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Robust recognition and exploratory analysis of
crystal structures via Bayesian deep learning
Andreas Leitherer 1✉, Angelo Ziletti1 & Luca M. Ghiringhelli 1

Due to their ability to recognize complex patterns, neural networks can drive a paradigm shift

in the analysis of materials science data. Here, we introduce ARISE, a crystal-structure

identification method based on Bayesian deep learning. As a major step forward, ARISE is

robust to structural noise and can treat more than 100 crystal structures, a number that can

be extended on demand. While being trained on ideal structures only, ARISE correctly

characterizes strongly perturbed single- and polycrystalline systems, from both synthetic and

experimental resources. The probabilistic nature of the Bayesian-deep-learning model allows

to obtain principled uncertainty estimates, which are found to be correlated with crystalline

order of metallic nanoparticles in electron tomography experiments. Applying unsupervised

learning to the internal neural-network representations reveals grain boundaries and

(unapparent) structural regions sharing easily interpretable geometrical properties. This work

enables the hitherto hindered analysis of noisy atomic structural data from computations or

experiments.

https://doi.org/10.1038/s41467-021-26511-5 OPEN

1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin-Dahlem, Germany. ✉email: leitherer@fhi-berlin.mpg.de

NATURE COMMUNICATIONS |         (2021) 12:6234 | https://doi.org/10.1038/s41467-021-26511-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26511-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26511-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26511-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-26511-5&domain=pdf
http://orcid.org/0000-0001-7747-4122
http://orcid.org/0000-0001-7747-4122
http://orcid.org/0000-0001-7747-4122
http://orcid.org/0000-0001-7747-4122
http://orcid.org/0000-0001-7747-4122
http://orcid.org/0000-0001-5099-3029
http://orcid.org/0000-0001-5099-3029
http://orcid.org/0000-0001-5099-3029
http://orcid.org/0000-0001-5099-3029
http://orcid.org/0000-0001-5099-3029
mailto:leitherer@fhi-berlin.mpg.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Identifying the crystal structure of a given material is important
for understanding and predicting its physical properties. For
instance, the hardness of industrial steel is strongly influenced

by the atomic composition at grain boundaries, which has been
studied in numerous theoretical and experimental
investigations1,2. Beyond bulk materials, two- (2D) and one-
dimensional (1D) systems have far-reaching technological
applications, such as solar energy storage, DNA sequencing,
cancer therapy, or even space exploration3,4. To characterize the
crystal structure of a given material, one may assign a symmetry
label, e.g., the space group. More generally, one may want to find
the most similar structure within a list of given known systems.
These so-called structural classes are identified by stoichiometry,
space group, number of atoms in the unit cell, and location of the
atoms in the unit cell (the Wyckoff positions).

Methods for automatic crystal-structure recognition are
required to analyze the continuously growing amount of geo-
metrical information on crystal structures, from both experi-
mental and computational studies. Millions of crystal structures
alongside calculated properties are available in large computa-
tional databases such as the Novel Materials Discovery
(NOMAD) Laboratory5, AFLOW6, the Open Quantum Materials
Database (OQMD)7, Materials Project8, or repositories specia-
lized in 2D materials9,10. In scanning transmission electron
microscopy (STEM)11, atomic positions can be reconstructed
from atomic-resolution images for specific systems, e.g.,
graphene12. Three-dimensional atomic positions are provided by
atom probe tomography (APT)13 and atomic electron tomo-
graphy (AET) experiments14. Still, substantial levels of noise due
to experimental limitations and reconstruction errors are present
in atomic positions, e.g., distortions beyond a level that can be
explained by a physical effect or, in case of APT, large amount of
missing atoms (at least 20%, due to the limited detector
efficiency15). Crystal-structure recognition schemes should be
able to classify a large number of structural classes (also beyond
bulk materials) while at the same time being robust with respect
to theoretical or experimental sources of inaccuracy and physi-
cally driven deviations from ideal crystal symmetry (e.g., vacan-
cies or thermal vibrations). Given the large amount of data,
the classification should be fully automatic and independent of
the manual selection of tolerance parameters (which quantify the
deviation from an ideal reference structure). Current methods are
based either on space-group symmetry or local structure. For
space-group-based approaches (notable examples being Spglib16

and AFLOW-SYM17), the allowed symmetry operations are cal-
culated directly from the atomic positions to infer a space group
label. For local-structure-based approaches, the local atomic
neighborhood of each individual atom is classified into a pre-
defined list of reference structures. Examples of these methods are
common neighbor analysis (CNA)18, adaptive common neighbor
analysis (a-CNA)19, bond angle analysis (BAA)20, and polyhedral
template matching (PTM)21. Space-group approaches can treat
all space groups but are sensitive to noise, while local-structure
methods can be quite robust but only treat a handful of structural
classes. Moreover, none of the available structure recognition
schemes can recognize complex nanostructures, e.g., nanotubes.

To improve on the current state of the art, we build on recent
advances in deep learning, which is a subfield of machine learning
that yields ground-breaking results in many settings, e.g., image
and speech recognition22. Previous work using machine learning
and neural networks (NNs) for crystal-structure recognition23–26

did not go beyond a handful of structural classes while showing
robustness at the same time.

Here, we propose a robust, threshold-independent crystal-
structure recognition framework (ARtificial-Intelligence-based
Structure Evaluation, short ARISE) to classify a diverse set of

108 structural classes, comprising bulk, 2D, and 1D materials.
Bayesian NNs27,28 are used, i.e., a recently developed family of
NNs that yields not only a classification but also uncertainty
estimates. These estimates are principled in the sense that they
approximate those of a well-known probabilistic model (the
Gaussian process). This allows to quantify prediction uncertainty,
but also the degree of crystalline order in a material. ARISE
performance is compared with the current state of the art, and
then applied to various computational and experimental atomic
structures. Crystal characterization and identification of hidden
patterns is performed using supervised learning (ARISE) as well
as the unsupervised analysis (via clustering and dimensionality
reduction) of the internal representations of ARISE.

Results
The input representation. To apply machine learning to
condensed-matter and materials science problems, the input
coordinates, chemical species, and the lattice periodicity of a
given atomic structure are mapped onto a suitable so-called
descriptor. Here, the descriptor is a vector that is invariant under
rigid translations and rotations of the input structure, as well as
under permutations of same-species atoms. Quality and gen-
eralization ability of machine-learning models can be significantly
increased, if physical requirements known to be true are respected
by construction (see Supplementary Methods for more details).

Most well-known descriptors in physics and materials science
incorporate these physical invariants: symmetry functions29, the
smooth-overlap-of-atomic-positions descriptor (SOAP)30,31, the
many-body tensor representation32, and the moment tensor
potential representation33. In this work, SOAP is used as
descriptor (cf. Supplementary Methods). SOAP has been
successfully applied to numerous materials science problems
such as interatomic potentials fitting34, structural similarity
quantification35, or prediction of grain boundary characteristics
(e.g., energy and mobility)36. Note that any other suitable
descriptor that respects the above-mentioned physical require-
ments can be used as input for our procedure. In particular, the
ai4materials code library is provided into which alternative
descriptors can be readily integrated.

