recent studies have explored the link between

identified looming-sensitive neurons and emergency behavioural

responses using the locust DCMD neuron (for reviews, [32,33]). A

number of different features of the DCMD spike train are involved

in the production of escape jumps in locusts on the ground

[34,35,36]. In flying locusts, high-frequency bursts of DCMD

spikes cause a gliding response [37,38], and this is the behaviour of

concern in the current paper. When a tethered flying locust

experiences a looming stimulus, it attempts to steer away from the

developing threat as its initial escape response [37,39,40,41]. If the

stimulus continues to approach, the locust performs a last-ditch

‘glide’: it reliably ceases to beat its wings and raises them into

a stereotyped swept-back posture, only a few milliseconds before

collision [37,39]. Tonic contraction of a forewing elevator muscle,

M84, is a signature of glide occurrence. DCMD spikes directly

excite the motor neuron of this muscle, and when DCMD spikes

occur at .150 Hz in restrained locusts, excitation of the motor

neuron is sufficient to cause it to spike and for the muscle to

contract [38]. During tethered flight, .150 Hz DCMD spikes

appear to be effective in eliciting glides only when they coincide

with wing elevation, most likely due to gating of the behavioural

response by ongoing rhythmic modulation of flight motor neuron

membrane potential [38]. As such, gliding responses are variable

in occurrence and timing, but are more frequently observed in

response to faster looming stimuli (with lower l/|v|), which elicit

higher DCMD peak spike rates [37]. However, when the

connective contralateral to the eye viewing a looming stimulus is

severed so that DCMD spikes cannot reach the meso- or

metathoracic ganglia, glides do still occur occasionally [38].

Therefore, it may be that looming-sensitive neurons descending in

the ipsilateral connective, such as the descending ipsilateral

movement detector (DIMD) [20], also contribute to glide

triggering. Glides triggered by stimuli looming from the side are

distinct from landing attempts because the locust’s legs remain

tucked into its body and flying often resumes quickly, and these

may be attempts to change course and evade capture by a predator

[37]. When an object looms from the front, glides are accompa-

nied by foreleg extension and it has been proposed that this might

help absorb some of the force from the imminent impact, or allow

landing [39].

One context in which the DCMD and the glides it triggers may

function is in the detection and evasion of bird predators

[37,42,43]. Swarming desert locusts are preyed upon by predatory

birds of a variety of species, both during flight and when on the

ground [44,45,46,47]. Although birds can take large numbers of

locusts, their overall impact on locust numbers depends on

population density [44]. Bird predators also have a variable impact

on rangeland grasshopper numbers in the USA [48,49]. Black

kites, Milvus migrans, are one predatory bird species regularly

reported attacking swarming, flying locusts in Africa and Australia

[46,47,50]. These birds may be the commonest raptor in the

World [51], overlapping the natural ranges of the two locust

species commonly used in laboratory studies (Schistocerca gregaria

and Locusta migratoria). During locust outbreaks, black kites form

large foraging groups that may be .100 individuals strong [47].

Although black kites are generalists, when the opportunity occurs

they prey heavily on locusts: during a desert locust outbreak in the

Sahel 100% of sampled kite pellets contained locust remains,

whereas 4% of sampled pellets did before the outbreak [47].

The attack behaviour of bird predators of flying locusts has not

been quantified, and thus DCMD performance in triggering

gliding responses to stimuli that resemble these attacks could not

be investigated. Complex bird-like outlines have been used to

stimulate the DCMD [52], but in these experiments the focus was

on understanding the process of habituation to repeated

approaches, and behavioural responses were not investigated.

Among the simple stimuli used in most laboratory experiments, it

has been suggested that those with lower l/|v| ratios (smaller,

faster looming objects), may be most similar to attacking bird

predators [42,43]. Although it has been shown that DCMD

responses are stronger [29,30], and gliding behaviours more

frequent [37] in response to simple looming shapes with low l/|v|,

both trends have not yet been demonstrated within the same locust

species (or the same genus). More importantly, it has not been

possible to interpret these trends using information on which part

of the l/|v| range is representative of bird predator attacks, or to

examine how these relationships are affected by a more realistic

stimulus shape.

In this study we use video footage to characterise the attack

behaviour of wild black kites on locusts flying in a swarm. We

measure kite attack speeds and from them estimate a range of l/

|v| ratios representative of looming kite thoraces. In laboratory

experiments, we record DCMD and gliding responses of L.

migratoria to computer-generated looming stimuli across a range of

l/|v| values. Using simple looming discs, we investigate known

trends in DCMD spike rate and glide occurrence with l/|v| for

comparison with l/|v| ratios estimated for attacking kite thoraces.

We also investigate whether glides occur before the theoretical

moment of interception by the predator in response to these

stimuli. By adding wings to looming discs across a variety of l/|v|

ratios we investigate how a more bird-like stimulus shape affects

the DCMD response, the probability of a glide occurring, and the

probability that when a glide is performed it will be initiated before

interception by the predator.

Results

Black Kite Behaviour
Black kite (M. migrans) attack behaviour was investigated using

video footage of groups of these birds capturing flying Australian

plague locusts, Chortoicetes terminifera (Acrididae: Oedipodinae), in

Mundi Mundi, NSW, Australia. In this footage, kites character-

istically circled above the swarming locusts, periodically swooping

into the swarm and attempting to catch a locust using their talons.

The tracks of two kites performing swooping attacks are shown in

Fig. 1A (and more detailed images of kites are shown in Fig. S1,

and in Fig. S2 in which blurred images of locusts are also visible).

In some attacks kites glided with wings held outstretched and

wrists slightly flexed, in others kites flapped their wings during

pursuit or combined flapping with gliding. Bouts of attack

behaviour by individual kites were very intensive, with consecutive

capture attempts separated by a mean interval of 6.463.5 s (mean

6 SD, N=12 kites). Following an unsuccessful capture attempt,

a kite characteristically began another by continuing to fly through

the swarm, but following a successful capture it climbed back up to

circling height where it consumed the locust on the wing, bending

its head downwards and extending its legs in order to peck at the

locust held in its talons. One instance was noted in which the kite

clearly mishandled and dropped a locust, but still bent its head
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towards its talons. From unambiguous observations of feeding

behaviour following a capture attempt, the proportion of capture

attempts that were successful was estimated at 0.860.2 (N=12).

Because of the small size of locusts, it was not possible to

distinguish clearly the target locust of most attacks, so their

behaviour in response to attack could not be assessed. However,

we did note cases in which a flying locust rapidly lost height as

a kite loomed close to it (locust arrowed in later frames of Fig. S2).

