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Malaria is a deadly infectious disease caused by the intraerythrocytic protozoan parasite
Plasmodium. The four species of Plasmodium known to affect humans all produce an inor-
ganic crystal called hemozoin (HZ) during the heme detoxification process. HZ is released
from the food vacuole into circulation during erythrocyte lysis, while the released para-
sites further infect additional naive red blood cells. Once in circulation, HZ is rapidly taken
up by circulating monocytes and tissue macrophages, inducing the production of pro-
inflammatory mediators, such as interleukin-1β (IL-1β). Over the last few years, it has been
reported that HZ, similar to uric acid crystals, asbestos, and silica, is able to trigger IL-1β

production via the activation of the NOD-like receptor containing pyrin domain 3 (NLRP3)
inflammasome complex. Additionally, recent findings have shown that host factors, such
as fibrinogen, have the ability to adhere to free HZ and modify its capacity to activate host
immune cells. Although much has been discovered regarding NLRP3 inflammasome induc-
tion, the mechanism through which this intracellular multimolecular complex is activated
remains unclear. In the present review, the most recent discoveries regarding the capacity
of HZ to trigger this innate immune complex as well as the impact of HZ on several other
inflammatory signaling pathways will be discussed.
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INTRODUCTION
Malaria is an infection that affects 216 million individuals world-
wide. Every year, approximately 700,000 people succumb to this
devastating disease (1). The protozoan parasite Plasmodium is the
etiological agent of malaria and it is transmitted during the blood
meal of a female Anopheles mosquito (2). Of all the Plasmodium
species infecting humans, P. falciparum is the most virulent and its
pathology is characterized by severe anemia or the development
of cerebral malaria, generally leading to death if left untreated (3).
The Plasmodium life cycle within its mammalian host includes a
non-pathological liver stage followed by red blood cell (RBC) inva-
sion by merozoites, the infectious form of the parasite, which initi-
ates the symptomatic intraerythrocytic cycle (4). Classical malaria
paroxysms are characterized by periodic fevers and chills, which
are synchronized with the release of merozoites from the infected
RBC (iRBC) (5). Furthermore, in the case of P. falciparum, the
sequestration and destruction of iRBC in the vasculature of lym-
phoid organs and the brain exacerbates this pathology (6). Disease
severity was previously solely attributed to parasite virulence fac-
tors (5). However, recent studies have suggested that modulation
of the immune system is involved in the development of pathology
through the induction of a strong inflammatory response at the
beginning of the acute phase, followed by a suppression of the host
immune system at later time points (7).

MALARIA AND INFLAMMATION
Systemic hyperactivation in P. falciparum-infected patients is char-
acterized by elevated levels of circulating nitrogen oxide reactive
intermediates (8, 9) and by various cytokines, such as IFNα/γ (10–
12), TNFα (5, 13–18), IL-1 (5), IL-6 (19), and the chemokine IL-8
(20). Furthermore, the levels of these cytokines and chemokines
have been found to correlate with different manifestations of
severe malaria (14, 16–19). Although the generation of these pro-
inflammatory molecules favors reduction of the parasitic load,
their exacerbated production seems to play a key role in the devel-
opment of pathology. Both TNFα and IL-1β are considered to be
important mediators of fever (3), and participate in the attach-
ment of P. falciparum-iRBC to the vascular endothelium (21–23).
And in vivo studies have demonstrated that the cytokines TNFα

and IFNγ are essential for the development of cerebral malaria by
inducing the expression of the adhesion molecule ICAM-1 and
nitric oxide (NO) (24, 25). Finally, an in vitro study has shown
that the induction of the pyrogenic molecules MIP-1α and MIP-
1β by Plasmodium may play an important role in the initiation of
fever (26).