The Bayesian deep learning model and the training dataset.
Once the crystal structures are converted into vectorial descrip-
tors by means of the SOAP mapping, a NN model is used to
arrive at a classification decision (cf. Fig. 1c). NNs are nonlinear
machine-learning models: they transform the input in a hier-
archical fashion by subsequently applying affine and non-linear
transformations in a predefined series of layers. The NN learns
these optimal transformations that deform the descriptor space so
that a robust classification is achieved. In this way, the model is
able to learn complex representations which are becoming more
abstract from layer to layer26. This ability to learn
representations37 is one of the key characteristics distinguishing
NNs from other machine-learning algorithms. Various NN
architectures have been developed in recent years22; in this work,
a fully connected NN (multilayer perceptron) is employed.

A key component of this work is something rarely addressed in
machine learning applied to materials science: quantification of
model prediction uncertainty (cf. Fig. 1d). Standard NNs are
unable to provide reliable model uncertainty27. In a classification
setting, there is widespread use of the probability provided by the
last layer as uncertainty estimate. These probabilities are typically
obtained by normalizing the sum of output values using the so-
called softmax activation function. The class with maximal
probability corresponds to the final prediction (here of a specific
structural class). One may interpret the classification probability
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as quantification of model confidence. However, this strategy is
unreliable as standard NNs tend to erroneously assign unjustified
high confidence to points for which a low confidence should be
returned instead27. The main reason for this behavior is that
standard-NN predictions are deterministic, with the softmax
output only providing point estimates of the true probability
distribution of outputs. In Bayesian NNs, this is addressed by
placing distributions over model parameters. This results in
probabilistic outputs—in contrast to the point estimates from
deterministic NNs—from which principled uncertainty estimates
can be obtained. Gal and Ghahramani27 showed that high-quality
uncertainty estimates (alongside predictions) can be calculated at
low cost using stochastic regularization techniques such as
dropout38,39 (see Supplementary Methods for more details).

After both descriptor and model architecture have been
identified, a diverse, comprehensive, and materials-science-
relevant training set is constructed. The first—and most
important—step is to define the structural classes which are
going to be included in the model: an overview of the structural
classes considered in this work is shown in Fig. 1e. This
comprehensive collection of structures includes bulk materials of

elemental, binary, ternary, and quaternary composition, as well as
2D materials and carbon nanotubes of chiral, armchair, and
zigzag type. In practice, given any database, we extract prototypes,
i.e., representative structures that are selected according to some
predefined rules. Selection criteria are, for instance, fulfillment of
geometrical constraints (number of atoms in the unit cell,
number of chemical species) or if the structures are observed in
experiment. For the elemental bulk materials, we extract from
AFLOW all experimentally observed structures with up to four
atoms in the primitive cell. This yields 27 elemental solids
encompassing all Bravais lattices, with the exception of mono-
clinic and triclinic structures because of their low symmetry. Note
that this selection includes not only the most common structures
such as face-centered-cubic (fcc), body-centered-cubic (bcc),
hexagonal-close-packed (hcp), and diamond (which cover more
than 80% of the elemental solids found in nature40), but also
double-hexagonal close-packed, graphite (hexagonal, rhombohe-
dral, buckled), and orthorhombic systems such as black
phosphorus. This goes already beyond previous work using
NNs for crystal structure recognition26, where a smaller set of
elemental solids is considered. For binaries, we select the ten most

Fig. 1 Schematic overview of single- and polycrystal characterization framework. a–d Prediction pipeline of the single-crystal classification model ARISE
(ARtificial-Intelligence-based Structure Evaluation). In this work, we employ the smooth-overlap-of-atomic-positions (SOAP) descriptor. e Examples of
crystallographic prototypes included in the training set. f–m Polycrystal classification framework strided pattern matching (SPM) for slab-like (f–j) and bulk
systems (k–m).
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common binary compounds according to Pettifor41, plus the L12
structure because of its technological relevance—for instance, it
being the crystal structure of common precipitates in Ni-based
superalloys42. This selection also includes non-centrosymmetric
structures, i.e., structures without inversion symmetry, such as
wurtzite. To challenge the classification method with an
increasing number of chemical species, a small set of ternary
and quaternary materials is included as a proof-of-concept.
Specifically, six ternary perovskites43 (organometal halide cubic
and layered perovskites) and six quaternary chalcogenides of
A2BCX4 type44 are included due to their relevance in solar cells
and photo-electrochemical water splitting devices, respectively.
Going beyond bulk materials, we add an exhaustive set of 46 2D
materials, comprising not only the well-known elemental
structures such as graphene and phosphorene45 but also binary
semiconductors and insulators (BN, GaN), transition metal
dichalcogenides (MoS2), and one example of metal-organic

perovskites with six different chemical species. Ternary, quatern-
ary, and 2D materials are taken from the computational materials
repository (CMR)46. To demonstrate the ability of the proposed
framework to deal with complex nanostructures, 12 nanotubes of
armchair, chiral, and zigzag type are included in the dataset. For
each prototype, we calculate the SOAP vector with different
parameter settings (see Supplementary Methods for more details)
as well as periodic and non-periodic boundary conditions to have
a comprehensive dataset to train a robust classification model.
This results in 39,204 (pristine) structures included in the
training set.

To optimize the model, the set of pristine structures is split,
with 80% being used for training and the remaining 20% for
validation. For hyperparameter tuning, we employ Bayesian
optimization47, which allows to optimize functions whose
evaluation is computationally costly, making it particularly
attractive for deep-learning models. Here, hyperparameters such
as learning rate or number of layers are optimized in an
automatic, reproducible, and computationally efficient manner to
minimize the validation accuracy. A list of candidate models is
then obtained, from which the optimal model is selected (see
“Methods” section). We term this model ARISE, and report its
architecture in Table 1.

Benchmarking. We now compare ARISE’s performance on
pristine and defective structures with state-of-the-art crystal-
structure recognition methods, specifically spglib, CNA, a-CNA,
BAA, and PTM (cf. Table 2). As mentioned in the Introduction,
none of the benchmarking methods can treat all the materials
shown in Fig. 1e; thus for fairness, the classification accuracy is
only calculated for classes for which the respective methods were
designed for, implying that most structures are excluded (see
Supplementary Note 1 for more details).

The performance on pristine structures is reported in Table 2.
The accuracy in classifying pristine structures is always 100% as
expected, with the only exception being CNA: For this method,

Table 1 Architecture of the fully connected Bayesian neural
network used in this work.

Layer type Specifications

Input Layer Materials representation
+Dropout (SOAP descriptor, size: 316)
Fully connected layer Size: 256
+ Dropout+ ReLU
Fully connected layer Size: 512
+ Dropout+ ReLU
Fully connected layer Size: 256
+Dropout+ ReLU
Fully connected layer Size: 108 (= # classes)
+Softmax

Rectified Linear Unit (ReLU) activation functions are used for all hidden layers. The dropout ratio
is 3.17% for all layers. The total number of parameters is 371,820. While training time was fixed
to 300 epochs, hyperopt found a batch size of 64 and a learning rate of 2.16 × 10−4.

Table 2 Accuracy in identifying the parent class of defective crystal structures.