From kite attacks oriented perpendicular to the camera’s

direction of view, we estimated kite flight speeds for later

comparison with simulated looming stimuli used in laboratory

experiments. During filmed prey capture events, kite speed

sampled during the final 1.25 s of attack (Fig. 1B) was

10.7661.42 m/s (range: 8.73–13.31 m/s; N=10 kites [17

attacks]). Since these measurements relied on video calibration

by estimated mean kite length (see methods), we also filmed

a trained black kite catching thrown food items using a fixed

camera and exact calibration. Unfortunately, the kite’s behaviour

in this scenario was qualitatively different to that observed in wild

kites, and there was a clear deceleration prior to the catch that was

not evident when wild kites caught flying locusts (Fig. 1B).

However, kite speeds in advance of speed adjustment for capture

were broadly comparable, providing some support for our

measurements of wild kites from video. Due to the lack of a clear

pattern of acceleration or deceleration when wild kites caught

flying locusts, we made the simplifying assumption that kites

attacked locusts with a relatively constant speed, and thus kite

speeds would represent the closing speeds that a stationary locust

would experience.

The closing speed between kite and locust would vary with kite

speed, locust speed, and the angle at which their flight paths

converge. The flight speeds of swarming L. migratoria have been

measured previously [53], so we estimated a window of closing

speeds for an attacking kite based on these. Since kites generally

attacked along slightly downward or flat trajectories, we only

considered variation in angles of flight path convergence in the

horizontal plane. Closing speeds would range from 17.43 m/s for

a fast kite (mean speed + SD) and a fast locust (mean speed + SD)

converging head-on, to 4.09 m/s for a slow kite (mean speed – SD)

converging on a fast locust (mean speed + SD) from behind. This

corresponds to an l/|v| range of 3.9–16.6 ms for a looming kite’s

thorax, as indicated on each of the following figures of

experimental data.

Locust dcmd and Behavioural Responses to Looming
Discs
Laboratory experiments were performed on Locusta migratoria,

a member of the same subfamily as C. terminifera (Acrididae:

Oedipodinae) which also forms swarms and occurs in Australia. It

can therefore be presumed that L. migratoria is also subject to

predation by black kites.

Peak DCMD spike rates [29,30] and gliding response occur-

rence [37] are known to increase with decreasing stimulus l/|v|,

but to date the two trends have been demonstrated in separate

studies using locusts of different species, and the DCMD trend has

not been followed through the lower limit of the l/|v| range we

predict for kite attacks. In response to looming discs with varying

l/|v|, peak DCMD spike rate in L. migratoria varied significantly

Figure 1. Attacks by wild black kites (Milvus migrans) on swarming Australian plague locusts (Chortoicetes terminifera). A, Typical kite
trajectories during attacks on swarming, flying locusts. The head positions of two black kites are plotted in x, y coordinates at 40 ms (one frame)
intervals. Kites characteristically circled above the locust swarm and made swoops into the swarm to catch locusts. Here, one kite performs a shallow
swoop into low-level flapping flight (left to right); a second kite performs a steeper swoop (right to left). Arrows indicate direction of travel. The
background is a wide-field image frame taken from the moment that the first kite began its attack (left of frame), and the second kite is not visible at
this time.�NHNZ Moving Images. B, Kite speeds during attacks on flying locusts, or captures of thrown prey items. Kite speeds were measured for 17
attacks on flying locusts by 10 wild kites where adequate reference features were present in frame (see methods). Common symbol shapes and fill
colours indicate the same individual kite; symbol edge colours distinguish separate attacks by the same kite. Three catches of thrown food items were
filmed in a captive back kite using a static camera (lower traces, circles with black fill), and for these speed could be analysed continuously. Speeds are
plotted at one frame intervals, and are smoothed by averaging across the two neighbouring frames for clarity (means quoted in text were not based
on smoothed data; see methods). The captive kite decelerated while catching thrown food items, but this was not clearly evident for wild kite attacks
on locusts.
doi:10.1371/journal.pone.0050146.g001
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with disc l/|v| (Fig. 2A, open circles; repeated measures ANOVA,

F1.9,17.3 = 87.80, p = 0.001) and was greatest at low l/|v|, which is

in agreement with previous work on Schistocerca spp. [29,30]. As we

showed previously in L. migratoria [37], but replicated here using

the stimuli and display monitor that we used in electrophysiolog-

ical experiments, glide occurrence also increased with declining

stimulus l/|v| (Fig. 2A, black circles). The effect of stimulus l/|v|

on the probability of glide occurrence was significant (repeated

measures binary logistic regression, Wald x2 = 796.40, df = 11,

p,0.001). Through the kite-like range of l/|v| ratios (vertical lines

in Figs 2A2D), peak DCMD spike rates were relatively high and

glide occurrence relatively frequent. Both responses increased as l/

|v| declined within the kite-like range, but appeared to level off at

low l/|v| values outside of this range.

We examined the timing of gliding responses to looming discs in

order to assess whether glides occurred before collision within the

kite-like range of l/|v| values. Mean glide timing was .150 ms in

advance of collision at l/|v| 80.0 ms, but as looming disc l/|v|

declined (because approaches became faster), mean glide timing

shifted closer to the projected time of collision, occurring after the

projected time of collision at l/|v| 5.3 ms and below (Fig. 2B;

