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Can the structure of a system that consists of many elements interacting with each other grow in complexity
when new elements are added to it? This is an essential question for understanding various real, open,
complex systems, such as living organisms, ecosystems, and social systems. Using a very simple model, this
study demonstrates that such systems can grow only when the elements have a moderate number of
interactions on average. This behaviour comes from a balance between two opposing effects: although an
increase in the number of interactions makes each individual element more robust against disturbances, it
also increases the net impact of the loss of any element on the system.

T
he chemical reactions and gene regulatory networks in living organisms, ecosystems, and social communit-
ies are all open complex systems. In such systems, complexity emerges, or at least persists, with the successive
introductions of new elements. Following the discovery of the general instability of large and complex

dynamical systems1 and the development of the theory of the origin of this instability2, the understanding of
the stability of such systems has been drastically improved3–7, especially for ecosystems8–18. In an effort to
understand large and complex open systems such as ecosystems, various theoretical models that contain evolu-
tionary assembly mechanisms have been proposed6,11–13,19–23. In these models, the system typically begins as a
small community, and new species are gradually introduced. Whether the system can grow by accommodating
the newly introduced species or will be disrupted or even destroyed by such a severe disturbance is determined by
the various dynamics or rules intrinsic to the system. Interestingly, these models sometimes allow the system to
contain a large number of species or high diversity, depending on various parameters of the models.

In addition, simpler models, which do not have dynamical equations of motion and hence do not behave as
dynamical systems, have contributed much to the discovery of other general characteristic features of evolving
complex systems, such as self-organised criticality5 and the robustness of complex networks24–31. However, these
models lack any mechanism to allow the system to grow or shrink depending on the interactions within it.
Therefore, an open question remains regarding how and when, in general, such open systems can evolve towards
complex structures under successive additions. The purpose of this study is to gain a universal and simple
understanding of the basic condition required for a system to grow with the successive introductions of new
species. For this purpose, we consider the simple process described below, which was originally proposed to
model ecosystems on an evolutionary time scale32.

Results
The model. In the present model, the entire system is structured as a collection of nodes connected by directed
links with weights (Fig. 1). The nodes may represent chemicals, genes, animals, individuals, or other species; for
generality, we simply refer to ‘‘species’’ in the following discussion. In addition, the links may represent many
diverse types of interactions among them. The influence of species j on species i is denoted by the weight of the
link from node j to node i, aij. Each species has only one property, ‘‘fitness’’, which is solely determined by the sum
of its incoming interactions from other species in the system:

fi~
Xincoming

j

aij: ð1Þ

Each species can survive as long as its fitness is greater than zero; otherwise, it goes extinct. We calculate the fitness
for each species and identify the species with minimum fitness. If the minimum fitness is non-positive, we delete
this species. Because this extinction will modify the fitness of the other species, we re-calculate the fitness and
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re-identify the least-fit species. We continue this deletion procedure
until the minimum fitness is positive, meaning that the system is
stable.

After finding a stable state, we proceed to the next time step. In
each time step, a new species is added into the system. We establish m
interactions from/to the new species. The interacting species are
chosen randomly from among the resident species with equal prob-
ability 1/N(t), and the directions are also determined randomly (the
probability to select each of the two directions is 0.5). The link
weights are again assigned randomly using the standard normal
distribution. Then, we re-calculate the fitness of each species to find
the species that should become extinct. When the system returns to a
stable state, we again proceed to the next time step for another
introduction event. For the initial condition, we begin from a system
that consists of N0 species randomly connected with M0 interactions,
typically with N0 5 100 and M0~mN0=2. However, it is worth
noting that the initial condition is not relevant to the behaviour of
the system after a sufficiently large number of time steps (see An
incubation rule in Methods). Therefore, our model has only one
relevant parameter: the number of interactions per species, m.