During human or murine malaria, phagocytes [e.g., mono-
cytes/macrophages (MØ), and to a lesser extent neutrophils
(NØ)] have been demonstrated to play a crucial role in host
defense by engulfing free parasites and Plasmodium-iRBC, and
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by eliminating parasites through a respiratory burst-mediated
mechanism (27, 28). During the early phase of the infection,
the number of phagocytes increases and their activity intensi-
fies (29–33). Moreover, since tissue and circulating MØ are the
main source of cytokines during severe malaria (5), it seems
that their contribution to the exacerbation of the inflammatory
response is also important. For instance, in vitro studies have
reported the production of several phagocyte-secreted molecules
(e.g., IL-1, IL-6, IL-12, and TNFα) (3, 5, 14, 15, 34–40) by human
and murine MØ upon contact with Plasmodium-iRBC or malar-
ial antigens. Furthermore, the enhanced IFNγ production (19,
41), complement activation (42), and hypergammaglobulinemia
observed during the course of acute malarial infection could stim-
ulate cytokine release by MØ (43, 44). Additionally, the production
of leukotrienes and reactive oxygen species (ROS) by phagocytes
during infection seems to contribute to malaria pathogenesis (5).

HZ AND MALARIA
Although enhanced activation of the immune system has been
reported during the early stage of the malarial infection, a
markedly reduced or absent immune response is observed later
during the acute phase of human and murine malaria (45, 46).
The most well-studied mechanism explaining this phenomenon is
the reduction of T cell proliferation and activity that occurs during
malarial infection (47, 48). However, the reduction in T cell num-
bers is transient (49), and the restoration of their basal numbers
does not restore their ability to specifically respond to malaria anti-
gens (29), suggesting that other components of the immune system
are also affected. Accordingly, various models of murine malaria
have demonstrated that MØ functions (e.g., antigen presentation
and microbicidal functions) (7, 10, 29, 50–54) are greatly altered
during the course of infection, but the mechanisms involved in
the functional modulation of MØ by Plasmodium are still incom-
pletely understood. Several lines of evidence suggest that the
parasite and its metabolites, principally hemozoin (HZ) and glyco-
sylphosphatidylinositol (GPI), which are released into circulation
during the intraerythrocytic cycle, could contribute to the activa-
tion and/or the suppression of the immune response (7, 52, 55,
56). The impact of HZ on host physiology and the host response
has been a subject of increasingly intensive studies over the last
10 years, and already published data suggest that this metabolite
could have an important role in malaria pathophysiology.

Hemozoin is a crystalline, brown pigment that is formed and
sequestered in the digestive vacuole of Plasmodium as a product of
hemoglobin (Hb) catabolism (57). The parasite digests up to 80%
of the Hb in the host RBC, which it utilizes as an essential source
of nutrients and energy (2). However, this process generates heme,
which is highly toxic to the parasites. Since the parasite is unable
to excrete the free heme and does not possess a heme oxygenase to
recover the iron and detoxify the heme, it aggregates the heme into
an insoluble crystal, HZ (58, 59). It was initially thought that this
reaction was conducted by a heme polymerase (60). Some pro-
teins have been proposed as candidates (61), but HZ formation
does not require the use of a protein or a lipid (62–65), thus this
aspect of HZ metabolism remains controversial (61).

In vivo, HZ crystals are remarkably uniform in size and shape;
however, only certain synthetic protocols allow for the isolation

of synthetic crystals with this morphology (58, 66, 67), with many
synthetic protocols yielding material that is poorly crystalline (58,
68). HZ is composed of hematin molecules bonded by recipro-
cal iron–carboxylate linkages to form dimers, which are further
connected via hydrogen bonds to form a triclinic crystal (69–71).
Although HZ is remarkably thermally stable and insoluble, it has
one of the highest concentrations of pro-oxidant sites of any con-
densed biomaterial, and therefore it may be the source of slowly
released oxidation catalysts or the site of surface generated oxi-
dation catalysts. Electron diffraction has been used to index the
faces of HZ to determine the specific structures on each surface.
The smallest, fastest growing faces are dominated by free propi-
onic acid groups, while the larger faces of the crystal correspond
to the hydrophobic flat porphyrin plane of the hematin dimers.
Thus, these two pairs of faces on the HZ prisms contrast markedly
in nature, with the former being very polar and hydrophilic, and
the latter being hydrophobic and lipophilic.