repeated measures ANOVA F4.3,47.5 = 42.85, p,0.001; l/|v|

80.0 ms excluded due to missing cases). The proportion of glides

performed in response to a looming stimulus that were before the

moment of collision is plotted in Fig. 2C. This figure shows that in

response to an l/|v| 16.0 ms disc, .70% of glides were initiated

before collision, but in response to an l/|v| 4.0 ms disc, ,30% of

glides were initiated before collision. Below l/|v| 4.0 ms, outside

of the estimated kite-like range of l/|v| values, the proportion of

glides elicited before collision was negligible. Figure 2D shows the

probability that a stimulus with a particular l/|v| value will trigger

a glide before collision – it combines a locust’s probability of

Figure 2. Estimated l/|v| for kite thoraces, and DCMD and behavioural responses to looming discs of varying l/|v| in Locusta
migratoria. A, Known trends in DCMD and behavioural response properties over the range of l/|v| values estimated for the thoraces of looming kites
(vertical lines in this and subsequent panels, see text). Both DCMD peak spike rate (open circles; as previously demonstrated for Schistocerca spp.
[29,30]) and gliding response occurrence (closed circles, as previously demonstrated for L. migratoria [37]), increased with decreasing l/|v| in our
experiments on L. migratoria. Both DCMD and gliding responses were strong within the kite-like range of l/|v| values. B, In our experiments, the mean
timing of glide initiation, relative to the predicted time of collision, declined with declining stimulus l/|v|, and mean glide timing was after the
moment of collision (dashed line) for the looming discs with the lowest l/|v| ratios tested. C, Glides could still be successfully initiated before collision
within the estimated range of kite-like l/|v| values. Plot shows the number of glides successfully initiated before the moment of collision as
a proportion of all glides performed. D, The number of glides initiated before collision expressed as a proportion of stimulus presentations. Plot
shows the combined effect of increasing glide occurrence with decreasing l/|v| (panel A, black circles), and increasing probability of glide initiation
before collision with increasing l/|v| (panel C). DCMD response measurement in panel A: N= 10 locusts (value for each individual a mean of responses
to 6 presentations of each stimulus). Glide measurements in panels A and D: N= 15 locusts (value for each individual calculated from 6 presentations
of each stimulus). Glide measurements in panels B and C: Varying numbers of individuals per data point since locusts that did not glide could not be
included. N at l/|v| 80.0 ms= 5; l/|v| 40.0 ms= 13; l/|v| 26.7, 20.0, 13.3, 10.0, 8.0, 2.7 ms= 14; l/|v| 16.0, 5.3, 4.0, 3.2 ms= 15. In all panels, means plotted6
SEM.
doi:10.1371/journal.pone.0050146.g002
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performing a glide (which is highest for lower l/|v| values; Fig. 2A,

black circles) with the probability that a glide will be initiated

before collision (which is highest for higher l/|v| values; Fig. 2C).

The proportion of stimuli to which a locust responded with a glide

before collision was .40% for l/|v| 16.0 ms, and it declined to

,20% for l/|v| 4.0 ms. Thus, glides before collision were most

frequently observed in response to stimulus approaches at l/|v|

values higher than those predicted for kite attacks, and almost

never observed for approaches with l/|v| values lower than those

predicted for kites. Within the estimated kite-like range, the

probability of a glide before collision in response to a loom

declined with declining l/|v| (indicative of increasing approach

speed).

Locust dcmd and Behavioural Responses to Looming
Discs with Wings
We next investigated the effect on DCMD responses and glide

performance of adding wing-like extensions (‘wings’) to looming

discs to produce a more bird-like stimulus shape. Wing length was

constrained by the dimensions of our display screen to a span of

360 mm, or 4.5 6 body width (wing span is approximately 10 6
body width in a real kite). Adding wings to a looming disc

depressed the peak DCMD spike rate for most disc l/|v| ratios

(Fig. 3A; 2-way repeated measures ANOVA: effect of wings –

F1,9 = 12.07, p= 0.007; effect of l/|v| – F2.2,19.4 = 117.39,

p,0.001; interaction – F2.4,21.4 = 2.57, p = 0.092). At l/|v|

4.0 ms, the depression was relatively small (decrease in mean

peak spike rate from 400 Hz in response to a looming disc, to

390 Hz in response to a disc with wings), but the depression was

greater at higher l/|v| ratios (at l/|v| 40.0 ms, mean peak spike

rate was 261 Hz in response to a looming disc, and 217 Hz in

response to a disc with wings). Inspection of the DCMD response

time courses for l/|v| 20.0, 10.0, and 6.0 ms looms shows that

adding wings to a looming disc slightly augmented DCMD spike

rates during the early stages of approach, but depressed them

during the final, highest frequency part of the DCMD response

close to the end of stimulus movement (Fig. 3B2D). However, the

effect of wings in depressing DCMD spike rates was greater at low

l/|v| (slower approach speeds). Over the final 250 ms of looming

stimulus approach there was a significant interaction between

effects of wings and time bin at all three l/|v| values examined,

but a significant effect of adding wings alone only at l/|v| 20.0 ms

(Fig. 3B–D; 2-way repeated measures ANOVAs: (i) l/|v| 20.0 ms:

effect of wings – F1,9 = 11.99, p= 0.007; effect of time bin –

F2.1,19.2 = 77.75, p,0.001; interaction – F5.0,45.3 = 5.25, p = 0.001.

(ii) l/|v| 10.0 ms: effect of wings - F1,9 = 0.19, p= 0.670; effect of

time bin - F2.7,24.1 = 230.33, p,0.001; interaction - F3.7,33.2 = 5.67,

p = 0.002. (iii) l/|v| 6.0 ms: effect of wings - F1,9 = 2.77, p = 0.130;

effect of time bin - F3.5,31.9 = 232.94, p,0.001; interaction -

F4.4,39.2 = 3.66, p = 0.011).

Gliding behaviour occurrence and timing is much more

variable across repeated trials and individual locusts than the

DCMD response is. Although locusts had a slightly lower

probability of gliding in response to looming discs with wings

than looming discs without wings at most disc l/|v| ratios (Fig. 4A),

the effect was not significant (repeated measures binary logistic

regression: effect of wings – Wald x2 = 0.83, df = 1, p = 0.363;

effect of l/|v| – Wald x2 = 19.01, df = 4, p = 0.001; interaction –

Wald x2 = 2.63, df = 4, p = 0.622). Mean glide timing appeared to

be later for looming discs with wings at l/|v| 10.0 and 20.0 ms,

but not at l/|v| 4.0 and 6.0 ms (Fig. 4B). Overall, the effect of

presence or absence of wings on glide timing was significant (2-way

repeated measures ANOVA: effect of wings – F1,6 = 7.18,

p = 0.037; effect of l/|v| – F1.2,7.0 = 21.27, p = 0.002; interaction

Figure 3. The effect on DCMD responses of adding wings to
looming discs with varying l/|v|. A, Peak DCMD spike rate had
a monotonic relationship with stimulus l/|v| for both looming discs, and
looming discs with wings. However, the addition of wings to a looming
disc caused a small but significant reduction in peak DCMD spike rate
(see text). Vertical lines indicate range of kite-like l/|v| values, as in
Figure 2. B–D, Mean DCMD spike rate plotted in 25 ms time bins for
looming discs at three different l/|v| values, presented with or without
additional wings. Calculated angular subtenses for the looming disc and
wing tip are plotted above mean DCMD responses in each case. For disc