Pristine Random displacements (δ) Missing atoms (η)

0.1% 0.6% 1% 2% 4% 1% 5% 10% 20%

Spglib, loose 100.00 100.00 100.00 95.26 20.00 0.00 11.23 0.00 0.00 0.00
(96/108)
Spglib, tight 100.00 0.00 0.00 0.00 0.00 0.00 11.23 0.00 0.00 0.00
(96/108)
PTM 100.00 100.00 100.00 100.00 100.00 100.00 88.67 51.76 25.93 6.24
(12/108)
CNA 66.14 62.81 62.81 54.55 32.34 31.41 55.86 32.50 15.75 3.07
(3/108)
a-CNA 100.00 100.00 100.00 100.00 100.00 100.00 89.25 52.81 25.92 5.37
(3/108)
BAA 100.00 100.00 100.00 100.00 100.00 97.85 99.71 88.78 65.21 25.38
(3/108)
GNB 62.63 56.50 55.94 55.56 54.98 52.72 54.51 52.94 52.67 52.09
(108/108)
BNB 75.76 65.56 65.19 63.61 61.58 56.58 65.49 64.00 62.43 60.48
(108/108)
ARISE 100.00 100.00 100.00 100.00 99.86 99.29 100.00 100.00 100.00 99.85
(108/108)

The defective structures are generated by randomly displacing atoms according to a uniform distribution on an interval �δ � dNN ;þδ � dNN
� �

proportional to the nearest neighbor distance dNN (central
panel), or removing η% of the atoms (right panel). The accuracy values shown are in percentage. For benchmarking we use Spglib16 (with two settings for the precision parameters, so-called loose
(position/angle tolerance 0.1Å/5∘) and tight (position/angle tolerance 10−4/1∘)), polyhedral template matching (PTM)21, common neighbor analysis (CNA)18, adaptive common neighbor analysis (a-
CNA)19, and bond angle analysis (BAA)20. The number of classes which can be treated out of the materials pool in Fig. 1e is shown in parentheses for each method. spglib can assign a space group to all
materials except the 12 nanotubes. PTM can only classify 7 elemental and 5 binary materials of those considered in this work. Additional classes are missing for CNA, a-CNA, and BAA as they cannot
classify simple cubic (sc) and diamond structures. The approach proposed here can be applied to all classes, and thus the whole dataset is used (see Supplementary Tables 4–8 for a complete list).
Moreover, we compare ARISE to a standard Bayesian approach: Naive Bayes (NB). We consider two different variants of NB: Bernoulli NB (BNB) and Gaussian NB (GNB)—see the “Methods” section for
more details. ARISE is overwhelmingly more accurate than both NB methods, for both pristine and defective structures.
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the default cutoff only allows to correctly classify fcc and bcc but
not hcp structures. For defective structures, the situation is
drastically different. Spglib classification accuracy on displaced
structures is low, and only slightly improved by using loose
setting (up to 1% displacement). For missing atoms, the accuracy
is very low already at the 1% level regardless of the setting used.
Note, however, that this is actually spglib’s desired behavior since
the aim of this method is not robust classification. As indicated in
the first column of Table 2, spglib can treat 96 out of the 108
prototypes included in our dataset with the twelve missing
prototypes being carbon nanotubes. Methods based on local
atomic environments (PTM, BAA, CNA, a-CNA) perform very
well on displaced structures, but they suffer from a substantial
accuracy drop for missing-atoms ratios beyond 1%. Their biggest
drawback, however, is that they can treat only a handful of
classes: three classes for BAA, CNA, and a-CNA, and twelve
classes for PTM. ARISE is very robust with respect to both
displacements and missing atoms (even concurrently, cf.
Supplementary Table 3), while being the only method able to
treat all 108 classes included in the dataset, including complex
systems, such as carbon nanotubes. An uncertainty value
quantifying model confidence is also returned, which is
particularly important when investigating defective structures or
inputs that are far out of the training set. We provide a detailed
study in Supplementary Note 3 and Supplementary Fig. 2, where
we challenge ARISE with structures it has not been trained on,
i.e., it is forced to fail by construction. We find that ARISE returns
non-trivial physically meaningful predictions, thus making it
particularly attractive, e.g., for screening large and structurally
diverse databases. Moreover, we analyze predictions and
uncertainty of ARISE for continuous structural transformations
(cf. Supplementary Note 2 and Supplementary Fig. 1), where we
consider the so-called Bain path that includes transitions between
fcc, bcc, and tetragonal structures. We also want to emphasize
that compared to available methods, the classification via ARISE
does not require any threshold specifications (e.g., precision
parameters as in spglib).

Polycrystal classification. Up to this point, we have discussed
only the analysis of single-crystal (mono-crystalline) structures,
using ARISE. To enable the local characterization of poly-
crystalline systems, we introduce strided pattern matching (SPM).
For slab-like systems (cf. Fig. 1f), a box of predefined size is
scanned in-plane across the whole crystal with a given stride; at
each step, the atomic structure contained in the box is repre-
sented using a suitable descriptor (cf. Fig. 1g, h), and classified
(Fig. 1i), yielding a collection of classification probabilities (here:
108) with associated uncertainties. These are arranged in 2D
maps (Fig. 1j). The classification probability maps indicate how
much a given polycrystalline structure locally resembles a specific
crystallographic prototype. The uncertainty maps quantify the
statistics of the output probability distribution (cf. Supplementary
Methods). Increased uncertainty indicates that the corresponding
local segment(s) deviates from the prototypes known to the
model. Thus, these regions are likely to contain defects such as
grain boundaries, or more generally atomic arrangements dif-
ferent from the ones included in training. For bulk systems
(Fig. 1k), the slab analysis depicted in Fig. 1f–j is repeated for
multiple slices (Fig. 1l), resulting in 3D classification probability
and uncertainty maps (Fig. 1m).

SPM extends common approaches such as labeling individual
atoms with symmetry labels19, as the striding allows to discover
structural transitions within polycrystals in a smooth way. SPM
can be applied to any kind of data providing atomic positions and
chemical species. Results obtained via SPM are influenced by the

quality of the classification model as well as box size and stride
(see “Methods” section for more details).

Synthetic polycrystals. First, the classification via SPM combined
with ARISE is performed for a slab-like synthetic polycrystal
consisting of fcc, bcc, hcp, and diamond grains (cf. Fig. 2a). Due
to the nature of the system, the SPM boxes near the grain
boundaries will contain mixtures of different crystal structures.
The results are shown in Fig. 2b and c: The network assigns high
classification probability to the correct prototypes. Uncertainty is
low within the grains, increasing at grain boundaries and crystal
outer borders in line with physical intuition. The result remains
virtually unchanged when introducing atomic displacements (up
to 1% of the nearest neighbor distance) while concurrently
removing 20% of the atoms (cf. Supplementary Fig. 4). The
highest classification probabilities (after from the top four shown
in Fig. 2b) are shown in Supplementary Fig. 7; a discussion on the
stride can be found in Supplementary Fig. 8.