In the past, HZ was only considered to be a metabolic waste,
i.e., merely the byproduct of heme detoxification by the parasite
(56). However, this molecule has been shown to sequester in var-
ious organs (e.g., liver, spleen, and brain), to be actively engulfed
by phagocytes, and to modulate MØ functions, indicating that
HZ can potentially contribute to the development of malaria
immunopathogenesis (2, 26, 72–80). Following the rupture of
Plasmodium-iRBC, HZ is released from the parasite digestive vac-
uole and is rapidly engulfed by phagocytes (29, 33, 56). In human
and murine malaria, a large number of circulating phagocytes
are loaded with HZ, as are phagocytes in the brain and lymphoid
organs, such as the spleen (26, 29, 30, 56, 58, 81), where its presence
seems to correlate with the severity of the disease. Although HZ
is generated during malarial infection caused by all Plasmodium
species, including the species-infecting mice (e.g., P. chabaudi and
P. berghei), the amount released during severe or cerebral malarial
infection due to P. falciparum, can be markedly more abundant
and localized than compared to mild cases of malaria observed in
individuals infected with P. malariae, P. ovale, or P. vivax (82).

HZ, IMMUNE CELLS, AND INFLAMMATION
Hemozoin accumulation occurs during erythrocyte rupture:
merozoites, along with HZ, free heme, and other contents of
the cytoplasm and digestive vacuole of the parasite are released.
Many immune cells such as monocytes, macrophages, neu-
trophils, endothelial cells, and dendritic cells are able to inter-
act with and internalize HZ and iRBC. Among these, the most
well-characterized HZ-internalizing cells are the monocytes and
macrophages. It has been well documented that human mono-
cytes rapidly engulf HZ, which can fill up to 30% of their total cell
volume. Furthermore, the consumed HZ can persist unmodified
within the monocytes for long periods of time (83).

Accumulation of HZ in the phagocytic cells of the immune
system is used in the diagnosis and prognosis of malaria. In
pioneering studies, Laveran described the presence of the pig-
ment granules not only in the iRBC, but also in phagocytes; in
some cases, HZ could be detected in RBC that did not contain
parasites (84). High levels of HZ within monocytes and neu-
trophils have been shown to correlate with disease severity. It
was observed that adult patients who succumbed to P. falciparum
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FIGURE 1 | Synthetic hemozoin analysis. Scanning electron micrographs of rapid crystalline HZ (rcHZ) and Plasmodium falciparum-native HZ. X-ray powder
diffraction (XRD) analysis allows the determination of the quality of the crystal. Taken from Ref. (86).

infections presented with a higher proportion of HZ-containing
neutrophils or monocytes than surviving patients (75). Addition-
ally, it has been shown that children with cerebral malaria have
more HZ-containing neutrophils than mildly infected or asymp-
tomatic children (82). Furthermore, patients with severe malaria
have iRBC and HZ-laden monocytes in their brain capillaries (85).
The same profile of HZ accumulation within the organs has also
been observed in the murine model of cerebral malaria (80).
The presence of HZ in these immune cells corresponds with its
immune modulatory activity.

The role of HZ in the modulation of host innate and inflam-
matory responses has been investigated by many researchers, using
different HZ preparation protocols. HZ can be synthesized from
hematin (sHZ) or native hemozoin (nHZ) can be purified from
iRBC in culture (Figure 1). nHZ needs to be further treated to
remove any proteins, lipids, and other materials from disrupted
parasite that could have adhered to the highly amphiphilic mol-
ecule, in order to obtain a pure product. These HZ preparations
have been used to gain a greater and more thorough understand-
ing of the role of HZ in malarial pathology. Although sHZ and
nHZ crystals of similar sizes are capable of inducing the same level
of inflammatory mediators, sHZ with a smaller or larger crys-
tal size will differently affect the production of pro-inflammatory
cytokines. This is believed to occur because the smaller crystal
sizes have a greater surface of interaction for a given amount of
material (86).