Natural Predators and Locust Escape Responses
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– F1.4,8.2 = 1.78, p = 0.225; l/|v| 40.0 ms excluded due to missing

cases). Using paired t-tests to detect significant differences in mean

glide timing between the winged and unwinged disc at each l/|v|

value, we found significant differences of p,0.05 only for l/|v|

10.0 ms, and no significant differences at any l/|v| value using

Bonferroni adjusted p,0.0125 (Paired t-tests: l/|v| 20.0 ms –

t = 1.95, df = 6, p = 0.100; l/|v| 10.0 ms – t = 2.86, df = 8,

p = 0.021; l/|v| 6.0 ms – t = 0.31, df = 8, p = 0.766; l/|v|

4.0 ms – t = 0.12, df = 8, p = 0.910). Nevertheless, and as predicted

by the overall trend in glide timing, adding wings to looming discs

resulted in a slightly lower proportion of glides occurring before

collision (Fig. 4C; Repeated measures binary logistic regression:

effect of wings – Wald x2 = 4.54, df = 1, p = 0.033; effect of l/|v| –

Wald x2 = 54.90, df = 3, p,0.001; interaction – Wald x2 = 2.83,

df = 3, p= 0.418; test excluded l/|v| 40.0 ms due to missing

cases). As a result, adding wings to a looming disc also resulted in

a lower proportion of stimulus presentations triggering glides that

were initiated before collision (Fig. 4D; Repeated measures binary

logistic regression: effect of wings – Wald x2 = 4.29, df = 1,

p = 0.038; effect of l/|v| – Wald x2 = 62.38, df = 4, p,0.001;

interaction – Wald x2 = 3.66, df = 4, p= 0.454). Thus, adding

wings to a looming disc appeared to have little effect on glide

occurrence, but did have subtle effects on the timing of glide

initiation.

Discussion

Attacking birds are a natural predatory threat faced by locusts

flying in swarms. Here we measured the ground speeds at which

black kites attack flying locusts and estimated from these that the

looming thoraces of kites, as viewed by locusts, are likely to be

characterised by l/|v| ratios in the region of 4–17 ms. We

investigated the previously identified relationships of DCMD peak

spike rate [29,30] and gliding response occurrence [37] with

stimulus l/|v|, over an extended range of l/|v| values, allowing us

to relate these trends to the characteristics of natural predator

attacks. For both DCMD and gliding, strong responses occur in

the l/|v| range estimated for attacking kites. The same overall

pattern was observed when we added wings to simulated looming

discs. However, adding wings to a looming disc caused small but

significant effects on the DCMD response, in particular causing

a slight reduction in spike rate during the final stages of stimulus

approach. Addition of wings to looming discs also caused slight

delays in glide initiation. Regardless of presence or absence of

wings, glides were triggered closer to the time of collision as l/|v|

declined, and occurred relatively infrequently before collision at

the lowest l/|v| ratios tested. Thus, although glides are triggered

reliably at l/|v| ratios estimated to characterise bird predator

attacks, they have a relatively low probability of being successfully

initiated before interception by the attacking predator. However,

the performance of the DCMD in triggering gliding responses in

this scenario is in line with expectations for last-ditch escape

responses where the probability of achieving a successful escape is

often relatively low, as we shall discuss.

Many bird species prey opportunistically on locusts and some,

including black kites, capture flying locusts [44,46,47]. It was

important to measure the speeds of these predators during real

attacks because performance can vary considerably across contexts

[54]. Nevertheless, the attack speeds we report for black kites are

in general agreement with radar measurements of free-flying,

migrating M. migrans (mean speeds of 11.9 m/s –13.8 m/s,

depending on type of flight [55,56]), and with calculated gliding

performance for this species (9.0 m/s [57]). Kites generally

attacked using slightly downward or flat trajectories, but it would

be possible for them to converge upon a flying locust at a variety of

angles of azimuth. We used the flight speeds we measured to

estimate a range of possible closing speeds accounting for different

angles of convergence, and this corresponded to an l/|v| range for

the thoraces of attacking kites of 4 to 17 ms. As a bird attacks

a locust, we would expect the locust to attempt to escape by

steering before resorting to a glide as a last-ditch escape tactic

[39,40]. However, providing that locusts don’t fly substantially

faster than they have been measured to while swarming [53],

attacks should still fall within the l/|v| range we predict. This

estimated range is at the lower end of l/|v| values used to

challenge the DCMD neuron in many laboratory experiments

(e.g. [29,30,31]). However, similar ranges of l/|v| values would be

characteristic of aerial attacks by birds on insects in general.

Although further data aren’t available for bird predators hunting

flying locusts, barn swallows (Hirundo rustica) coarse on the wing for

flying insects at 8.6 m/s when flying low and straight, and 6.8 m/s

when flying higher and more erratically [58]; foraging common

nighthawks (Chordeiles minor) fly at 6.5 m/s when hunting flying

insects [59]. These flight speeds translate to l/|v| values of 1.3–

7.5 ms for the barn swallow, and 2.9–16.8 ms for the common

nighthawk (using thorax widths of 0.033 m for H. rustica and

0.064 m for C. minor, calculated as 10% wingspan [60,61]; prey

flight speed of 4.6 m/s (equivalent to L. migratoria); and not

accounting for standard deviation in either case).

A kite might converge upon a flying locust from any angle

around the body in the horizontal plane, but in laboratory

experiments all stimuli were delivered at 90u to the locust’s long

axis due to constraints imposed by our experimental set up (which

included a large fan apparatus for creating airflow). The angle of

approach for a looming stimulus does not affect the timing of peak

DCMD response, except at the extreme periphery of the receptive

field [62,63,64]. Peak spike rate is largely equivalent for angles of

approach from 30–150u azimuth and from 215–+45u elevation,

but decreases markedly outside of this region [64]. Thus, DCMD

response would be largely equivalent for looms along most angles

of azimuth. However, our approach will overestimate DCMD

responses to the lowest l/|v| (head-on) and highest l/|v|

(approaches from behind) looms. Relative to the solitarious phase,

gregarious S. gregaria have a region of pronounced DCMD

sensitivity caudal and slightly dorsal of the eye’s centre [64].

