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Abstract

Objectives

To investigate whether virtual monoenergetic images (VMI) and iodine maps derived from

spectral detector computed tomography (SDCT) improve early assessment of technique

efficacy in patients who underwent microwave ablation (MWA) for hepatocellular carcinoma

(HCC) in liver cirrhosis.

Methods

This retrospective study comprised 39 patients with 49 HCC lesions treated with MWA.

Biphasic SDCT was performed 7.7±4.0 days after ablation. Conventional images (CI), VMI

and IM were reconstructed. Signal- and contrast-to-noise ratio (SNR, CNR) in the ablation

zone (AZ), hyperemic rim (HR) and liver parenchyma were calculated using regions-of-inter-

est analysis and compared between CI and VMI between 40–100 keV. Iodine concentration

and perfusion ratio of HR and residual tumor (RT) were measured. Two readers evaluated

subjective contrast of AZ and HR, technique efficacy (complete vs. incomplete ablation) and

diagnostic confidence at determining technique efficacy.

Results

Attenuation of liver parenchyma, HR and RT, SNR of liver parenchyma and HR, CNR of AZ

and HR were significantly higher in low-keV VMI compared to CI (all p<0.05). Iodine concen-

tration and perfusion ratio differed significantly between HR and RT (all p<0.05; e.g. iodine

concentration, 1.6±0.5 vs. 2.7±1.3 mg/ml). VMI50keV improved subjective AZ-to-liver con-

trast, HR-to-liver contrast, visualization of AZ margin and vessels adjacent to AZ compared

to CI (all p<0.05). Diagnostic accuracy for detection of incomplete ablation was slightly
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higher in VMI50keV compared to CI (0.92 vs. 0.89), while diagnostic confidence was signifi-

cantly higher in VMI50keV (p<0.05).

Conclusions

Spectral detector computed tomography derived low-keV virtual monoenergetic images and

iodine maps provide superior early assessment of technique efficacy of MWA in HCC com-

pared to CI.

Introduction

Hepatocellular carcinoma (HCC) is a global health burden. It represents the fifth most com-

mon cancer type and the second most common cause of cancer-related death [1,2]. The inci-

dence of HCC is continuously rising and will likely increase by>50% until the end of the

decade [3].

Different treatment options for HCC are available depending on the tumor stage. For early,

unresectable HCC, percutaneous or intraoperative thermal ablation is the standard therapy

according to international management guidelines due to its efficacy, favourable safety profile,

minimal invasiveness and potential to preserve hepatic parenchyma [1,4–6]. The European

Association for the Study of Liver and the European Society of Medical Oncology even recom-

mend thermal ablation as an alternative to surgical resection for Barcelona Clı́nic Liver Cancer

stage 0 tumors [1,4,5]. During the last decade, microwave ablation (MWA) has emerged as a

new thermal ablation technique. It applies rapidly oscillating electromagnetic fields at frequen-

cies between 0.92–2.45 GHz. MWA agitates dipole water molecules that continuously realign

along field orientation, inducing frictional heat and thus coagulative tissue necrosis [7–9].

MWA yields comparable results as the long-term established radiofrequency ablation (RFA)

with regards to efficacy, long-term survival benefit and safety profile [10–12].

After MWA, cross-sectional follow-up imaging is necessary to monitor technique efficacy

(completeness of ablation), local tumor progression, local tumor recurrence and distant tumor

progression. [4,13]. Multiphasic contrast-enhanced computed tomography is currently the

most used modality for follow-up due to its broad availability in liver cancer centres, robust-

ness and high reproducibility [14–20]. In the past decade, dual-energy computed tomography

systems (DECT) raised interest in the field of liver imaging due to its improved soft-tissue con-

trast and thus liver lesion conspicuity by means of low-keV virtual monoenergetic images

(VMI) and its inherent feasibility to quantify iodine concentration [21–25]. Recently, a detec-

tor based DECT system has been introduced into clinical routine, referred to as spectral detec-

tor CT (SDCT). SDCT employs a single X-ray tube and separately registers low- and high-

energy photons in two parallel stacked detector layers as opposed to DECT systems in which

the dual-energy component is implemented at the level of the X-ray source. The independent

registration of high- and low-energy attenuation characteristics enables reconstruction of VMI

with energy levels between 40–200 keV and material specific iodine maps [26–28].