Over the last 10–15 years, several groups have reported that HZ
accumulation within MØ modulates several of their functions, and
is associated with some malarial symptoms, such as fever, anemia,
and splenomegaly (26, 88). It has been determined that human
monocytes and murine MØ stimulated with HZ (purified from
various species of Plasmodium or synthetically generated) pro-
duce large amounts of cytokines (IL-10, IL-12, IL-1β, and TNFα),
chemokines (MIP-1α and MIP-1β), MIF erythropoietic inhibitor,
and adhesion molecules (CD11/CD18) (4, 26, 45, 89). Consistent
with these observations, we previously published the first report

that in vivo inoculation of sHZ rapidly induces the generation of
various pro-inflammatory mediators, including myeloid-related
proteins (MRPs; S100A8 and S100A9), chemokines (MIP-1α/β,
MIP-2, and MCP-1), and cytokines (90); strongly suggesting that
HZ itself might play an important role in the development of
malaria-related pathologies. Additionally, in vitro studies from our
laboratory revealed that HZ significantly enhances IFNγ-induced
NO production by MØ (91), an important inflammatory event
that could favor cerebral malaria development. We also found
that native PfHZ- and sHZ-induced MØ chemokine expression
is regulated by oxidative stress-dependent (92) and -independent
mechanisms. Contrastingly, some in vitro studies have shown that
MØ which have internalized HZ for a long period of time (over
24 h), exhibited inhibition of PKC (68) and NADPH oxidase (72),
IFNγ-inducible class II (MHC-II) expression (45), LPS-induced
functions (e.g., CD14, and TNFα) (34, 79, 93, 94), phagocytosis
(72), microbicidal activity (74), and the respiratory burst (95).
Despite these functional alterations and the possible toxic effects
of oxygen radicals and lipoperoxidation triggered following HZ
phagocytosis (72, 87, 88), the MØ and monocytes were able to
remain viable for several days.

Many studies have reported that HZ induces TNFα gene tran-
scription and expression. TNFα production has been shown to
correlate with severe malaria, as it is found in higher concentra-
tions in the serum of patients with severe malaria compared to
those with mild malaria (96, 97). Supporting its importance in
inflammatory-related processes, HZ-induced TNFα production
by human monocytes was found to be inhibited by IgM purified
from malaria patients, but not from healthy donors (98). Another
important cytokine involved in malarial fever is IL-1β. HZ was
found to induce IL-1β expression in an air pouch model (90),
and in the liver when intravenously injected (86). Recently, several
studies have reported that HZ induces IL-1β production by activat-
ing the inflammasome protein complex (99–101). The cellular and
molecular mechanisms underlying the ability of HZ to activate the
NLRP3/inflammasome complex will be further discussed later in
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FIGURE 2 | In situ localization of Plasmodium hemozoin and
parasitic DNA. Confocal pictures of RBC from Plasmodium chabaudi
DK-infected mice. Selected images of schizonts and late trophozoites
stages of iRBC. DAPI staining was used to visualize malarial DNA (blue).

No staining was required to localize HZ since it autofluorescences (red).
Even after merozoite release from the iRBC (see top right panel), malarial
DNA was never in contact with hemozoin. Images were taken from
Ref. (86).

this review. Furthermore, it was also found that HZ can induce the
production of IL-6 by endothelial cells in vitro and that intraperi-
toneal administration of HZ can induce IL-6 production in vivo
(100). Similar findings were also observed in a more controlled
in vivo environment using an air pouch model (90).