Video footage showed kites circling above swarming locusts,

swooping down into the swarm to make an attack, and the DCMD

receptive field may be well suited to detecting such an attack

strategy. Steering responses during bird attacks might cause the

apparent motion of an attacking kite to consist of periods of

translation as well as looming. However, when objects undergo

a period of translation before looming, there is no effect on

looming-elicited peak DCMD spike rate, and only a small effect on

peak timing for some stimulus configurations [63].

l/|v| 20.0 ms (B), 10.0 ms (C) and 6.0 ms (D), the addition of wings had
subtle effects on the DCMD response time course, slightly augmenting
spike rates in the early stages of approach but decreasing them during
the final, highest frequency part of the DCMD response (see text); these
effects were most apparent at higher l/|v| ratios. Horizontal grey lines in
each plot indicate the approximately 150 Hz threshold above which
DCMD spikes can summate in order to trigger a glide [38]. This spike
rate was achieved in response to looming discs with and without wings,
but higher spike rates above the threshold were achieved earlier in
response to looming discs without wings than looming discs with
wings. Panels A–D: N = 10 locusts (value for each individual a mean of
responses to 3 presentations of each stimulus). In B–D, symbols are
aligned with the start of each 25 ms time bin. In all panels, means
plotted 6 SEM.
doi:10.1371/journal.pone.0050146.g003
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Our results in L. migratoria support the previously published

relationship between peak DCMD spike rate and looming stimulus

l/|v| demonstrated for Schistocerca americana, and in both solitarious

and gregarious S. gregaria (Acrididae: Cyrtacanthacridinae) [29,30].

The monotonic increase in peak DCMD spike rate with declining

stimulus l/|v| is reflected in the frequency of glide occurrence,

which follows a broadly similar pattern (as we reported previously

in a different set of experiments [37]). Superimposing our

estimated bird predator-like range of l/|v| values onto these

relationships, it is apparent that both DCMD and behavioural

responses are strong to stimuli within this naturalistic range.

However, it would be premature to discuss how such a stimulus-

response relationship may have evolved without first appreciating

the importance of bird predators as a selective force (e.g. [4]). Birds

are a natural predator of locusts (and acridids more generally), and

the video recordings we analysed support the assertion that they

can take considerable numbers of locusts when they are

aggregated together in a swarm. However, the impact of such

predation on locust populations is highly variable [44,46], and for

an individual locust, membership of a swarm can confer a degree

of protection from predator attack [65]. Furthermore, the same

relationship between DCMD response and l/|v| exists for

solitarious and gregarious S. gregaria [30] which differ in flight

behaviour as well as population density and, therefore, possible

vulnerability to aerial predators. Finally, the DCMD is a multi-

functional neuron implicated in emergency behavioural responses

on the ground and in flight [32,33]. A range of different predators

may be experienced across these very different circumstances.

Taking all these factors into account, it is certainly possible that

flying bird predators are a selective pressure on the response

properties of the DCMD, but it seems unlikely that they are the

only one.

Nevertheless, birds are a verified natural predator of swarming,

flying locusts so the performance of the DCMD in eliciting glides

to bird-like looms remains a valid area for investigation. Glides

were triggered closer to collision at lower l/|v|, similar to locust

jump preparation and triggering [34,36], and escape and defensive

responses to simple looming stimuli in other species [66,67].

Within the range of l/|v| values predicted for bird predators,

there was an approximately 50–80% probability that a locust

Figure 4. The effect on gliding responses of adding wings to looming discs with varying l/|v|. A, Adding wings to looming discs caused
a small, non-significant decrease in the relative frequency of glide occurrence across l/|v| values (see text). In this and following panels, vertical lines
indicate the estimated range of kite-like l/|v| values as in Fig. 2. B, The addition of wings to a looming disc appeared to delay the timing of glide
initiation at l/|v| 10.0 and 20.0 ms (but not at 4.0 and 6.0 ms). Overall, addition of wings to a looming disc had a significant effect on glide timing.
However, a significant difference (p,0.05) in glide timings between the winged and unwinged discs at a given l/|v| value was only found at l/|v|
10.0 ms (see text). Dashed line is the calculated time of collision. C, D, The addition of wings to a looming disc caused a small reduction in the
proportion of glides that were successfully initiated before collision (C), and in the number of glides initiated before collision as a proportion of
stimulus presentations (D). See text for statistical tests. Panel A, D: N = 10 locusts (value for each individual calculated from 5–6 presentations of each
stimulus). Panels B, C: Varying numbers of individuals make up the data points at each l/|v| since locusts that did not glide could not be included. N at
l/|v| 40.0 ms no wing= 7; wing= 5; l/|v| 20.0 ms no wing= 9; wing= 7; remaining l/|v|s with and without wings = 9. In all panels, means plotted6 SEM.
doi:10.1371/journal.pone.0050146.g004
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would trigger a gliding response to a looming stimulus, and an

approximately 15–80% probability that when a glide was triggered

it would be successfully initiated before collision. Studies of fast

escape systems in other taxa show broadly comparable perfor-

mance. For an adult wood cricket challenged from the side with

a piston producing air movements that mimic a wolf spider attack,

there is an approximately 60% probability that an escape response

will be elicited, and a 50% probability that that escape will be

successful [6]. However, both probabilities vary considerably with

the angle from which an attack comes, and escape responses are

elicited more frequently in juvenile crickets which experience

greater predation by wolf spiders [4,6]. When juvenile crayfish

perform lateral and medial-giant triggered tail flips to evade an

attacking dragonfly nymph, they successfully evade the firm grasp

of the dragonfly nymph in 45–50% of cases (but in only around

20% of cases for non-giant tail flips) [7]. Furthermore, it is crucial

to recognise that locusts steer away from a looming threat as their

primary means of evading it [37,39,40,68]. As such, glides are

resorted to only as a last-ditch tactic when steering has not been

successful, and we would not expect such behaviours to result in

a high degree of success. During free-flight encounters with bats,

mantids had a 76% escape probability, but when deafened and

reliant on last-ditch tactics (including those triggered by air

movements detected by their cercal system), escape probability

declined to 34% [69].

In general agreement with a locust’s probability of gliding

before collision from laboratory experiments, our observations

from video revealed that black kites consumed a locust after about

80% of attacks, indicating a high probability of capture success. In

contrast, dragonfly nymphs were only successful in killing juvenile

crayfish in ,20% of attacks, despite the relatively low success of

the crayfishes’ initial evasive response [7]. This is because

subsequent tail flips following capture could free a crayfish from

a dragonfly nymph’s grasp [7]. For a locust, there may be a very

low probability of escape once firmly grasped in the talons of a kite,

and a combination of steering and gliding may provide the locust’s

best chance of successful escape.