Going beyond classification, we show how unsupervised
learning can be used to access structural similarity information
embedded in ARISE’s internal representations, and use it for the
characterization of crystal systems. We consider the mono-species
polycrystal shown in Fig. 2a and collect ARISE’s representations
of the overall 7968 local boxes. Next, we employ Hierarchical
Density-based Spatial Clustering Applications with Noise
(HDBSCAN)48,49 to identify clusters in the high-dimensional
representation space. HDBSCAN estimates the density under-
lying a given dataset and then constructs a hierarchy of clusters,
from which the final clustering can be obtained via an intuitive
and tunable parameter (see “Methods”). The obtained clusters
correspond to the four crystalline grains in the structure (Fig. 2d).
Points identified as outliers (marked in orange) coincide with
grain-boundary and outer-border regions. Next, the high-
dimensional manifold of the NN representations is projected in
2D via Uniform Manifold Approximation and Projection
(UMAP)50. UMAP models the manifold underlying a given
dataset and then finds a low-dimensional projection that can
capture both global and local distances of the original high-
dimensional data. This returns a structure-similarity map
(Fig. 2e), which allows to visually investigate similarities among
structures: points (structures) close to each other in this map are
considered to be similar by the algorithm. Structures belonging to
the same cluster are in close proximity to each other, and clearly
separated from other clusters. Conversely, outlier points are split
across different regions of the map. This is physically meaningful:
outliers are not a cohesive cluster of similar structures, but rather
comprise different types of grain boundaries (i.e., fcc to bcc
transitions or fcc to diamond, etc., cf. Supplementary Fig. 9). In
this synthetic setting, we can also use the classification prediction
to further verify the unsupervised analysis: the results obtained
via unsupervised learning indeed match ARISE’s predictions (cf.
Fig. 2e–f). Moreover, an analysis of the mutual information
(Fig. 2g) reveals that points at the core of the clusters are
associated with low uncertainty, while points closer to the
boundaries show increased uncertainty. Similar results are
obtained for the other layers (cf. Supplementary Fig. 6).

We now move to a more realistic system: a model structure for
Ni-based superalloys42 (cf. Fig. 2h). Ni-based superalloys are used
in aircraft engines due to their large mechanical strength at high
temperatures, which derives from ordered L12 precipitates (γ0

phase) embedded in a fcc matrix (γ phase). We generate an
atomic structure consisting of a fcc matrix in which Al and Ni
atoms are randomly distributed. In the center, however, the
arrangement of Al and Ni atoms is no longer random, but it is
ordered such that the L12 phase is created (cf. Fig. 2h). The cubic
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shape of this precipitate is in accordance with experimental
observations51. The resulting structure comprises 132 127 atoms
over a cube of 120Å length. As shown via a section through the
center in Fig. 2i, fcc is correctly assigned to the matrix, and the
precipitate is also detected. The uncertainty is increased at the

boundary between random matrix and precipitate, as well as at
the outer borders. Figure 2j illustrates the L12 classification
probability in a 3D plot. The precipitate is detected in both
pristine and highly-defective structures. This analysis demon-
strates that ARISE can distinguish between chemically ordered

Fig. 2 Analysis of synthetic polycrystals. a Mono-species polycrystal consisting of four grains with face-centered cubic (fcc), body-centered cubic (bcc),
hexagonal close-packed (hcp), and diamond (dia) symmetry. b Classification probabilities of expected prototypes. c Mutual information map for
uncertainty quantification. d–g Unsupervised analysis of internal neural-network representations. d The neural-network representations are extracted for
each local segment in (a) (obtained via SPM). Clustering (via Hierarchical Density-based Spatial Clustering Applications with Noise, HDBSCAN) is applied
to this high-dimensional space; the polycrystal is marked according to the resulting clusters (see legend in (e) for the color assignments). e–g Two-
dimensional projection (via Uniform Manifold Approximation and Projection, UMAP) of neural-network representations colored by cluster label, ARISE
predicted class, and mutual information, respectively. In e all points for which HDBSCAN does not assign a cluster are labeled as outlier. In f all points that
are not classified as fcc, diamond, hcp or bcc are labeled as other. Note that while the distances between points are meaningful, the axes merely serve as a
bounding window and are not interpretable, a situation typically encountered in non-linear methods such as UMAP (cf. section 650). h–j Precipitate
detection in Ni-based superalloys. h Binary model system (right) and depiction of the two appearing phases (left). i Classification probabilities of expected
prototypes and mutual information for a slice through the center of the structure. j 3D-resolved detection of the precipitate via the L12 classification
probability for the pristine (left) and highly-defective case (right), for which 20% of the atoms are removed and randomly displaced (up to 5% of the
nearest neighbor distance). k Lowest-energy grain boundary structure (Cu, fcc) predicted from an evolutionary search. The so-called Pearl pattern appears
at the grain boundary, which is also observed in experiment2. l SPM-ARISE analysis, correctly identifying fcc (ABC close-packing) in the grains, while
detecting double hexagonal close-packed (dhcp, ABAC) at the grain boundary. m Exemplary analysis of a local box at the grain boundary, illustrating a
change in stacking and increased distortions, which motivates the assignment of dhcp (which contains 50% of both fcc and hcp close-packings).
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and chemically disordered structures, a feature that will be
exploited for the analysis of experimental data in section
“Application to atomic-electron-tomography data”.

Another realistic system is shown in Fig. 2k, which is the
lowest-energy structure obtained from an evolutionary structure
search2. The structural patterns at the grain boundary are also
observed in scanning transmission electron microscopy (STEM)
experiments. SPM-ARISE correctly identifies the fcc symmetry
within the grains (cf. Fig. 2l) while assigning double hexagonal
close-packed (dhcp) symmetry at the grain boundary. The local
boxes at the grain boundary contain partial fcc structures while
changes in stacking and distortions decrease their symmetry (cf.
Fig. 2m). Also the dhcp phase (ABAC close-packing) contains fcc
(ABC) and a lower-symmetry packing (hcp, AB), thus justifying
the assignment. To supplement this study, we investigate several
examples from the largest, currently available grain-boundary
database52, including fcc, bcc, hcp, and dhcp symmetry as well as
various grain boundary types, which ARISE can classify correctly
(cf. Supplementary Fig. 12). Note that ARISE correctly identifies
even the α− Sm-type stacking (ABCBCACAB). No other fully
automatic approach offers a comparable sensitivity.

Application to transmission-electron-microscopy experimental
images. We now investigate defective structures originating from
a completely different data source, namely STEM experiments, to
demonstrate the generalization ability of ARISE and its applic-
ability to experimental data. Moreover, we show how global and
local analysis can be combined to analyze crystal structures.
STEM experiments are a valuable resource to characterize
material specimens, and to study, for instance, the atomic
structures at grain boundaries2. Atomic resolution can be
achieved in high-angle annular dark field (HAADF) images. The
global assignments of ARISE are tested on two experimental
HAADF images of graphene shown in Fig. 3a. These images
contain a substantial amount of noise which makes it very
challenging to recognize the graphene honeycomb pattern by
naked eye. The choice of graphene is motivated by it being a flat
2D materials; x and y atomic positions obtained from STEM
images thus provide the actual crystal structure, and not a mere
projection. Approximate atomic positions (i.e. x and y coordi-
nates) from HAADF images are obtained via AtomNet12, and
shown in Fig. 3b. ARISE is then used to classify the structures
following the steps summarized in Fig. 1a–d. The top predictions
ranked by classification probability are shown in Fig. 3c, together
with the uncertainty of the assignments as quantified by the
mutual information. ARISE correctly recognizes both images as
graphene, despite the substantial amount of noise present in
images and reconstructed atomic positions. For the first image
(Fig. 3a, left), graphene is predicted with very high probability
(~99%). Indeed, the similarity to graphene is apparent, although
evident distortions are present in some regions (e.g., misaligned
bonds marked in Fig. 3b). The second candidate structure is C3N,
predicted with ~1% probability; in C3N, atoms are arranged in a
honeycomb lattice, making also this low probability assignment
physically meaningful. For the second image (Fig. 3a, right),
ARISE also correctly predicts graphene, this time with 79%
probability. The uncertainty is six times larger than in the pre-
vious case. Indeed, this structure is much more defective than the
previous one: it contains a grain boundary in the lower part,
causing evident deviations from the pristine graphene lattice, as
illustrated in Fig. 3b (right). The other four candidate structures
appearing in the top five predictions (PbSe, MnS2, BN, C3N) are
the remaining completely flat monolayers known to the network
(out of the 108 structures in the training dataset, only five are flat
monolayers). Note that no explicit information about the