Apart from cytokines, HZ also causes the release of various
chemokines and the expression of chemokine receptors, as was
briefly mentioned earlier. The engagement of a chemokine with
its specific receptor triggers an intracellular signaling cascade
that results in chemotactic recruitment of inflammatory cells,
leukocyte activation, and antimicrobial effects (102). Using an air
pouch model and intravenous injection (90), as well as murine
macrophages (86, 103), it was shown that HZ induced the expres-
sion of various chemokines (MIP-1α/CCL3, MIP-1β/CCL4, MIP-
2/CXCL2, and MCP-1/CCL2) and chemokine receptors (CCR1,
CCR2, CCR5, CXCR2, and CXCR4). HZ was also found to aug-
ment the production of several β-chemokines in peripheral blood
mononuclear cells (PBMC) (104), endothelial cells (100), and
in vivo (26, 105). These results strongly support the role of HZ
as a potent pro-inflammatory agent that could contribute to the
immunopathology of malaria observed in humans and murine
malaria.

HZ/PHAGOCYTE INTERACTION: FROM BASIC SIGNALING TO
NLRP3 INFLAMMASOME
As mentioned above, HZ is capable of activating different cell
types resulting in the release of several pro-inflammatory and
anti-inflammatory mediators. However, the intracellular mech-
anisms underlying HZ-induced cellular events are still under
investigation. An initial study revealed a synergism between HZ
and IFNγ resulting in the induction of NO production. The

generation of the microbicidal agent required the activation of
extracellular signal-regulated kinase (ERK) 1/2 pathway, but was
independent of an IFNγ-induced activation of the JAK2/STAT-
1 pathway (91). However, both ERK and JAK2/STAT-1 signaling
was found to be necessary to attain maximal NF-κB activation and
iNOS promoter-binding capability (91). NF-κB was also shown to
be greatly involved in HZ-induced chemokine expression (103).
In addition to MAP kinases, HZ has recently been described to
be capable of activating spleen tyrosine kinase (Syk), augmenting
inflammasome activation and IL-1β production by THP-1 human
monocytic cells and murine macrophages (99). In the same study,
it was revealed that kinases downstream of Lyn/Syk, for instance,
MAP kinase family members, might be involved in inflammasome
activation, since inhibition of ERK, but not p38, decreased IL-1β

production.
Despite the fact that HZ has been shown to be immunologically

active in vitro and in vivo, the cellular receptors recognizing HZ
remain elusive. However, the efficiency of HZ-induced signaling
and phagocyte function seem to depend on its internalization and
lipid raft integrity. It is well known that the cells of the innate
immune system recognize pathogen-associated molecular pat-
terns (PAMPs) or damage-associated molecular patterns (DAMPs)
by expressing gene-encoded pattern recognition receptors (PRR),
such as Toll-like receptors (TLRs), Nod-like receptors (NLRs),
c-type lectin, and RIG-like helicases. TLRs can recognize P. fal-
ciparum GPI anchors (106), but the HZ-induced response is not
dependent on TLRs (86, 100, 107, 108). Nevertheless, the ability of
TLRs to sense HZ is still a controversial issue. It is important to be
fastidious in the interpretation of these results, as the amphiphilic
nature of HZ allows it to bind certain proteins, lipids, and nucleic
acids; therefore, any Plasmodium molecules adhering to HZ during
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FIGURE 3 | Inflammatory biomarkers adhering to hemozoin. Sera
biomarkers from malaria patients and healthy individuals were detected using
Western blotting. The membranes were blotted using antibodies specific for

gelsolin, LPS-binding protein (LBP), serum amyloid A (SAA), apolipoprotein E
(ApoE), and serum albumin. C1–C8, control; M1–M8, malaria. Figure was
taken from the supplemental data of Ref. (116).

the preparation of nHZ could be sensed by the TLRs. In this con-
text, Parroche et al. (107) proposed that HZ was a carrier of a TLR
ligand and that the immune response induced by HZ was from a
possible contamination of HZ with Plasmodium DNA. However,
different research groups have shown that synthetic and native HZ
that are not contaminated by DNA (86, 109) are still very powerful
immunogenic molecules (83). Furthermore, by using DNA stain-
ing and the natural red/green fluorescence of HZ, it was shown that
Plasmodium DNA within iRBC never co-localizes with HZ, which
is confined to the food vacuole (Figure 2) (86). In this regard, the
ability of TLRs to recognize HZ is still unclear, as is the ability of
other PRRs to recognize HZ, especially NLRs.