The functional consequences of a glide are difficult to infer. A

related grasshopper in the family Oedipodinae, Dissosteira carolina,

has been observed making sudden dives to the ground from flight

to evade chasing birds [70], and this is one possible interpretation

of the gliding response. However, in response to looming stimuli in

the estimated bird-like range of l/|v| values, glides occur only

a short time before collision and might not be capable of achieving

more than a small degree of course change before collision (see

also [37]). During their free-flight encounters with bats, deafened

mantids with operational cerci were dropped more often than

deafened mantids without operational cerci [69], indicating that

the main benefit of last-ditch defence triggered by the cercal

system may be in increasing the likelihood of mis-handling by the

predator through a relatively small, late deviation in course. This

seems the most likely benefit conferred by a last-ditch glide in

response to an attacking bird, and our video recordings provided

anecdotal evidence that kites do mishandle and drop locusts

during attempted capture, as well as completely missing the target

locust at times. Although it has been suggested that glides may be

preparation for an evasive banked turn in S. gregaria [41], glides are

too long (mean duration .130 ms for glides after which flight

resumes [37]), and occur too close to collision, to fulfil such

a function.

Adding wing-like extensions to a looming disc had little effect on

the overall relationships with stimulus l/|v| of DCMD response

and glide performance discussed so far. Although ours is not the

first study to use bird-like shapes to stimulate the DCMD, the only

previous study focussed on habituation of the DCMD response

and did not experimentally compare simple versus complex

looming shapes [52]. Since the performance of visual pathways in

response to naturalistic stimuli can differ from that predicted from

responses to simple stimuli [71,72], it is reasonable to ask whether

the DCMD and gliding performance are adequately stimulated by

simple looming discs. However, the addition of wings to a looming

disc actually induced slightly weaker DCMD responses, and

slightly delayed glide initiation. A reduction in DCMD peak spike

rate may be due to an increase in the effects of lateral inhibition

between elements presynaptic to the LGMD [25,28,73], caused by

a relative increase in the extent of the moving edges in the image,

and the expansion of the wing tip in advance of the expansion of

the main disc. Summation of DCMD spikes above a threshold of

150 Hz is implicated in glide triggering [38], and this threshold

was reached in response to looming discs with and without wings.

However, the steeper rise in spike rate above this threshold in

response to a disc without wings means that summation sufficient

for a motor neuron spike would be achieved earlier, leading to

earlier glide initiation. Trends in DCMD response profile and

glide timing were most evident at higher l/|v| values within the

tested range, towards the upper end of that estimated for kite

attacks. However, gliding occurrence and timing are relatively

variable due to interactions between DCMD response and the

ongoing wingbeat cycle [38], and small delays in glide timing are

indicated across l/|v| values by a decrease in the probability of

glide occurrence before collision in response to discs with wings

versus discs without wings. It is important to note that the wing we

used was shorter, relative to disc diameter, than the wing of a real

kite and did not flap. This was a reasonable initial approach

because kites often attacked with wings held still, outstretched, and

slightly flexed at the wrist during a gliding dive.

In this paper we have provided evidence that the attacks of an

avian predator of flying locusts are likely to be characterised by

relatively low l/|v| ratios for the looming bird’s thorax. In

response to looming discs with similar l/|v| ratios, the DCMD

responds strongly, and glides occur readily with probabilities of

glide initiation before collision equivalent to successful escape rates

in other last-ditch escape systems. Adding outstretched wings to

looming discs for a more bird-like profile has subtle effects on

DCMD response and gliding performance. Further studies of

predator-prey interactions in a natural context are essential to

advance our understanding of this and other escape-triggering

neural mechanisms.

Materials and Methods

Ethics Statement
Experiments conformed to the legal requirements of the UK

and Republic of Ireland which do not regulate experimentation on

insects. Measurements of the black kite were obtained with the

assistance, and under the guidance, of a trained falconer, and with

permission from the International Centre for Birds of Prey

(Gloucestershire, UK).

Black Kite Behaviour
Video of black kites (M. migrans) capturing flying Australian

plague locusts, C. terminifera (Acrididae: Oedipodinae), was

obtained from Natural History New Zealand (Dunedin, New

Zealand). Footage was recorded in Mundi Mundi, NSW,

Australia, in the summer of 2000. Frame resolution was

5756720 pixels.

In some footage, kites were filmed from a distance with a static

camera (e.g. Fig. 1A). This was only used to qualitatively describe
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the overall pattern of kite attack behaviour. Large numbers of kites

(20–25 in frame at times) circled above swarming, flying locusts,

periodically swooping into the swarm to make a catch.

In other footage, the camera panned to follow single kites

through multiple swooping attacks (e.g. Fig. S1). This was viewed

using VirtualDubMod (http://virtualdubmod.sourceforge.net/)

and inter-attack intervals measured for 12 individual kites that

were continually in frame for 17–109 s each and made $ three

attacks each. Capture success was measured as the frequency at

which attacks were followed by the kite transferring a prey item

from talons to beak (excluding cases in which this behaviour may

have been obscured from view). For analysis of kite ground speeds,

sequences of frames were extracted, de-interleaved using ImageJ

(http://imagej.nih.gov/ij/index.html), and combined as an image

stack using Image Tool (UTHSCA, San Antonio, TX, USA;

http://compdent.uthscsa.edu/dig/itdesc.html). We chose 17 at-

tacks by 10 individuals in which the camera panned to follow a kite

through an attack oriented perpendicular to the camera (see

Fig. 1B). The x, y co-ordinates (pixels) of the kites’ beaks were

marked relative to clearly identifiable image features where they

were available (because the camera panned to follow the attack;

e.g. Fig. S1). This meant that several segments may have been

analysable within each attack sequence. Measurement error was

reduced by making each measurement three times and taking the

mean. The length of an individual kite was 69.5615.0 pixels

across sequences and was used to calibrate the co-ordinate system

to published size measurements (wingspan= 1.20–1.53 m,

length = 0.46–0.66 m [51]; means used for calibration and

calculation: wingspan= 1.36 m, length = 0.56 m). In order to

avoid pseudoreplication, mean speeds for each analysable segment

were calculated as the mean of speed estimates at each frame

within that segment. Mean speed for each attack was the mean

across all segments in that attack, and mean speed for each kite the

mean across all attacks by that kite.

We also filmed a single, trained, male black kite at the

International Centre for Birds of Prey (Newent, Gloucestershire,

UK), where we could make recordings with a static video camera

and directly measure features in frame for more exact calibration

than was possible in video of wild kite attacks. The trained kite was

filmed catching food items thrown into the air by a falconer, but

on later analysis of videos this behaviour was noted to be

qualitatively different to that seen in wild kites. Nevertheless,

videos of the trained kite provided useful support for the speed

estimates made for wild kites, and helped in the assessment of

deceleration trends during wild kite attacks.