dimensionality of the material is given to the model. It is also
important to point out that ARISE robustness well beyond phy-
sical levels of noise is essential to achieve the correct classification
despite the presence of the substantial amount of noise from both
experiment and atomic position reconstruction.

Besides the separate classification of single images, ARISE also
learns meaningful similarities between images (i.e. structures). To
demonstrate this, we analyze a library of graphene images with Si
defects53 and quantify their similarity using ARISE’s internal
representations. Figure 3d investigates a selection of images that
contain the mono-species structures of Fig. 3a (right), e, and
systems with up to four Si atoms. Atomic positions are
determined via AtomNet. Then, the internal representations
from ARISE are extracted and the pairwise cosine similarity is
calculated. The cross-similarity matrix is depicted in Fig. 3d,
revealing a block matrix form in which the binary and mono-
species structures are separated, i.e., more similar to each other,
which can be attributed to the number of Si defects. This
characteristic reappears for a larger selection of structures (cf.
Supplementary Fig. 13), thus confirming the analysis of Fig. 3d.
This investigation demonstrates that ARISE learns meaningful
similarities, supporting the general applicability of ARISE for
similarity quantification.

While so far we have analyzed HAADF images on a global
scale, a local analysis via SPM allows to zoom into a given
structure and locate sub-structural features. This is particularly
useful for polycrystalline and/or larger systems (e.g., more than
1000 atoms). As illustrative example, we consider the structure in
Fig. 3e. The mutual information shown in Fig. 3g (right) clearly
reveals the presence of a grain boundary. In Fig. 3g (left), the
classification probabilities of graphene and MnS2 (the dominant
prototypes) are presented, the latter being assigned at the grain
boundary. This assignment can be traced back to pentagon-like
patterns appearing near the grain boundary (as highlighted in
Fig. 3e), a pattern similar to the one being formed by Mn and S
atoms in MnS2 (cf. Fig. 3f).

Next, we challenge the established procedure for the local
analysis of 2D images with data from a completely different
resource. We investigate a high-resolution transmission electron
microscopy (HTREM) image of a quasicrystalline structure54,55,
cf. Fig. 3h. The bright spots are ordered aperiodically, making it a
very hard task to identify the underlying order by eye. Via the
established procedure, MnS2 is predicted as the most similar
prototype (cf. Fig. 3i). MnS2 contains pentagon patterns (cf.
Fig. 3f) which can also be seen in the quasicrystal (cf. zoom in
Fig. 3h). This result suggests that ARISE and SPM are novel and
promising tools for the classification of quasicrystalline order in
automatic fashion—a promising yet under-explored area.

Application to atomic-electron-tomography data. While
HAADF images are a valuable experimental resource, they only
provide 2D projections. 3D structural and chemical information
can however be obtained from atomic electron tomography
(AET) with atomic resolution achieved in recent
experiments14,56–58. Notably, this technique provides 3D atomic
positions labeled by chemical species, to which ARISE and SPM
can be readily applied. While extensions to other systems such as
2D materials are reported59, metallic nanoparticles have been the
main experimental focus so far, specifically FePt systems due to
their promises for biomedicine and magnetic data storage60. First,
a FePt nanoparticle61 is classified using SPM-ARISE. ARISE’s
robustness is critical for this application, since the structural
information provided by AET experiments are based on recon-
struction algorithms that cause visible distortions (cf. Fig. 4a).
SPM-ARISE primarily detects L12, L10, and fcc phases (see
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Supplementary Fig. 10). This is in line with physical expectations:
annealing leads to structural transitions from chemically dis-
ordered to ordered fcc (A1 to L12) or to the tetragonal L10
phase60,61. Besides the expected prototypes, ARISE also finds
regions similar to tetragonally distorted, mono-species fcc (cf.
Supplementary Fig. 10), which is meaningful given the presence
of fcc and the tetragonal phase L10.

To go beyond the information provided by classification and
discover hidden patterns and trends in AET data, we conduct an
exploratory analysis using unsupervised learning on ARISE’s
internal representations. While the procedure is similar to the one
presented in Fig. 2d–g, here the analysis is truly exploratory (no
ground truth is known), and data comes from experiment. First,
all SPM boxes classified as L10 are extracted, this choice

Fig. 3 Analysis of HAADF and HRTEM images via ARISE and SPM. a Experimental high-angle annular dark field (HAADF) images of two graphene
structures. White scale bars in all HAADF images in this figure are positioned in the bottom left and correspond to the typical graphene bond length
(1.42Å). b The atomic positions are reconstructed from the images via AtomNet12. c The resulting atomic structures are analyzed using ARISE. The top
predicted structures are shown. Mutual information is used to quantify the classification uncertainty. d Similarity quantification of HAADF images via
ARISE. The images in a (right) and e are compared to a selection of graphene systems with Si defects53. For each image, AtomNet is used for
reconstruction and the internal representations of ARISE are extracted (here, second hidden layer). Then, the cross-similarity is calculated using the cosine
similarity. A block matrix structure arises that correlates with the number of Si atoms. A similar pattern is observed for a larger selection of structures, cf.
Supplementary Fig. 13. e HAADF image and reconstructed atomic positions (analogous to a, b) of a larger sample. Pentagons can be spotted near the grain
boundary (see inset). fMnS2 prototype. g Local analysis via strided pattern matching: graphene is the dominant structure. Different prototypes (MnS2) are
only assigned—and with high uncertainty (mutual information)—at the grain boundary. h High resolution transmission electron microscopy (HTREM)
image of a quasicrystalline structure (icosahedral Al-Cu-Fe, adapted from the original reference54, see “Methods”). While there is an underlying order, the
structure is aperiodic (i.e., no translational symmetry is present). As visualized in the zoom, the bright spots align with five-fold symmetry axes and
pentagons of different size appear. Based on the reconstruction via AtomNet (bottom right), ARISE (via strided pattern matching) identifies MnS2 as the
dominating prototype (i), which similarly to the input structure contains pentagon patterns (f).
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motivated by the physical relevance of this phase, in particular,
due to its magnetic properties60. This reduces the number of data
points (boxes) from 43,679 to 5359—a significant filtering step for
which the automatic nature of ARISE is essential. In the
representation space of the first hidden layer, HDBSCAN
identifies seven clusters (and the outliers). To interpret the
cluster assignments, we analyze geometrical characteristics of
atomic structures (i.e., the local boxes) assigned to the different
clusters. Specifically, we consider the nearest neighbor distances
between Fe and Pt atoms, dFeFe and dPtPt, respectively
(cf. Supplementary Methods for the definition). For an ideal
tetragonal structure, the difference Δd= dFeFe− dPtPt is zero (cf.
Fig. 4b, top left); a deviation from this value thus quantifies the
level of distortion. Looking at the histograms of the (signed)
quantity Δd shown in Fig. 4b for each cluster, one can observe
that each distribution is peaked; moreover, the distribution
centers vary from negative to positive Δd values across different
clusters. The distribution of the outliers is shown for comparison:
the Δd distribution is very broad, since outlier points are not a
meaningful cluster. While overlap exists, the clusters correspond
to subgroups of structures, each distorted in a different way, as
quantified by Δd. Thus, we discovered a clear trend via the cluster
assignment that correlates with the level of distortion. The cluster
separation can be visualized in 2D via UMAP (cf. Fig. 4b).
Notably, the clusters do not overlap, even in this highly
compressed representation (from 256 to 2 dimensions). Some
of the clusters may also contain further sub-distributions, which
seems apparent for instance from the Δd distribution of cluster 6.
The regions corresponding to the clusters could be hinting at a
specific growth mechanism of the L10 phase during annealing,
although further investigations are necessary to support this
claim. The present analysis provides a protocol for the machine-