Several preclinical experimental studies evaluated the potential of DECT for early detection

of residual tumor (RT) after thermal liver ablation. These studies evaluated its potential to

directly quantify iodine concentration as a surrogate of perfusion by showing better correla-

tion with technical success and differentiation of reactive hyperemic rim (HR) and RT [29,30].

However, clinical data of DECT for the early assessment of technique efficacy following ther-

mal ablation is scarce [31–33]. Only one study analyzed the value of DECT in the immediate

follow-up of HCC and liver metastases treated by RFA [34].
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The aim of this study was to investigate whether the increased soft tissue contrast of VMI

derived from contrast-enhanced SDCT along with iodine maps facilitate an improved early

assessment of technique efficacy after MWA of HCC.

Material and methods

Study population

The local institutional review board approved this retrospective analysis (reference number:

18–226; Ethikkomission der Medizinischen Fakultät der Universität zu Köln) and waived the

need for patient consent. All data were fully anonymized prior to the data analysis and all

methods were performed in accordance with the relevant guidelines and regulations. Patients’

medical records within the local institutional (University of Cologne, University Hospital

Cologne, Germany) radiology information system were accessed during June 2019 and June

2020. A structured query to the radiology information system was performed using the follow-

ing inclusion criteria: 1) patients treated for HCC by MWA, 2) pre-treatment contrast-

enhanced MRI or CT, 3) early post-treatment contrast-enhanced SDCT examination 5–21

days after MWA between May 2016 and January 2019 with a standardized imaging protocol.

Imaging studies were reviewed using a clinical DICOM-Viewer (Impax EE R20, Dedalus

Group). Hanging protocols indicating the HCC lesion and the ablation zone (AZ) were saved

to guarantee reliable identification for quantitative and qualitative analysis.

Ablation procedure

The decision for MWA treatment was derived in the institutional multidisciplinary liver

tumor board for each case according to clinical guidelines. Ultra-sound guided MWA was per-

formed during laparotomy (n = 8, 16.3%) or laparoscopy (n = 9, 18.4%) employing a

2.45-GHz clinical microwave ablation system (Solero Microwave Tissue Ablation System,

AngioDynamics) by one of two liver surgeons (DS and RW) with 19 and 12 years of experi-

ence, respectively. CT-guided MWA (n = 32, 65.3%), employing a 2.45-GHz clinical micro-

wave ablation system (AMICA-GEN Hybrid System, HS Hospital Service) was performed by

one of two interventional radiologists (CW and DPS) with 7 and 5 years of experience in liver

ablation, respectively. All procedures were performed under general anesthesia. Needle place-

ment and energy application according to the manufacturer’s protocols aimed for an AZ safety

margin of� 5 mm in all directions around the tumor. Overlapping ablations for large lesions

or suboptimal initial needle placement were performed if considered necessary. Needle tract

ablation was applied according to the manufacturer’s recommendations.

Image acquisition

All CT scans were performed for clinical indications on the same spectral detector CT scanner

(IQon Spectral CT, Philips Healthcare). Patients were scanned in a head first, supine position.

The institutional CT protocol for tumor evaluation following MWA comprises an arterial and

a portal-venous phase image acquisition of the liver. Administration of 100 ml non-ionic,

iodinated contrast media bolus (Accupaque 350 mg/ml, GE Healthcare) followed by a 30 ml

saline chaser is routinely performed with an automated injection system at a flow rate of 3.5

ml/s (MEDRAD1 Stellant1, Bayer Vital AG). Bolus-tracking technique (threshold of 150

Hounsfield Units (HU) in the abdominal aorta) was used and image acquisition started with a

delay of 15 and 50 s, respectively. Tube current modulation was activated in all patients (Dose-

Right 3D-DOM; Philips Healthcare). Detailed scanning parameters are reported in Table 1.
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Image reconstruction

Conventional images (CI) were reconstructed using a hybrid iterative reconstruction algo-

rithm (iDose4, Philips Healthcare) and a standard body soft tissue kernel (kernel B). VMI at

energy levels of 40–100 keV with 10-keV increment were reconstructed with a dedicated spec-

tral reconstruction algorithm (Spectral, Kernel B; Philips Healthcare). Denoising was set to a

medium level (level 3 of 7). VMI at 50 keV (VMI50keV) were chosen as the preferred VMI

reconstruction for qualitative image analysis for both, arterial and portal-venous phase images

in a preliminary evaluation of 10 patients (not included in the study population) and in consid-

eration of the known improvement of liver lesion conspicuity in low-keV VMI [22,23,25,35].