The NLR family of receptors is characterized by three domains:
a leucine-rich repeat (LRR) domain in the N-terminus, a cen-
tral nucleotide-binding domain, and a variable C-terminus. Based
on the composition of the C-terminus and central domain,
NLRs are divided into different subfamilies: the NLRB subfam-
ily (which consists of one member, NAIP), the NLRC subfamily
(NLRC4/IPAF and NOD1, which are NLR containing a CARD
domain, and NOD2, which contains two CARD domains); and
the NLRP subfamily (NLRP1 and NLRP3, NLR containing a pyrin
domain). The members of each subfamily recognize different
pathogen-associated molecules; for example: flagellin is recog-
nized by NLRC4, anthrax lethal toxin by NLRP1, muramyl dipep-
tide and lysin-peptidoglycan by NOD2, meso-diaminopimelic
acid-peptidoglycan by NOD1, and a vast spectrum of ligands
(bacterial RNA, inorganic materials, gout-associated crystal-MSU,
and microbes) by NLRP3. NOD1/NOD2 receptor stimulation
has been shown to induce RIP2 kinase-dependent NF-κB activa-
tion, resulting in the transcription of pro-inflammatory cytokines
(110–112). Recent findings suggest that certain pro-inflammatory
events occurring during P. berghei ANKA infection may depend

on NOD2 (113), however the role of HZ in this circumstance is
still incompletely understood. Furthermore, several laboratories
have made observations indicating that the NLRP3 inflammasome
complex could be involved in a HZ-induced response.

The potential role of the NLRP3 inflammasome in HZ-
triggered inflammatory events is of particular interest, because
IL-1β is known to be integral to the fever episodes and pro-
inflammatory processes observed during Plasmodium infection.
However, the results regarding the participation of the inflamma-
some complex have been slightly inconsistent. Studies by our lab-
oratory (99) and by Dostert et al. (101) showed that HZ-induced
IL-1β production and neutrophil recruitment were dependent on
the NLRP3 inflammasome. In partial agreement, Griffith et al.
(100) showed that HZ-stimulated neutrophil recruitment into the
mouse peritoneal cavity was dependent on NLRP3 inflammasome.
Additionally, using a murine model, three different studies have
demonstrated that NLRP3-deficient mice showed some level of
protection against two different murine parasites, P. berghei ANKA
and P. chabaudi adami DS (99, 101, 114). Nevertheless, this pro-
tection cannot be solely attributed to HZ, as during the course
of Plasmodium infection, a number of factors from the pathogen
and the host immune system will contribute to the outcome of the
infection. Moreover, our study revealed that Plasmodium-infected
NLRP3- and IL-1β-deficient mice have a lower body tempera-
ture compared to wild-type. This finding is consistent with the
potential role of HZ during malarial infection, as it is released
during iRBC lysis, which is usually followed by an episode of fever.
Furthermore, the laboratory of Scharzwer recently reported that
the attachment of fibrinogen to HZ imbued HZ with a greater
capacity to activate host inflammatory functions (115). In this
context, recent data from our laboratory (116) revealed that HZ
interacts with a large number of inflammatory-related biomarkers
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FIGURE 4 | Induction of NLRP3 inflammasome complex by the inorganic
crystal HZ. HZ induces IL-1β production via the NLRP3/ASC inflammasome:
activation of caspase-1 results in the cleavage of pro-IL-1β. Pro-IL-1β

expression is resultant of the TLR4- and TNFα-activated NF-κB pathway or the
IFNγ-stimulated STAT-1α pathway. The HZ-activated NLRP3 inflammasome is
dependent on potassium efflux, ROS generation, HZ internalization, and
cathepsin B activation. HZ internalization and the induction of SRC kinase
signaling are mediated by lipid rafts. An ITAM-containing receptor could also
be the starting point of SRC kinase cascade. HZ is internalized within a
phagosome-like vesicle surrounded by LAMP-1. HZ activation of the SRC
kinase Lyn leads to Syk phosphorylation. Subsequently, Syk positively