learning driven exploration of structural data: supervised learning
is employed to filter out a class of interest (which is not a
necessary step, cf. Fig. 2d–g), then unsupervised learning is
applied to the NN representations, revealing regions sharing
physically meaningful geometrical characteristics.

Finally, we apply ARISE to time-resolved (i.e., four-dimen-
sional) AET data. Specifically, a nanoparticle measured for three
different annealing times is investigated62. The mutual informa-
tion as obtained via SPM-ARISE is shown in Fig. 4c for five
central slices. In regions between outer shell and inner core, the
mutual information clearly decreases for larger annealing times,
indicating that crystalline order increases inside the nanoparticle
(see also Supplementary Fig. 11 for more details). This analysis
confirms that the predictive uncertainty of ARISE, as quantified
by the mutual information, directly correlates with crystalline
order. The mutual information can be therefore considered an
AI-based order parameter, which we anticipate to be useful in
future nucleation dynamics studies.

Discussion
In this work, Bayesian deep learning is employed to achieve a
flexible, robust, and threshold-independent crystal classification
model, which we term ARISE. This approach correctly classifies a
comprehensive and diverse set of crystal structures from com-
putations and experiments, including polycrystalline systems (via
strided pattern matching). Given an unknown structure, the
network assigns—in an automatic fashion—the most similar
prototypes among 108 possible classes (and quantifies the simi-
larity!), which is a very complicated task even for trained mate-
rials scientists, in particular in case of complex and possibly
defective 3D structures. ARISE is trained on ideal synthetic sys-
tems only and correctly identifies crystal structures in STEM and

Fig. 4 Analysis of atomic electron tomography data. a Side view of FePt nanoparticle (~23 k atoms), with atomic positions and chemical species from
atomic electron tomography (AET) data61. b Two-dimensional projection (bottom left) of neural-network representations (first hidden layer) via UMAP for
regions classified as L10 by ARISE. The distribution of the difference between the nearest neighbor distances dFeFe and dPtPt (highlighted by bonds in top left
part) is shown for each cluster (right), where cluster i= 0, . . . , 6 is denoted as Ci, while all points for which HDBSCAN does not assign a cluster are labeled
as outlier. c Five central slices (mutual information, obtained via strided pattern matching) for three different annealing times (data from four-dimensional
AET experiment62).
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AET experiments, hence demonstrating strong generalization
capabilities. The Bayesian deep-learning model provides classifi-
cation probabilities, which—at variance with standard NNs—
allow for the quantification of predictive uncertainty via mutual
information. The mutual information is found to directly corre-
late with the degree of crystalline order, as shown by the analysis
of time-resolved data from AET experiments. This demonstrates
the correlation of an information-theory concept with physical
intuition. The internal NN representations are analyzed via state-
of-the-art unsupervised learning. The clusters identified in this
high-dimensional internal space allow to uncover physically
meaningful structural regions. These can be grain boundaries, but
also unexpected substructures sharing geometrical properties, as
shown for metallic nanoparticles from AET experiments. This
illustrates how supervised and unsupervised machine learning
can be combined to discover hidden patterns in materials science
data. In particular, the physical content learned by the NN model
is explained by means of unsupervised learning. Since ARISE is
not limited to predicting the space group, systems where the
space group does not characterize the crystal structure can be
tackled (as demonstrated for carbon nanotubes). More complex
systems such as quasi-crystals55, periodic knots, or weavings63

could also be considered. Indeed, ARISE can be applied to any
data providing Cartesian coordinates labeled by chemical species.
Practically, one simply needs to add the new structures of interest
to the training set, and re-train or fine-tune (i.e., via transfer
learning) the NN with the desired labels. Moreover, the mutual
information allows to quantify the defectiveness of a structure;
this could be exploited to automatically evaluate the quality of
STEM images, for example, one may automatically screen for
STEM images that are likely to contain structural defects.
Applications in active learning64 for materials science are also
envisioned, where uncertainty is crucial for example, when
deciding on the inclusion of additional—typically computation-
ally costly—points in the dataset.

Methods
Dataset creation. To compute the training set (39,204 data points in total), we
include periodic and non-periodic systems. For the former, no supercells are
necessary (as SOAP is supercell-invariant for periodic structures). For the latter, a
given structure (or rather its unit cell as obtained from the respective database) is
isotropically replicated until at least 100 atoms are contained in the structure. Then
this supercell structure and the next two larger isotropic replicas are included. With
this choice of system sizes, we focus on slab- and bulk-like systems. Note that the
network may not generalize to non-periodic structures outside the chosen supercell
range. Practically, if the need to classify much smaller or larger supercells arises,
one can include additional replicas to the training set and retrain the model (while
for larger supercells it is expected that the network will generalize, see also Sup-
plementary Fig. 5). Retraining is computationally easy due to fast convergence
time. Note that for 2D structures, only in-plane replicas are considered.

Elemental solids and binary compounds are selected from the AFLOW library
of crystallographic prototypes6. Ternary, quaternary, and 2D materials are taken
from the computational materials repository (CMR)46.

Nanotubes are created using the atomic simulation environment (ASE)65 where
the chiral numbers (n,m) provide the class labels. We filter out chiral indices (n, m)
(with the integer values n, m taking values in [0, 10]) for which the diameter is in
the range [4Å, 6Å] (and skip the cases where n=m= 0, n <m). Then, we increase
the length of each nanotube until at least 100 atoms are contained. No additional
lengths are included as it was checked that there is no major change in the SOAP
descriptor (via calculating the cosine similarity between descriptors representing
nanotubes of different length). For more complex nanotubes (for instance, multi-
walled systems), this may change.