All images were reconstructed with a slice thickness of 2 mm and a section increment of 1

mm. Material specific iodine maps allowing for iodine concentration measurements (in mg/

ml) in any given region of interest were generated [36].

Follow-up evaluation and reference standard determination

Institution’s standard operation procedure included an early follow-up by SDCT one week

after MWA as baseline, followed by contrast-enhanced CT and/or MRI scans at 3, 6, 9 and 12

months and every 6 months thereafter. Outcome (technique efficacy–completeness of ablation,

local tumor progression, distant intrahepatic and extrahepatic tumor progression) was

reported according to a standardized terminology [13]. Data was retrieved from imaging diag-

nostic reports and clinical records. To ensure an accurate ground truth regarding therapy out-

come, images were retrospectively evaluated by one board-certified, attending radiologist

(CW) with 8 years of experience in hepatic MWA to double-check the corresponding diagno-

ses and unequivocally determine the outcome in case of ambiguous reports.

Quantitative analysis

Quantitative analysis was performed by region-of-interest-based measurements using a dedi-

cated platform provided by the vendor (IntelliSpace Portal v.11; Philips Healthcare), which

automatically quantified attenuation in HU and standard deviation (SD) of the CT numbers

within the corresponding region of interest (ROI). All ROIs were placed on CI and copied to

all reconstructed VMI and iodine maps to ensure consistency of the measurements. In arterial

and portal-venous phase, two ROIs were placed in the AZ avoiding central charred tissue and

two ROIs were placed in adjacent normal liver parenchyma. In arterial phase, two additional

ROIs were placed within the HR around the AZ or in viable RT if present, as well as in the

aorta to calculate perfusion ratios of HR and RT as previously reported [30,37,38]. All ROIs

were ellipsoid (at least 0.5 cm2). Multiple measurements within the same structure were aver-

aged. SD of the HU values of normal liver parenchyma (SDLiver) was considered a surrogate

for image noise. Iodine concentration [mg/ml] of HR and RT was directly quantified by Intel-

liSpace Portal. Signal-to-noise ratio (SNR) of AZ, HR, RT and normal liver parenchyma

(SNRAZ, SNRHR, SNRRT, SNRLiver) were calculated according to the following formula as

Table 1. Scan parameters.

Phase Collimation (mm) Pitch Tube voltage (kVp) Rotation Time (s) Tube Current-Time Product (mAs) CTDIvol (mGy)

Arterial 64 x 0.625 0.485 120 0.5 150.3 ± 75.8 13.7 ± 6.8

Portal- venous 0.33 154.7 ± 74.2 14.0 ± 6.7

DLP, dose-length product; CTDIvol, volumetric CT dose index. Results are means ± standard deviation if appropriate.

https://doi.org/10.1371/journal.pone.0252678.t001
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previously reported [23,39,40]:

SNR ¼
HUStructure

SDStructure
ð1Þ

AZ-to-liver, HR-to-liver and RT-to-liver contrast-to-noise ratio (CNR) were defined as

being adapted from previous [23,39,40]:

CNRAZ ¼ jðHUliver � HUAZÞj=SDliver ð2Þ

CNRHR ¼ jðHUliver � HUHRÞj=SDliver ð3Þ

CNRRT ¼ jðHUliver � HURTÞj=SDliver: ð4Þ

Perfusion ratios of HR and RT were calculated to normalize iodine concentrations and

improve their reproducibility as previously reported [30,37,38]:

Perfusion ratio ¼ Iodine concentrationROI=Iodine concentrationAorta: ð5Þ

Qualitative analysis

Anonymized and randomized early follow-up images were assessed independently by 2 radiol-

ogists (JN and RPR) with 4 and 3 years of experience respectively in follow-up imaging of

hepatic MWA. Readers were blinded to clinical information and later follow-up exams.

In a first reading session, readers assessed multi-planar reconstructions (MPR) of the pre-

interventional MRI or CT scans and early post-interventional arterial and portal-venous phase

CI in a side-by-side comparison, according to routine clinical practice. The pre- and post-

interventional image sets were co-registered by a semi-automatic algorithm provided by the

DICOM viewer (Impax EE R20, Dedalus Group). The readers were allowed to adjust window

settings, if needed.