Transitions in growth behaviour. According to this model, can the
system grow to become a complex structure? The answer is both yes
and no. Although the number of species N(t) sometimes increases
and sometimes decreases, its long-term trends can be clearly
classified into two cases: either the system grows infinitely
(N tð Þ=tw0, diverging phase), or it remains within a finite range
and occasionally dies out (N tð Þ=t?0, finite phase). The diverging
phase appears only for moderate numbers of interactions, 5 # m #

18, while too many or too few links yield the finite phase (Fig. 2).
The reason for the transition from the finite phase to the diverging

phase between m 5 4 and 5 is relatively simple. Because the species
are connected by directed links, the probability for a given species to
have an incoming link with positive weight is roughly expected to be
1=4. Therefore, in systems with m 5 4 or less, each surviving species
has an average of only one positive incoming link, and the presence of
at least one positive incoming link is necessary for survival. This
condition means that, although the system sometimes grows large,
the structure of the emerging network remains tree- and cycle-like.
Such networks are extremely fragile against the removal of certain
nodes, and therefore they cannot grow with the successive introduc-
tion of new nodes. In reality, the probability for a given node to have
an incoming link of positive weight is a conditional probability and,

hence, can differ from 1/4. Therefore, as we will see below, this
transition point may be located below m 5 4, for example, instead
of between 4 and 5, for a slightly modified model, although the
mechanism remains the same.

The mechanism of the novel transition in robustness. The mecha-
nism of the second transition, between m 5 18 and 19, is more
complex and fascinating. Because the networks in this regime are
not tree-like, this transition is completely unrelated to the mecha-
nism of the previous transition. It also does not stem from certain
network structures or motifs. We can confirm that there is no strong
structure in the emerging networks. For example, the degree

Figure 1 | An example of the temporal evolution of the model. (a): The system is in a stable state, i.e., the fitness of each species is positive. (b): The system

becomes unstable after the introduction of a new species. The species shown in green is going extinct. (c): The extinction of the green species causes

another extinction (yellow species). (d): Finally, the system relaxes into another stable state (all the species have positive fitness).

Figure 2 | Clear transition behaviour in the number of species obtained
from the numerical simulations. (a): Typical temporal evolution patterns

of the number of species N(t) exhibit either diverging (m 5 10) or non-

diverging (m 5 4 and 19) behaviour. (b): Average number of species and

the speed of divergence ( N tð Þ=th i, indicated by filled symbols if positive),

obtained from the simulations using the incubation rule (see Methods for

details). Both plots confirm the presence of clear transitions between 4 and

5 and between 18 and 19. The error bars are smaller than the symbols.
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distribution of the system has a peak at m with exponential tails for
both sides, and the degree-degree correlation is small in the broad
range of m $ 5 (jassortativity coefficient33j # 0.05) including the
critical regime m , 18. The clustering coefficient is also confirmed to
be small. Therefore, such network is essentially an Erdös-Rényi
random graph with an average number of links m. We can also
confirm that there are no evident correlations among link weights.

Under the assumption of such a correlation-less structure for the
emerging networks, the following process should well approximate
the temporal evolution of the system. In our model, every change in
the fitness of each species arises from the addition/deletion of an in-
coming link. Link addition occurs when a new species is introduced,
and deletion occurs when a species goes extinct. If we can calculate
the average probability E of a resident species going extinct during
such a link addition/deletion event, the average number of species
that go extinct directly because of the introduction of the new species
is mE=2 (Fig. 3 right). Because these extinctions may also trigger
sequential extinctions, the expectation value of the total number of
extinctions per addition of one species into a system in which all
species have m interactions can be calculated as an infinite geometric

series: NE~
X?

n~1

mE
2

� �n

~
mE

2{mE
. Because NE 5 1 means that

the number of extinctions is equal to the number of additions in the
long-term average, mE 5 1 corresponds to the transition point.

The remaining task for the estimation of the critical value of m is to
calculate E as a function of m. Because the newly assigned link weight
is chosen using the standard normal distribution, the introduction of
a new species causes the connecting m=2 species to undergo one step
of a symmetric random walk in their fitness. For species deletion
events, the change in fitness includes a negative drift that is propor-
tional to the fitness fi. This drift arises simply because the sum of the
weights of incoming links, one of which is being lost, yields the
current fitness. Therefore, for the fitness distribution, one link addi-
tion/deletion event acts as a convolution process. Because a species
with negative fitness becomes extinct, the portion of the distribution
that falls in the negative fitness range is removed after the convolu-
tion (Fig. 3 left). Beginning from the fitness distribution function of
newly added species, that is, the positive half of the Gaussian distri-
bution of deviation

ffiffiffiffiffiffiffiffiffi
m=2

p
, we perform this convolution-and-cut

process repeatedly to obtain the fitness distribution of the ‘‘elder’’
generations (in terms of their experience of the link-change events).
After finding all distribution functions for different ‘‘generations’’,

we obtain the fitness distribution function of the entire community.
Then, the average area ratio of the negative region produced after the
convolution is performed on the entire fitness distribution gives the
average extinction probability E (see Calculation of the extinction
probability per link change in Methods for the detail).