In order to characterise black kite attacks from the locust point

of view we needed to convert kite attack speeds to closing speeds

with the target locust. However, the target locust could not be seen

in most attack sequences. Using published flight speed measure-

ments for L. migratoria [53], we calculated closing speeds for a fast

kite (mean speed + SD) and a fast locust (mean speed + SD)

converging head-on, and for a slow kite (mean speed – SD)

converging on a fast locust (mean speed + SD) from behind. The

geometry of a looming disc is described by its l/|v| ratio, so we

calculated this ratio for a looming kite’s thorax, which is

approximately disc shaped when viewed head-on. Images

suggested that kite thorax width was ,10% of wingspan

(0.136 m, see above), so we used l=0.068 m for our calculations.

We confirmed that this estimate of thorax width was reasonable by

measuring a captive male black kite at the International Centre for

Birds of Prey. This bird had a wingspan of 1.42 m, and a thorax

width of 0.11 m.

Locust dcmd and Behavioural Responses
Experiments were performed on adult Locusta migratoria L.

(Acrididae: Oedipodinae), obtained from Blades Biological (Eden-

bridge, Kent, UK).

(I) Visual Stimulation
Looming visual stimuli were programmed using Visionegg

software [74] (http://www.visionegg.org/) on an Intel Pentium 4-

equipped PC with a PNY (Parsippany, NJ, USA) Nvidia Geforce

6200 AGP8X graphics card. Stimuli were displayed on an Iiyama

(Tokyo, Japan) visionmaster pro 454 HM903DT A CRT monitor

running at a resolution of 640 6 480 pixels at 200 Hz.

Stimuli simulated the approaches of a 0.08 m diameter black

disc at 0.5–15.0 m/s. A 0.08 m diameter looming disc can be used

to represent a 0.136 m diameter kite body looming at a faster

speed because the expansion profile of looming objects with the

same l/|v| ratio is identical. By altering disc approach speed we

produced disc l/|v| values of 80.0, 40.0, 26.7, 20.0, 16.0, 13.3,

10.0, 8.0, 6.0, 5.3, 4.0, 3.2, and 2.7 ms, allowing us to sample

DCMD and behavioural responses within and to both sides of the

kite-like l/|v| range we estimated. Looming disc stimuli were

delivered with or without a 0.3660.02 m horizontal black bar

representing wings intersecting the disc 0.018 m above its centre.

Stimuli were presented over a white background. Background

luminance was estimated at 65.7 cd/m2 (using Canon (Tokyo,

Japan) IXUS 850IS digital camera spot meter, after Unwin [75]).

This is broadly comparable to the luminance of a grey sky near to

the horizon at noon (100 cd/m2 [76]), and is similar to that used in

some previous studies of the locust DCMD (e.g. [77]). Objects

approached over a simulated distance of 10 m and ended their

approach level with the monitor screen, 0.07 m from the locust. A

custom-built light-detector circuit monitored an area of screen that

dimmed during stimulus delivery for data synchronisation.

(ii) DCMD Recordings
DCMD activity was recorded extracellularly in 20 locusts.

Locusts were restrained ventral side up using plasticine bands. The

head was restrained using plasticine and insect pins and the ventral

sclerite of the neck exposed by tilting the mouthparts forward. A

pair of 50 mm copper wires, insulated but for their tips, were

inserted through a pair of holes pierced on the left-hand side

(relative to the locust) of the neck sclerite. DCMD recordings were

amplified with standard AC amplifier and captured to disc using

a micro 1401 analogue-to-digital converter and Spike2 v. 6 for

Windows (Cambridge Electronic Design, UK). In our first

experiment, each locust received six presentations of looming

discs at twelve l/|v| values. In our second experiment, each locust

received three presentations of looming discs with and without

wings at five l/|v| values. In both experiments stimuli were

delivered in pseudorandom order and separated from the next by

a 2.5 min interval. During the interval, a hindleg was mechani-

cally stimulated for 5 s to prevent habituation and to ensure

a flight-like arousal of DCMD sensitivity [31]. DCMD spikes were

the largest in the nerve cord and were identified offline using

Spike2. DCMD responses were converted to a mean spike rate

computed at each spike event and calculated by averaging over the

preceding 25 ms (half wingbeat) window. An individual’s peak

DCMD spike rate was calculated as the mean across all stimulus

presentations at each l/|v|.

(iii) Flight Behaviour
Glide occurrence was recorded in 25 flying locusts tethered via

the dorsal pronotum to a metal bar suspended in front of a laminar
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airflow (see [37]). An infra-red emitter and detector circuit

produced a voltage signal each time a wing passed a horizontal

line parallel with the locust’s long axis. Locusts were allowed to fly

until they adopted strong flight and a characteristic flight posture

(normally with hind legs tucked). Stimuli were as described above

for electrophysiological recordings. Each locust received five or six

presentations of each stimulus delivered in pseudorandom order

and separated by an interval of 30 s (the DCMD is robust to

habituation in flying locusts, even at lesser inter-stimulus intervals

[31]). If a locust did not fly strongly during a stimulus presentation,

that presentation was excluded from further analysis. Glides were

defined as pauses between consecutive wingbeats .1.256mean

duration of the preceding 10 wingbeats [37]. Glide timings were

calculated using the timing of the last signal from the IR wingbeat

sensor preceding each glide, relative to the signal from the light-

detector circuit monitoring stimulus delivery.

Statistical Analysis
Statistical analyses were conducted using IBM SPSS Statistics v.

19.0 (IBM Corp., Armonk, NY, USA). Electrophysiological and

glide timing data were analysed using one- (l/|v|) or two-factor (l/

|v| and presence or absence of wings) repeated measures

ANOVA. Sphericity was assessed using Maunchly’s test and

evaluation of epsilon. Where violations were detected by either

metric, the Greenhouse-Geisser correction to degrees of freedom

was applied. Glide occurrence data were analysed using repeated

measures binary logistic regression implemented using the SPSS

‘GENLIN’ procedure. We report test of model effects statistics

describing whether a tested factor is a significant predictor of glide

occurrence. Because glides did not occur with the same frequency

in response to each stimulus, our data set for measurements of

those glides (timing, probability of triggering before collision) was

unbalanced. To conduct statistical analyses of these measure-

ments, we therefore excluded stimuli to which glides were rare;

listwise deletion within SPSS then removed individual locusts with

missing cases from the analysis.