At the second reading session, co-registered MPR of pre-interventional examinations and

early post-interventional VMI50keV of arterial and portal-venous scans were assessed in an

analogous approach to the first reading session after a waiting period of 6 weeks to minimize a

potential recall bias.

In the two reading sessions, both readers assessed overall shape of the AZ (spherical vs.

irregular), conspicuity of AZ margin (diffuse, moderate, sharp) and manifestation of HR (visi-

ble, absent, discontinuous, completely surrounding AZ) according to the study by Schraml

et al. [41]. AZ-to-liver contrast, HR-to-liver contrast, vessel depiction adjacent to AZ and diag-

nostic confidence in determination of technique efficacy were rated with 5-point Likert scales

(Table 2) similar to Lee et al. [34]. Technique efficacy was rated as incomplete (AZ does not

cover tumor completely) or complete (AZ covers tumor completely).

Table 2. Likert scales of qualitative analysis.

Likert scale AZ-to-liver contrast HR-to-liver contrast Vessel depiction adjacent to AZ Diagnostic confidence

1 none none none none

2 low low low low

3 moderate moderate moderate moderate

4 high high high high

5 extraordinary extraordinary extraordinary extraordinary

AZ, ablation zone; HR, hyperemic rim.

https://doi.org/10.1371/journal.pone.0252678.t002
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Statistical analysis

All analyses were performed using JMP Software (Version 14, SAS Institute) unless specified

below. Non-parametric Steel Dwass test (all pairs) was performed to compare quantitative and

qualitative results between CI and VMI. Wilcoxon test was used to compare iodine concentra-

tion and perfusion ratio between HR and RT. Sensitivity and specificity of the diagnosis

incomplete ablation were calculated using a contingency table. Inter- and intra-rater reliability

was determined by means of intraclass correlation coefficients (ICC) using R Studio (Version

1.1.456; RStudio) based on a mean of 2 raters, consistency, 2-way mixed-effects model for the

qualitative analysis [42]. Inter-rater agreement was evaluated as described earlier: excellent

(ICC > 0.8), good (ICC > 0.6), moderate (ICC > 0.4), and poor agreement (ICC < 0.4) [43].

A p-value < 0.05 was considered significant. Continuous variables are reported as mean ± SD

and Likert scores as median (quartiles).

Results

Study cohort

The study cohort comprised 39 patients (mean age: 67.5 ± 8.8 years, male/female: 27/12), yield-

ing a total of 49 HCC lesions treated with MWA. Mean largest HCC diameter was 1.9 ± 0.8 cm

(range: 1 – 3.8 cm). Mean duration of MWA treatment was 9.0 ± 4.3 minutes (range: 3 – 21

minutes), mean applied energy was 45.2 ± 22.2 kJ (range: 14.4 – 126 kJ). SDCT was performed

7.7 ± 4.0 days (range: 5–15 days) after MWA. The mean follow-up period after MWA treat-

ment was 431.7 ± 317.1 days (range: 108 – 1195 days). Treatment response is reported in

Table 3.

Quantitative analysis

Results comprise measurements of arterial and portal-venous phase, unless specified other-

wise. Refer to Table 4 for detailed values.

Image noise. Image noise (SDLiver) was significantly lower in VMI60-100keV of arterial

phase images and in VMI50-100keV in portal-venous phase images compared to CI, respectively

(all p<0.05).

Attenuation. Attenuation of normal liver parenchyma in arterial phase VMI40-50keV and

in portal-venous phase VMI40-60keV was significantly higher compared to CI (all p<0.05).

Attenuation of HR in arterial phase VMI40-60keV and of RT in arterial phase VMI40keV was sig-

nificantly higher compared to CI (both p<0.05). AZ attenuation remained constant in CI and

in VMI at all keV levels (p�0.05). RT showed significantly higher attenuation than HR in arte-

rial phase images of respective image reconstructions (all p<0.05; Fig 1A).

Signal to noise ratio (SNR). In arterial phase images, SNRLiver was significantly higher in

VMI40-100keV and SNRHR in VMI40–70keV as compared to CI (p<0.05), whereas SNRAZ was

Table 3. Treatment response to microwave ablation.