The extinction probability E and the related quantity mE, as
numerically calculated from this convolution process, are shown in
Fig. 4. As confirmed in this figure, the extinction probability E
decreases with increasing m because a larger value of m makes the
fitness distribution broader. However, this decrease is slower than
m21. Therefore, mE slowly increases with m and crosses the critical
value 1 at approximately m* 5 13. Considering the rough approxi-
mation we used and the slow increase of mE with m near the critical
point, the agreement with the simulation result (m* 5 18.5) is rather
good.

The mechanism we have identified is valid for slightly different
models, as well (Fig. 5). One example is a model in which the number
of interactions of each new species is chosen from a uniform distri-
bution in the interval (1, M). The same diversifying transition occurs
between M 5 35 and 36, i.e., the average number of interactions is
approximately 18 , 19. Modifying the weight distribution, to a
uniform distribution, for example, also results in only a small shift

Figure 3 | Two essential approximations that we use to understanding the mechanism of the transition. (a): The link deletion/addition event is treated

as the corresponding convolution-and-cut process in the fitness distribution. (b): The average size of the extinction cascade is calculated using a

random net structure with an infinite system size.

Figure 4 | Theoretical estimation of the transition point from the finite
phase to the diverging phase. Although the extinction probability during

one link addition/deletion event, E, decreases with increasing m (blue

dotted line), the important quantity mE increases sub-linearly with m (red

solid line) and exceeds the critical value 1 at approximately m* 5 13. This

behavior means that the entire system becomes fragile against the addition

of the new species with increasing m, although each individual species

becomes more robust against such a disturbance.
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in the transition points (Fig. 5 (a)). Therefore, the global structure of
the transition behaviour is universal for these modified models. For a
model in which the interaction density r is specified, instead of the
interaction number m, the transition again occurs at Nr 5 m*. This
means that the number of species fluctuates around a fixed value
N1~m1=r (Fig. 5 (b)). Therefore, in this case, the present theory
allows us to understand and control the resulting average system
size32.

Discussion
These results confirm that our model and the transition mechanism
provide a general understanding of how and to what extent a gradu-
ally assembled system becomes robust against the further addition of
elements: the average fitness of the surviving elements becomes
slightly larger under successive addition, as a result of a weak selec-
tion in the fitness. It is also clear why elements with extremely large
fitness cannot appear, and hence, neither the community nor any
particular element can become infinitely robust: the better the fitness,
the stronger the negative drift the element feels at the extinction of
another species in the same community, solely because the current
situation is good for it.

In the classical diversity-stability relation that is known for
dynamical systems1,2, an intrinsic stability is provided for each ele-
ment to ensure that it is stable if it has no interactions. For the system
to remain stable, each element may have essentially only one inter-
action that is comparable to the given intrinsic stability in strength. A
main strategy to overcoming this problem has been the introduction
of a proper condition into the interaction structure11–15,17–20. In our
model, however, the elements have no intrinsic stability: an element
with no interaction immediately goes extinct. Even so, the system
may grow even when each element has more than 15 interactions. In
this sense, the condition we have identified, using a totally different
framework, is looser. The mechanism we have found is also different
from the discovery on the robustness of complex network24–31,
because the it is unrelated to the complex network structure. It
should also be noted that near the growth transition point, our sys-
tem is not in a critical state, in the sense of SOC models5, although the
number of species obeys a neutral random walk, which has some-
times been regarded as a hint of critical behaviour. Although there is

a cascading extinction process, which is crucial to the determination
of the transition point, the distribution function of the avalanche size
is essentially exponential even at the critical point, as it is explained in
the theory (Fig. 6). This keeps the resulting system robust against the
entirely random incursions. The avalanche size distribution exhibits
a fatter tail in the regime below the first transition (m 5 4, for
instance), which is understood to be an indication of the fragility
originating from the tree- or cycle-like structure.