modulates cathepsin B activation, which could result in the induction of the
NLRP3 inflammasome. HZ is also capable of activating the NLRP3
inflammasome through PI3 kinase. The involvement of malarial DNA, which
can adhere to HZ, in the activation of an intracellular receptor and its biological
relevance are controversial and only reported for dendritic cells, which are
present in limited numbers in the blood. HZ can interact with a large number
of inflammatory-related biomarkers found in the circulation of P.
falciparum-infected patients. However, the effect of these biomarkers on
NLRP3 inflammasome activation is still unknown. Continuous arrows indicate
a positive modulation. Dotted arrows indicate a hypothetical effect. Dotted
arrows with a question mark indicate an unknown or controversial effect.
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(e.g., fibrinogen, serum amyloid A (SAA), LPS-binding protein
(LBP), and apolipoproteins) found in the circulation of P. falci-
parum-infected patients (Figure 3). The potential of these mole-
cules to modify the interaction of HZ with immune cells is of great
interest, as it could exacerbate the inflammatory events occurring
during malaria.

The mechanisms underlying the activation of the NLRP3/
inflammasome complex by HZ are currently under investiga-
tion. Three models have been proposed: potassium channel efflux,
lysosome rupture, and/or ROS generation (117) (Figure 4). Two
independent groups have illustrated the involvement of potas-
sium efflux, phagocytosis, and ROS generation in inflammasome
activation (99, 101). However, there is a discrepancy in whether
cathepsin B is involved, depending on the approach used. Cathep-
sin B-deficient mice showed no effect (101), whereas cathepsin
B-specific inhibitors were found to block inflammasome activa-
tion (99). Nevertheless, HZ-triggered inflammasome activation
seems to involve at least two of the proposed models (potassium
channel efflux and ROS generation) and cathepsin B activation.
Disruption of the phagolysosome by HZ does not appear to occur,
since HZ has been shown to be contained in vacuoles surrounded
by LAMP-1, and cathepsin B has not been found in culture super-
natant, which is generally the case for asbestos and silica (99),
which not only disrupt the phagolysosome, but also kill the phago-
cytic cells. Of utmost importance, our study revealed that Lyn/Syk
kinases are the upstream signaling partners in the activation of the
NLRP3/inflammasome complex (Figure 4). The participation of
these kinases in HZ-induced inflammasome activation is highly
suggestive that an ITAM-containing receptor on the surface of the
host cell could be the starting point for this biochemical cascade.
However, it is also possible that HZ is capable of modulating the
lipid raft environment, which could initiate the signaling cascade
(Figure 4).

Finally, it is important to stress that inorganic crystals like
asbestos, silica, and MSU not only disrupt phagolysosome
integrity, but are also highly apoptotic and disruptive to cell
integrity. Conversely, HZ is able to stay within host cells for long
periods of time, from several days to weeks, without discernably
affecting phagocyte viability (118). Moreover, HZ is markedly
smaller than the other inorganic crystals mentioned above and is
fully engulfed by the host cells, unlike the other crystals mentioned.

In conclusion, it is has been established that HZ is a powerful
modulator of the innate immune response, which suggests that it
has the potential to be detrimental or beneficial to the host depend-
ing on the stage of the infection. Furthermore, it has recently been
demonstrated that HZ is sensed as a danger signal, resulting in
the activation of the inflammasome (99, 101). However, there are
contradicting results regarding the modulation of the immune
response by HZ. These differences can be explained at least in part
by the different cell types and incubation times used in various
studies, and most prominently, by the quality of the HZ crys-
tal utilized. Therefore, a unified method to generate sHZ crystals,
which more closely resembles the ones naturally produced by Plas-
modium, needs to be established. Additionally, ensuring that the
resulting sHZ crystals possess the correct quality, size, and crys-
tallinity by using X-ray powder diffraction (XRD) analysis would
aid in attaining more reproducible data.
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