Treatment response Patients, n (%) Lesions, n (%) Time since ablation, mean days ± SD (range)

No progression 19 (48.7) 22 (44.9) 467.8 ± 260.4 (193–1183)

Incomplete ablation 4 (10.3) 6 (12.2) 7.0 ± 1.4 (6–9)

Local tumor progression 2 (5.1) 2 (4.1) 116.0 ± 11.3 (108–124)

Intrahepatic progression 9 (23.1) 10 (20.4) 285.0 ± 161.4 (99–573)

Intra- and extrahepatic progression 2 (5.1) 4 (8.2) 58.0 ± 24.0 (41–75)

Extrahepatic progression 3 (7.7) 5 (10.2) 197.3 ± 186.7 (89–413)

n, number; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0252678.t003
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higher in VMI60-200keV keV (p<0.05). SNRRT was comparable to CI throughout all keV levels

(p>0.05). In portal-venous phase images, VMI40 – 70 keV yielded significantly higher SNRLiver

compared to CI (p<0.05), whereas SNRAZ was higher in VMI70-100keV (p<0.05).

Contrast to noise ratio (CNR). CNRAZ was significantly higher in arterial and portal-

venous phase VMI40-70keV as compared to CI, respectively (all p<0.05). CNRHR showed signif-

icantly higher values in arterial phase VMI40-60keV as compared to CI (all p<0.05). CNRRT was

significantly higher than CNRHR in arterial phase images of respective image reconstructions

(all p<0.05; Fig 1C).

Iodine concentration and iodine perfusion ratio. Iodine concentration and iodine per-

fusion ratio were significantly higher in RT as compared to HR in arterial phase images

(2.7 ± 1.3 vs. 1.6 ± 0.5 mg/ml and 0.2 ± 0.1 vs. 0.1 ± 0.0; all p<0.05; Fig 1D).

Qualitative analysis

The overall ICC between both readers was 0.925 (0.916–0.932), indicating an excellent

agreement.

In CI, AZ shape was rated spherical in 31 and 29 cases (63.3% and 59.2%) and irregular in

18 and 20 cases (36.7% and 40.8%) by reader 1 and 2, respectively. In VMI50keV, AZ shape was

rated spherical in 34 and 33 cases (69.4% and 67.3%) and irregular in 15 and 16 cases (30.6%

and 32.7%) by reader 1 and 2, respectively. HR around the AZ was visible in 39 cases in VMI50-

keV but only in 24 cases in CI (p<0.05) and appeared discontinuous in 33 (84.6%) and 20 cases

(83.3%), respectively.

In VMI50keV, AZ-to-liver contrast in arterial and portal-venous phase images and HR-to-

liver contrast in arterial phase images were rated significantly higher than in CI (all p<0.05,

Table 4. Results of quantitative analysis.

CI VMI40keV VMI50keV VMI60keV VMI70keV VMI100keV VMI200keV

Arterial Phase
Noise SD-Liver 17.6 ± 3.5 17.5 ± 4.8 15.3 ± 3.4 14.2 ± 3.0 13.6 ± 2.9 13.0 ± 2.9 12.8 ± 2.9

Attenuation Liver 68.6 ± 10.2 110.4 ± 36.4 89.2 ± 22.8 76.6 ± 14.9 69.2 ± 10.5 59.3 ± 5.7 53.6 ± 5.0

Attenuation AZ 44.2 ± 7.4 40.3 ± 14.2 42.2 ± 10.3 43.3 ± 8.3 43.9 ± 7.2 44.8 ± 6.2 45.3 ± 5.9

Attenuation RT 129.6 ± 24.8 308.5 ± 104.4 216.6 ± 65.0 162.6 ± 42.1 130.2 ± 28.3 87.5 ± 12.0 62.8 ± 8.1

Attenuation HR 90.9 ± 15.9 189.1 ± 46.3 138.9 ± 30.2 109.4 ± 21.1 91.9 ± 15.9 68.5 ± 9.8 55.0 ± 7.7