Because the model is simple and abstract, it may be applicable to a
broader class of problems, such as social and economic systems. A
good example is the characteristic distribution function of the life-
time of elements. Our model, with a fixed interaction density, pre-
dicts a stretched exponential function with an exponent of 1=2 for the
lifetime distribution32. This result is consistent with the distributions
observed in ecosystems (species lifetime distribution in fossil
data34,35) and in an economic system (lifetime distribution of the
retail goods in Japanese stores36). The basic causes of this character-
istic functional form have been found to be an age-insensitive mor-
tality rate and a system-size-independent fluctuation in the number
of elements. We can confirm both these properties using the current
theory.

Figure 5 | Transition behaviour of the number of species in slightly modified models. (a): The average speed of divergence, N tð Þ=th i, is plotted for the

original model (red solid line), the model with a uniform distribution (1, M) for the number of links of each newly added species (green symbols), the

model in which the link weights are drawn from a uniform distribution (21, 1) (blue symbols), and the model with uniform distributions for both

the number of links and the link weights (magenta symbols). Note that Æmæ represents the average number of the degrees of each new species, and

therefore, for the models with uniform degree distribution, mh i~(Mz1)=2. All models share a universal phase diagram, with slightly different transition

points. (b): Temporal evolutions of the number of species N(t) in the model with a fixed interaction density for newly introduced species. Each horizontal

line represents the prediction for the average number of species, N1~18:5=r, for each given interaction density r.

Figure 6 | The frequency distributions of the extinction size, S 5 N(t) 1 1
2 N(t 1 1), obtained from the system with m 5 4 and m 5 19.

www.nature.com/scientificreports
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Methods
An incubation rule. It may be questioned whether the initial condition we chose is
sufficiently general, and hence whether there could be less restrictive initial
conditions that allow the system to grow. To test this possibility, we introduced an
incubation rule: totally isolated species (i.e. with a fitness of 0) were allowed to survive
when the number of species was below a certain threshold. This procedure prevents
total extinction and provides the system with many more opportunities to search for
growth from different initial conditions. However, even with this rule implemented,
the fact that a system with m in the finite phase remains in a finite range does not
change. The average number of species and the average speed of divergence plotted in
Fig. 2, the average speed of divergence plotted in Fig. 5, and the long-term series
shown in Fig. 7 were obtained using such simulations.

Calculation of the extinction probability per link change. Because the weight of
each newly assigned link is chosen using the standard normal distribution, the
introduction of a new species causes the connected m=2 species to undergo one step of
a symmetric random walk in their fitness. For deletion events, the change in fitness
includes a negative drift that is proportional to the fitness fi. This drift arises simply
because the sum of the weights of the incoming links, one of which is being lost, yields
the fitness. The actual measure of time for each species is the number of link addition/
deletion events that the species has experienced, i.e. the number of neighboring
species that have been introduced or that has become extinct, not the system time.
Therefore, we call this measure the ‘‘generation’’ of the species. The evolution of the
(not normalised) distribution function of the fitness under the successive addition of
new species with m interactions can be expressed as a convolution process with a cut-
off at 0 as follows:

Fgz1 m, xð Þ~
0 xƒ0ð ÞÐ?

0 b{1Fg m, b{1j
� �

G 1, x{jð Þdj xw0ð Þ

(
ð2Þ

where Fg is the fitness distribution function of species of generation g and G (s, x) is
the Gaussian distribution with standard deviation s. The contraction factor

b~1{
2NE

m 1zNEð Þ ð3Þ

represents the strength of the negative drift of the random walk. Because b is a
decreasing function of NE and E is an increasing function of b, we can use the value in
the neutral regime (NE 5 1, and therefore b~(m{1)=m) to assess the transition
point. The initial condition of the distribution function is

F0 m,xð Þ~
0 xƒ0ð Þ
2G

ffiffiffi
m
2

p
, x

� �
xw0ð Þ

(
, ð4Þ

as the newly added species has
m
2

incoming links on average and the weight of each

incoming link is drawn from the Gaussian distribution G (1, x). The integral of Fg over
the entire interval

ng mð Þ~
ð?

0
Fg m, xð Þdx ð5Þ

gives the probability of a species, once settled in the system, surviving up to generation
g (therefore, n0 5 1). From this quantity one can directly calculate the average
extinction probability of a species during one link-change event as

E mð Þ~

P?
g~0

ng mð ÞEg mð Þ

P?
g~0

ng mð Þ
~

1P?
g~0

ng mð Þ
ð6Þ

where

Eg~
ng mð Þ{ngz1 mð Þ

ng mð Þ ð7Þ

is the extinction probability of a species of generation g during an increment in
generation.
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