Supporting Information

Figure S1 A typical attack by a black kite (M. migrans),
on a flying locust (C. terminifera). Images proceed left to

right, and top to bottom, and in each frame the original recording

timecode is provided (hours:minutes:seconds:frames; 25fps). Here,

a locust is captured immediately after the last frame in the

sequence. Since the camera panned to follow kites through each

attack, distinctive image features were used to centre a coordinate

system for speed measurements (in this case, a tree; white dot with

black edge). � NHNZ Moving Images.

(TIF)

Figure S2 Sudden height loss by a flying locust in
response to a looming black kite. In this sequence a black

kite swoops (frames A–D), and intercepts a locust (frames E and F,

target locust not visible), but a second locust is clearly visible in the

same focal plane (arrows). The kite (not now attacking), looms

behind the steadily flying locust (frames G–J). The locust then

quickly looses height when the kite gets close (frames K–P). Images

proceed left to right, and top to bottom and are enlargements of

the same section of each frame; inter-frame interval is 40 ms.

Locusts are Australian plague locusts (C. terminifera). � NHNZ

Moving Images.

(TIF)
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47. Sánchez-Zapata JA, Donázar JA, Delgado A, Forero MG, Ceballos O, et al.

(2007) Desert locust outbreaks in the Sahel: resource competition, predation and
ecological effects of pest control. J Appl Ecol 44: 323–329.

48. Joern A (1992) Variable impact of avian predation on grasshopper assemblies in

sandhills grassland. Oikos 64: 458–463.

49. Joern A (1986) Experimental study of avian predation on coexisting grasshopper

populations (Orthoptera: Acrididae) in sandhills grassland. Oikos 46: 243–249.

50. Curtis LK, Rowland P (2008) Australian kites. Wildlife Australia Magazine

Winter 2008: 41.

51. Ferguson-Lees J, Christie DA (2001) Raptors of the world. New York: Houghton
Mifflin.

52. Gray JR (2005) Habituated visual neurons in locusts remain sensitive to novel

looming objects. J Exp Biol 208: 2515–2532.
53. Baker PS, Gewecke M, Cooter RJ (1981) The natural flight of the migratory

locust, Locusta migratoria L. III. wing-beat frequency, flight speed and attitude.

J Comp Physiol A 141: 233–237.
54. Irschick DJ (2003) Measuring performance in nature: Implications for studies of

fitness within populations. Integr Comp Biol 43: 396–407.
55. Bruderer B, Boldt A (2001) Flight characteristics of birds: I. Radar

measurements of speeds. Ibis 143: 178–204.

56. Spaar R (1997) Flight strategies of migrating raptors; a comparative study of
interspecific variation in flight characteristics. Ibis 139: 523–535.

57. Chatterjee S, Templin RJ, Campbell KE Jr (2007) The aerodynamics of
Argentavis, the world’s largest flying bird from the Miocene of Argentina. Proc

Natl Acad Sci USA 104: 12398–12403.
58. Blake RW, Kolotylo R, de la Cueva H (1990) Flight speeds of the barn swallow,

Hirundo rustica. Can J Zool 68: 1–5.

59. Brigham RM, Fenton MB, Aldridge HDJN (1998) Flight speeds of foraging
common nighthawks (Chordeiles minor): Does the measurement technique matter?

Am Midl Nat 139: 325–330.
60. Cramp S (1985) Handbook of the birds of Europe, the middle east, and north

Africa. The birds of the western palearctic, vol. IV. terns to woodpeckers.

Oxford: Oxford University Press.
61. Cramp S (1988) Handbook of the birds of Europe, the middle east and north

Africa. The birds of the western palearctic, vol. V. tyrant flycatchers to thrushes.
Oxford: Oxford University Press.

62. Gabbiani F, Mo C, Laurent G (2001) Invariance of angular threshold
computation in a wide-field looming-sensitive neuron. J Neurosci 21: 314–329.

63. McMillan GA, Gray JR (2012) A looming-sensitive pathway responds to changes

in the trajectory of object motion. J Neurophysiol 108: 1052–1068.
64. Rogers SM, Harston GWJ, Kilburn-Toppin F, Matheson T, Burrows M, et al.

(2010) Spatiotemporal receptive field properties of a looming-sensitive neuron in
solitarious and gregarious phases of the desert locust. J Neurophysiol 103: 779–

792.

65. Sword GA, Lorch PD, Gwynne DT (2005) Migratory bands give crickets
protection. Nature 433: 703.

66. Yamamoto K, Nakata M, Nakagawa H (2003) Input and output characteristics
of collision avoidance behavior in the frog Rana catesbeiana. Brain Behav Evol 62:

201–211.
67. Yamawaki Y (2011) Defence behaviours of the praying mantis Tenodera aridifolia

in response to looming objects. J Insect Physiol 57: 1510–1517.

68. Gray JR, Lee JK, Robertson RM (2001) Activity of descending contralateral
movement detector neurons and collision avoidance behaviour in response to

head-on visual stimuli in locusts. J Comp Physiol A 187: 115–129.
69. Triblehorn JD, Ghose K, Bohn K, Moss CF, Yager DD (2008) Free-flight

encounters between praying mantids (Parasphendale agrionina) and bats (Eptesicus

fuscus). J Exp Biol 211: 555–562.
70. Cooper WE (2006) Risk factors and escape strategy in the grasshopper Dissosteira

carolina. Behaviour 143: 1201–1218.
71. Kayser C, Körding KP, König P (2004) Processing of complex stimuli and

natural scenes in the visual cortex. Curr Opin Neurobiol 14: 1–6.
72. Reinagel P (2001) How do visual neurons respond in the real world? Curr Opin

Neurobiol 11: 437–442.

73. Rind FC, Simmons PJ (1998) Local circuit for the computation of object
approach by an identified visual neuron in the locust. J Comp Neurol 395: 405–

415.
74. Straw AD (2008) Vision egg: an open-source library for realtime stimulus

generation. Front Neuroinform 2: 4.

75. Unwin DM (1980) Microclimate measurement for ecologists. London: Academic
Press.

76. Middleton WEK (1952) Vision through the atmosphere. Toronto: University of
Toronto Press.

77. Gabbiani F, Krapp HG, Laurent G (1999) Computation of object approach by

a wide-field motion-sensitive neuron. J Neurosci 19: 1122–1141.

Natural Predators and Locust Escape Responses

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e50146