SNR Liver 4.1 ± 1.2 6.8 ± 3.2 6.2 ± 2.5 5.7 ± 2.1 5.4 ± 1.9 4.9 ± 1.6 4.5 ± 1.5

SNR AZ 2.7 ± 0.8 2.7 ± 1.4 3.1 ± 1.3 3.3 ± 1.2 3.4 ± 1.2 3.6 ± 1.2 3.7 ± 1.2

SNR RT 8.7 ± 6.2 19.1 ± 19.8 15.4 ± 13.7 12.9 ± 10.1 11.1 ± 7.8 8.4 ± 4.7 6.5 ± 3.2

SNR HR 5.3 ± 2.1 9.7 ± 4.2 8.4 ± 3.4 7.5 ± 2.9 6.7 ± 2.5 5.5 ± 1.8 4.6 ± 1.3

CNR AZ 1.4 ± 0.6 4.3 ± 2.3 3.2 ± 1.6 2.5 ± 1.2 1.9 ± 0.9 1.2 ± 0.6 0.7 ± 0.5

CNR RT 5.1 ± 3.0 17.7 ± 9.5 13.5 ± 6.8 10.2 ± 5.0 7.9 ± 3.9 4.1 ± 2.0 1.6 ± 1.1

CNR HR 1.3 ± 0.8 4.6 ± 2.5 3.3 ± 1.7 2.3 ± 1.2 1.7 ± 0.9 0.8 ± 0.5 0.5 ± 0.4

Portal-venous Phase
Noise SD-Liver 17.4 ± 3.2 17.1 ± 4.0 15.1 ± 3.0 14.1 ± 2.7 13.5 ± 2.6 13.0 ± 2.6 12.8 ± 2.5

Attenuation Liver 103.0 ± 19.4 229.6 ± 65.7 165.6 ± 41.8 127.9 ± 28.0 105.5 ± 19.8 75.6 ± 9.9 58.4 ± 6.5

Attenuation AZ 45.9 ± 8.0 39.5 ± 16.3 42.2 ± 11.4 43.7 ± 8.8 44.7 ± 7.4 45.9 ± 5.9 46.6 ± 5.5

SNR Liver 6.2 ± 2.3 14.4 ± 6.6 11.7 ± 5.2 9.7 ± 4.1 8.3 ± 3.4 6.1 ± 2.1 4.8 ± 1.3

SNR AZ 2.7 ± 0.8 2.7 ± 1.3 3.0 ± 1.1 3.2 ± 1.0 3.4 ± 1.0 3.5 ± 0.9 3.6 ± 0.9

CNR AZ 3.5 ± 1.7 11.9 ± 5.9 8.8 ± 4.5 6.4 ± 3.4 4.8 ± 2.6 2.4 ± 1.3 1.0 ± 0.6

CI, conventional images; VMI, virtual monoenergetic images; SD, standard deviation; AZ, ablation zone; RT, residual tumor; HR, hyperemic rim; SNR, signal-to-noise

ratio; CNR, contrast-to-noise ratio. Results are mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0252678.t004
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Table 5, Fig 2). Likewise, conspicuity of AZ-margin was rated significantly sharper in VMI50-

keV as compared to CI (p<0.05). In line with these findings, vessels adjacent to the AZ were

better appreciated in VMI50keV in comparison to CI (p<0.05, Table 5).

In CI, technique efficacy was categorized as complete in 42 and 39 cases (85.7% and 79.6%),

and incomplete in 7 and 10 cases (14.3% and 20.4%) by reader 1 and 2, respectively. In VMI50-

keV, technique efficacy was categorized as complete in 42 and 40 cases (85.7% and 81.6%) and

incomplete in 7 and 9 cases (14.3% and 18.4%) by reader 1 and 2, respectively. Assessment of

technique efficacy did not significantly differ between reader 1 and 2, nor between CI and

VMI50keV (all p�0.05). Yet, VMI showed a slight benefit over CI for the detection of incom-

plete ablation with regards to diagnostic accuracy (0.92; sensitivity, 83.3%; specificity, 93.0%)

as compared to CI (0.89; sensitivity, 75.0%; specificity, 90.7%). Furthermore, diagnostic confi-

dence was rated significantly higher in VMI50keV compared to CI (p<0.05, Table 5, Fig 2).

Fig 1. Illustrations of mean attenuation values (HU), signal-to-noise ratio (SNR), contrast-to-noise-ratio (CNR) and

iodine concentration [mg/ml] reveal significantly higher values in residual tumor (RT) as compared hyperemic rim

(HR) (a–d). Furthermore, attenuation and CNR were significantly higher in low-keV VMI compared to CI (a, c).

https://doi.org/10.1371/journal.pone.0252678.g001

Table 5. Results of qualitative analysis.