For the cutoff RC, we select the range [3.0 ⋅ dNN, 5.0 ⋅ dNN] in steps of 0.2 ⋅ dNN
and for σ the values [0.08 ⋅ dNN, 0.1 ⋅ dNN, 0.12 ⋅ dNN]. We calculate the SOAP
descriptor using the quippy package (https://libatoms.github.io/QUIP), where we
choose nmax= 9 and lmax= 6 as limits for the basis set expansion, resulting in an
averaged SOAP vector of length 316. Furthermore, we increase the dataset by
varying the so-called extrinsic scaling factor: For a given prototype, the value of
dNN will deviate from the pristine value in presence of defects. Thus, to inform the
network that the computation of dNN is erroneous, we scale each pristine prototype
not only by 1.0 ⋅ dNN but also 0.95 ⋅ dNN and 1.05 ⋅ dNN. We term the factors 0.95,

1.0, 1.05 extrinsic scaling factors. One may also see this procedure as a way to
increase the training set.

To create defective structures, we explained in the main text (cf. Table 2) how
defects (displacements, missing atoms) are introduced. Note that we use the term
missing atoms and not vacancies since the percentages of removed atoms we
consider are well beyond regimes found in real materials. Also note that
displacements as high as 4% of the nearest neighbor distance might already cause a
transition to the liquid phase in some solids. Still, as noted in the Introduction,
experimental and computational data often present levels of distortions that are
comparable or even substantially exceed these regimes. We introduce defects for all
pristine prototypes included in the training set (specifically, for the supercells—for
both periodic and non-periodic boundary conditions, while for nanotubes only
non-periodic structures are used). Since the defects are introduced randomly, we
run 10 iterations of defect creation on each prototype. Then we calculate SOAP for
all of these defective structures for one specific parameter setting
(RC= 4.0 ⋅ dNN, σ= 0.1 ⋅ dNN, extrinsic scaling factor= 1.0), which corresponds to
the center of the respective parameter ranges included in the training set. Finally,
we obtain 5880 defective structures for each defect ratio. In total, we compute
defectives structures for three defect types (missing atoms and displacements
introduced both separately and combined) for eight different defect ratios, giving in
total 141,120 defective data points.

Neural-network architecture and training procedure. At prediction time, we
need to fix T, the number of forward-passes being averaged (cf. Supplementary
Methods). We chose T= 103 for all results except Fig. 3c and Supplementary Fig. 2,
for which we increase T to 105 in order to get stable assignments in case of high
uncertainty and very low probability candidates (i.e., <1.0%). Still, the most similar
prototypes can be obtained already with 103 iterations.

Training is performed using Adam optimization66. The multilayer perceptron is
implemented in Keras67 using Tensorflow68 as backend. Furthermore, we optimize
hyperparameters such as the number of layers using Bayesian optimization,
specifically the Tree-structured Parzen estimator (TPE) algorithm as provided by
the python library hyperopt47 (cf. Supplementary Methods for more details).

The initial training set is split (80/20% training/validation split of pristine
structures, performed using scikit-learn, in stratified fashion, using a random state
of 42) and the accuracy on the validation set is used as the performance metric to
be minimized via hyperopt (for 50 iterations). Fast convergence (followed by
oscillations around high accuracy values) or divergence is typically observed, which
is why we train for a fixed number of epochs (300) and save only the model with
the best performance on the validation set. Training is performed on 1 GPU (Tesla
Volta V100 32GB) on the Talos machine-learning cluster in collaboration with the
Max Planck Computing and Data facility (MPCDF). We observe that accuracies
around 99% can be reached after few iterations, with individual training runs
converging within 20 min, depending on model complexity.

Practically, strong models are obtained via this procedure, while further fine-
tuning can be made to reach perfect accuracies. First, we restrict to one setting of
training parameters (see the previous section). From a computational efficiency
point of view, this is also the preferred choice since one has to compute only one
descriptor per structure during prediction time. We select RC= 4.0 ⋅ dNN and
σ= 0.1 ⋅ dNN as well as an extrinsic scaling factor of 1.0. These choices are at the
center of the respective parameter ranges. While the model with highest validation
accuracy (on the whole training set) determined via hyperopt usually gives very
strong performance, it is not necessarily the best possible one, especially in terms of
generalization ability to defective structures. To find the optimal (i.e., most robust)
model we select some of the best models (e.g., top 15) found via hyperopt and rank
them based on their performance on pristine and defective structures (again for
one setting of RC, σ). In particular, we restrict to defective points with either ≤5%
atoms missing or <1% atomic displacement, which comprises 35,280 data points
(six different defect ratios with 5880 points each). The number of pristine data
points is 396. Using this strategy, we can identify a model with 100% accuracy on
pristine and defective structures, which is reported in the last line of Table 2. The
accuracy on the whole training set comprising 39,204 data points is 99.66%.

We also investigate the performance on higher defect ratios beyond physically
reasonable perturbations, since this is typically encountered in atom-probe
experiments. In particular, we investigate three defect types (missing atoms,
displacements, and both of them) comprising 105,840 data points. The results for
missing atoms (>5%) and displacements (>0.6%) can be found in Table 2 and
Supplementary Table 2. Classification accuracies on structures with both missing
atoms and displacements are specified in Supplementary Table 3. Note that
training and model selection only on pristine structures can yield robust models,
especially if the number of classes is reduced. For instance, training only on binary
systems using a pristine set of 4356 data points (full SOAP parameter range) gives
perfect accuracy on both the full training set and 3960 defective structures
(displacements ≤0.06% and ≤5% missing atoms—for the setting
RC= 4.0 ⋅ dNN, σ= 0.1 ⋅ dNN, extrinsic scaling factor 1.0). Note that in general, if
fewer classes are considered (e.g., ~20), the training time can be significantly
reduced (e.g., to a few minutes).

Naive Bayes. We employ the implementation provided by scikit-learn (https://
scikit-learn.org/stable/modules/naive_bayes.html), where two assumptions for the
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likelihood P(xi∣y) of the features xi given the labels y are tested: a Gaussian dis-
tribution (Gaussian Naive Bayes, short GNB) and a multivariate Bernoulli dis-
tribution (Bernoulli Naive Bayes, short BNB). We observe that the BNB model
yields improved results compared to GNB, while both being significantly less
accurate than ARISE.

Unsupervised learning: clustering and dimensionality reduction.
HDBSCAN48,49 is a density-based, hierarchical clustering algorithm (see also the
online documentation https://hdbscan.readthedocs.io/en/latest/). The final (so-
called flat) clustering is derived from a hierarchy of clusters. The most influential
parameter is the minimum cluster size that determines the minimum number of
data points a cluster has to contain – otherwise it will be considered an outlier, i.e.,
not being part of any cluster. Practically, one can test a range of values for the
minimum cluster size, in particular very small, intermediate, and large ones—for
instance for the results on the synthetic polycrystal in Fig. 2a, we test the values
{25, 50, 100, 250, 500, 1000}. In line with intuition, the number of clusters grows
(shrinks) for smaller (larger) values of minimum cluster size. A coherent picture
with 4 clusters and clear boundaries (as indicated by the outliers) arises for
minimum cluster size values of around 500, for which we report the results in
Fig. 2d–g and Supplementary Fig. 6. Moreover, we test the influence of the so-
called minimum distance parameter in Supplementary Fig. 9, where for Fig. 2e–g,
we choose a minimum distance parameter of 0.9.