HR-to-liver contrast AZ-to-liver contrast Vessel depiction adjacent to AZ Diagnostic confidence

Arterial Phase CI VMI

CI 1.5 (1–2) 2 (2–2) 3 (2–5) 4 (3–4) 4 (3–4)

VMI 3 (2–4) 3 (3–3) 5 (3–5)

Portal-venous phase

CI 3 (3–3) 3 (2–4)

VMI 5 (4–5) 5 (3–5)

HR, hyperemic rim; AZ, ablation zone; CI, conventional images; CMI, virtual monoenergetic images. Results are median (interquatile range).

https://doi.org/10.1371/journal.pone.0252678.t005
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Discussion

This study investigated the value of contrast-enhanced SDCT derived low-keV VMI and

iodine maps in the early assessment of technique efficacy after MWA in patients with HCC. It

compared CI and VMI derived from early follow-up SDCT after MWA regarding attenuation,

image noise, SNR, CNR and it conducted a qualitative analysis of conspicuity of AZ, HR, RT,

technique efficacy and diagnostic confidence. Furthermore, the additional value of iodine

maps regarding its potential to differentiate reactive hyperemic rim from residual tumor by

means of the quantification of iodine concentration and perfusion ratios was assessed.

In low-keV VMI, SNR/CNR of hyperperfused structures such as HR and RT in arterial

phase and SNR/CNR of liver parenchyma in arterial and portal-venous phase images were

superior to CI due to a boost of iodine attenuation without penalty in image noise [26,28,44].

Low-keV VMI yielded an improved conspicuity of AZ, HR, RT, adjacent vessels and conse-

quently a significant increase of diagnostic confidence (Figs 3 and 4). Furthermore, diagnostic

accuracy of technique efficacy was slightly higher in low-keV VMI as compared to CI with an

increase in sensitivity and specificity. A comparison with previous studies is limited as to the

best of our knowledge, only one clinical study by Lee et al. [34] investigated image quality and

diagnostic benefit of DECT derived virtual non-contrast images and iodine maps after thermal

liver ablation. The authors reported an improved conspicuity of the AZ after RFA in iodine

maps, potentially yielding a better detection of residual tumors [34]. The findings of our study

are in line with these previous findings. Two other clinical studies investigated the benefit of

DECT for the follow-up after thermal ablation in renal and pulmonary tumors [32,33]. Park

et al. evaluated the utility of iodine overlay maps and virtual non-contrast images in the

Fig 2. Results of qualitative analysis. Ablation zone as well as hyperemic rim to liver contrast in arterial phase,

ablation zone to liver contrast in portal-venous phase and diagnostic confidence received significantly higher ratings in

virtual monoenergetic images (VMI) with 50 keV as compared to conventional images (CI) (a–d).

https://doi.org/10.1371/journal.pone.0252678.g002
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follow-up of renal tumors after RFA and found a comparable diagnostic performance as com-

pared to linear blended CT images with the advantage of a reduction in radiation dose by

using virtual non-contrast images [33]. The second study by Izaaryene et al. demonstrated that

nodular enhancement, defined as the difference in CT density [HU] between contrast-

enhanced and virtual non-contrast images, has the potential to serve as a surrogate for the diff

erentiation of scar and local tumor recurrence of lung tumors one month after RFA [32].

Furthermore, we found that attenuation in the respective reconstructions, absolute iodine

concentration and normalized iodine perfusion ratio were significantly higher in RT com-

pared to HR. Although the limited number of incomplete ablations in this study made it statis-

tically infeasible to compare the quantitative values regarding their differentiation of HR and

RT, these initial results seem promising. To our knowledge, until now, only pre-clinical studies

investigated the quantification of iodine as a surrogate parameter in the assessment of treat-

ment response after thermal ablation [29,30]. Zhang et al. reported a better correlation of volu-

metric iodine concentrations with technical success compared to the modified Response

Evaluation Criteria In Solid Tumors (mRECIST) and Choi criteria seven days after hepatic

MWA in a rabbit model with VX2 liver carcinoma [29]. Li et al. performed iodine quantifica-

tion three days, one, two and three weeks after hepatic RFA of VX2 tumors in rabbits to differ-

entiate HR from RT [30]. The authors found that the iodine concentrations differed

significantly� two weeks after RFA, but not after three days and one week. Thus, iodine quan-

tification might be employed to differentiate viable RT from HR� two weeks after thermal

ablation. A comparison with our retrospective clinical results is limited due to the preclinical

Fig 3. Early follow-up image examples after microwave ablation, illustrating the improved image quality of low-keV

virtual monoenergetic images (VMI) (50 keV in c, d) as compared to conventional images (CI) (a, b) in arterial (a, c)

and portal-venous phase (b, d). An improved signal-to-noise ratio of the liver parenchyma, contrast-to-noise ratio of

the ablation zone, a sharper ablation zone margin and a better depiction of adjacent vessels can be appreciated in the

image examples of VMI50keV (c, d) when comparing it with CI (a, b).

https://doi.org/10.1371/journal.pone.0252678.g003
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design using a rabbit tumor model. Furthermore iodine concentrations not only vary between

age groups and genders, but also show intraindividual, longitudinal variation [37,38]. In fact,

the reported iodine concentration of residual VX2 tumors differ from our values in RT (one

week after thermal ablation 1.7±0.2 mg/ml vs. 2.7±1.3 mg/ml in our study), whereas iodine

concentrations of HR appear comparable (one week after thermal ablation 1.6±0.4 mg/ml vs.

1.6±0.5 mg/ml in our study). The results of Li et al. demonstrate that the presence of HR,

which is caused by an inflammatory reaction adjacent to the AZ, might obscure RT and there-

fore hamper early assessment of technique efficacy after thermal ablation [30]. Here, SDCT

may be beneficial for an early detection and may facilitate early retreatment of RT.

Despite the single-centre retrospective study design, several limitations need to be

addressed. First, the study comprises a limited number of patients and ablated HCC lesions.

Second, our results might be affected by our institution´s surveillance schedule. It is known

that the AZ size might be underestimated in immediate postinterventional imaging due to

Fig 4. Image examples illustrating the value of spectral detector computed tomography (SDCT) after microwave

ablation (MWA) of hepatocellular carcinoma (HCC). The pre-operative magnetic resonance scan clearly shows the

arterially hyper-enhancing HCC in liver segment V (a). In the early follow up after incomplete MWA, the detection of

residual tumor (RT) is hampered in conventional images (b) due to the poor contrast of the ablation zone and adjacent

RT. Using SDCT, RT and thus incomplete ablation can be better depicted by means of low-keV virtual monoenergetic

images (50 keV in c) and iodine maps (d).

https://doi.org/10.1371/journal.pone.0252678.g004
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tissue contraction induced by thermal ablation [19,45–47]. Yet, there is no specific recommen-

dation by the European, American and Asian hepatology societies with regards to the early

assessment of technique efficacy [1,4–6]. While many institutions perform a CT scan after 24

hours and/or one month [14,17,19], others proposed different strategies [15,20,48]. Third, no

detailed description of the calculation of SD within the software used for the quantitative anal-

ysis is available. Fourth, the number of voxels included in each ROI were not assessed and

vary, as ROIs were drawn as large as possible, yet this represents common procedure in radiol-

ogy research. Fifth, we limited qualitative image analysis to VMI with 50 keV as it represents a

previously established low-keV value for the assessment of liver lesions [22,23,25,35]. Further-

more, the determination of threshold values based upon iodine values was out of scope of this

study and was statistically infeasible due to the limited number of incomplete ablations. In

light of our results, future studies are encouraged to analyze the benefit of iodine values for the

early assessment of treatment outcome after MWA and should take the intraindividual varia-

tion and recently proposed normalization methods of DECT-derived iodine values into

account [38]. Last, we quantitively and qualitatively evaluated the beneficial value of SDCT for

the assessment of technique efficacy; however, validation in a larger study and a study with dis-

ease-free and overall survival as endpoints are desired.

In conclusion, SDCT derived low-keV virtual monoenergetic images and iodine maps facil-

itate an improved early assessment of technique efficacy after MWA of HCC compared to CI.

The superior image quality in low-keV VMI yielded an improved conspicuity of AZ, HR, RT,

adjacent vessels and thus increased diagnostic confidence. Furthermore, absolute iodine values

and iodine perfusion ratios may facilitate differentiation of transient inflammatory HR and

viable RT.
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