For the nanoparticle data discussed in Fig. 4c, we observe that most of the
points are considered outliers since the data contains substantially more
distortions. To address this, we use the soft clustering feature of HDBSCAN, which
allows to calculate a vector for each data point whose i-th component quantifies the
probability that the given data point is member of cluster i. Then, we can infer a
cluster assignment for points that would normally be considered outliers, by
selecting for each point the cluster whose membership probability is maximal
(while considering a point an outlier if all probabilities are below a certain
threshold for which we choose 10%). For the minimum cluster size, we find that for
values below 10 the number of clusters quickly grows while shrinking for larger
values. We report the results for a minimum cluster size of 10 and a minimum
distance parameter of 0.1 in Fig. 4c.

To visualize the clustering results, we use the manifold-learning technique
UMAP50 (see also the online documentation https://umap-learn.readthedocs.io/en/
latest/). This method uses techniques from Riemannian geometry and algebraic
topology to capture both the global and local structure of a manifold that underlies
a given dataset. One of the most important parameters is the number of neighbors
that will be considered to construct a topological representation of the data, where
a small value takes only the local structure into account, while a large value
considers the global relations between data points. We choose values of 500 for
Fig. 2e–g and 50 for 4c, above which the 2D embeddings do not change
significantly.

Synthetic polycrystal generation. The structure in Fig. 2a is generated via the
open-source software Atomsk69.

Strided pattern matching parameters. Two parameters are most important for
strided pattern matching analysis: firstly, the stride defines the resolution and may
be chosen arbitrarily small or large to increase or decrease the visualization of
structural features. Note that the sliding allows us to discover smooth transitions,
while the smoothness is determined by the step size. This way, boundary effects
between neighbored local regions are reduced compared to the case of slightly or
non-overlapping boxes (e.g., in the simple voxelization case). In particular, a small
stride (e.g., 1Å) mitigates boundary effects due to the discretization, which
otherwise can influence the final classification and uncertainty maps. SPM is tri-
vially parallel by construction, thus allowing the time-efficient characterization of
large systems. Clearly, in a naive implementation, this procedure scales cubically
with stride size. Practically, one may choose a large stride (in particular if the
structure size would exceed computing capabilities) to obtain low-resolution
classification maps, which may suffice to identify regions of interest. Then, one may
zoom into these areas and increase the stride to obtain high resolution classification
maps revealing more intricate features. Secondly, the box size determines the
locality, i.e., the amount of structure that is averaged to infer the crystallographic
prototype being most similar to a given local region. If this parameter is chosen too
large, possibly interesting local features may be smoothed out. We recommend to
use box sizes larger than 10–12Å, as in these cases, the number of contained atoms
is typically within the range of the supercells the network is trained on (i.e., at least
100 atoms). The generalization ability to smaller structures depends on the pro-
totype (cf. Supplementary Fig. 5), and in general, if a smaller box size is desired
while using our model, the practical solution is to add smaller supercells in the
training set and retrain the network. Note that the shape of the local regions may
be chosen to be different from boxes, e.g., spheres or any other shape that fits the
application at hand. Moreover, we chose the grid in which the structure is strided
to be cubic, while other discretizations are possible. Note that a one-dimensional
striding can be applied to rod-like systems such as carbon nanotubes.

In this work, we choose the following SPM parameters: For the slab analysis in
Fig. 2a, we choose a 1Å stride and a box size equal to the slab thickness (16Å). For

the superalloy model system we choose the same box size but reduce the stride to
3Å, since this system is much larger and we want to demonstrate that for these
systems, smaller strides still yield reasonable results. For the grain-boundary
structure in Fig. 2k, a stride of 2Å and a box size of 10Å suffice to characterize the
system. For the 2D STEM analysis (cf. Fig. 3g), we choose a stride of 4 (in units of
pixels since atoms are reconstructed from images, while for typical graphene bond
lengths of 1.42Å the relation 1Å ≈ 8.5 can be inferred). Moreover, we select a box
size of 100 pixels (≈12Å). For the quasicrystalline structure in Fig. 3h, i, which has
been cropped from the original reference54 and rescaled to a 1000 × 1000 pixel
image (using standard settings in the GIMP Image editor), a box size of 100 pixels
and stride of 10 pixels suffice to detect the MnS2 prototype as dominant pattern.
For the nanoparticle analysis, we choose a stride of 1Å and box size of 12Å for all
of Fig. 4, except the clustering analysis, for which we reduce the stride to 2Å, to
avoid an overcrowded 2D map. The box size of 16Å (which allowed to distinguish
chemically disordered fcc from ordered L12, cf. Fig. 2h–j) yields comparable results
(see Supplementary Fig. 10), while finding less L10 symmetry and more fcc since a
larger amount of structure is averaged. Due to L10 showing special magnetic
properties, we are interested in having a larger pool of candidate regions, which is
why we choose a box size of 12Å (corresponding to the smallest value such that the
average number of atoms in each box is greater than 100).

Atomic electron tomography. ARISE’s predictions are reliable since all the
symmetries that typically occur in FePt nanoparticles are included in the training
set—except the disordered phase for which it has been demonstrated in the analysis
of the Ni-based superalloy model system that ARISE is sensitive to chemical
ordering. Moreover, a supplementing study reveals that ARISE can analyze
structural transformations, in particular similar to the ones taking place in nano-
particles (cf. Supplementary Note 2 and Supplementary Fig. 1, where the so-called
Bain path is investigated).

Due to diffusion, the shape of the three nanoparticles (cf. Fig. 4c) and thus the
number of atoms is changing. Rough alignment of the nanoparticles was checked
using point set registration: Specifically, we employed the coherent point drift
algorithm70 as implemented in the python package pycpd (https://github.com/
siavashk/pycpd). We extracted only the core of the nanoparticle, which is reported
to remain similar during the annealing procedure14. After applying the algorithm,
the remaining mismatch is negligible (3–10° for all three Euler angles).

Data availability
The training and test data, trained neural-network model, as well as all relevant geometry
files and datasets that are generated in this study have been deposited at Zenodo under
accession code https://doi.org/10.5281/zenodo.5526927. The geometry file of the so-
called Pearl structure analyzed in Fig. 2k–m is available in Edmond (the Open Access
Data Repository of the Max Planck Society) under accession code https://
edmond.mpdl.mpg.de/imeji/collection/zV4i2cu2bIAI8B. The experimental HAADF
image datasets and trained neural-network models that are employed in this study for
reconstructing atomic positions are available under accession codes https://github.com/
pycroscopy/AICrystallographer/tree/master/AtomNet and https://github.com/
pycroscopy/AICrystallographer/tree/master/DefectNet. The HRTEM data used in this
study (Fig. 3h) has been adapted (see “Methods”) from the original publication54, where
it is published under a Creative Commons Attribution 4.0 International License. The
AET data used in this study is available in the Materials Data Bank (MDB) under
accession code https://www.materialsdatabank.org/.

Code availability
A Python code library ai4materials containing all the code used in this work is available
at https://github.com/angeloziletti/ai4materials. In more detail, ai4materials provides
tools to perform complex analysis of materials science data using machine learning
techniques. Furthermore, functions for pre-processing, saving, and loading of materials
science data are provided, with the goal to ease traceability, reproducibility, and
prototyping of new models. An online tutorial to reproduce the main results presented in
this work can be found in the NOMAD Analytics-Toolkit at https://analytics-
toolkit.nomad-coe.eu/tutorial-ARISE.
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