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Though a healthy immune system is capable of recognizing and eliminating emergent

cancerous cells, an established tumor is adept at escaping immune surveillance.

Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates,

also termed the “tumor glycocode,” is a prominent mechanism by which tumors

can escape anti-tumor immunity. Given their persistent and homogeneous expression,

tumor-associated glycans are promising targets to be exploited as biomarkers

and therapeutic targets. However, the exploitation of these glycans has been a

challenge due to their low immunogenicity, immunosuppressive properties, and the

inefficient presentation of glycolipids in a conventional major histocompatibility complex

(MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and

delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted

antigen recognition and potent inherent anti-tumor properties. In this review, we discuss

the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the

potential of γδ T cells to target the tumor glycocode. Understanding the many facets

of this interaction holds the potential to unlock new ways to use both tumor-associated

glycans and γδ T cells in novel therapeutic interventions.
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INTRODUCTION

The cornerstone of a healthy immune system is the ability to distinguish “self ” from
“nonself,” to mount a response to “nonself ” while minimizing the reactivity to “self ” (1).
A tumor originates from cells that remain mostly “self.” Thus, identifying meaningful
differences between pathological and healthy cells has been difficult in the dynamic tumor
microenvironment (TME). Nonetheless, the erratic pattern of gene expression, altered metabolism,
deregulated signaling pathways, and often high mutational burden results in the presentation
of neoantigens on the surface of tumor cells. These novel antigens can be recognized by
both the innate and adaptive arms of the immune system, although this response can
be counteracted by the TME via immunoediting, immunoevasion, and immunosuppression.
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For example, tumors can exploit inhibitory receptors on T-cells
by inducing an unresponsive or exhausted state (2).

Research in the area of novel immunotherapies has been
focused on deploying, re-educating or enhancing immune
defenses to overcome the suppressive, detrimental TME. The
past decade has witnessed a revolution in the application of
immunotherapy for the treatment of cancer, resulting in the
approval of immune checkpoint blockade (ICB). ICB uses
monoclonal antibodies (mAbs) directed against the inhibitory
receptors (IRs) present on the surface of T cells, or the natural
ligands of IRs, often expressed by cancer cells. The blockade
of IR-ligand interactions reduces the inhibitory regulation of T
cells. ICB against cytotoxic T-lymphocyte–associated antigen 4
(CTLA-4) and programmed death 1 (PD-1) or the PD-1 ligand
(PD-L1) have produced survival benefits for an ever-expanding
list of malignancies (3). However, only a limited subset of patients
benefit from ICB, and there are, at times, toxic side effects due
to inflammation and autoimmunity (4). Thus, there is a need
to understand the mechanisms used by cancer cells to suppress
and shape immune responses and to involve novel immune cell
subsets in the design of anti-tumor targeted therapies. Here, we
discuss the role of glycans in the context of immunity.

The changes in gene expression that accompany malignant
transformation have a significant impact on the glycome,
glycoproteome and glycolipidome—the glycocode of cancer
cells—leading to the overexpression and de novo expression
of novel glycan epitopes (5). These have been studied
extensively in the context of promoting tumor cell-intrinsic
aspects of proliferation, signaling and metastasis. Relatively
recently, the glycocode of tumor cells has been implicated in
suppressing anti-tumor immunity, emerging as a novel immune
checkpoint, and, thus, a target for immunotherapy. While now
recognized as an axis of immune modulation with druggable
and therapeutic potential (6), its potential has remained
underdeveloped clinically. Moreover, the subset of immune cells
that attack carbohydrate targets remains poorly understood. In
this review, we discuss the way in which γδ T cells have the
potential to become effectors against carbohydrate moieties on
cancer cells.

GLYCOSYLATION IN THE
TUMOR-IMMUNE CELL INTERPLAY

All cells are covered with a dense coat of glycans, chains of
carbohydrates that are covalently attached to proteins or lipids
(7). Glycan diversity is immense, stemming from the numerous
monosaccharide building blocks that can be assembled into
linear or branched chains of various lengths by multiple types of
chemical bonds, and diversified further by coupling to proteins,
nucleic acids or lipids (8). This diversity creates a unique
glycan “landscape” of expression for each cell and constitutes a
major aspect of the molecular interface between cells and their
environment. Glycans are also important for the transport of
nascent proteins to the surface of cells as well as, in a larger
context, the maintenance of tissue structure and extracellular
matrix organization, cell membrane integrity, cell-cell adhesion,

and cellular signaling. To immune cells, surface glycans serve as
an identifying feature of a cell, a calling card of sorts (9, 10).

Aberrant glycosylation is a hallmark feature of cancer cells
(11–13). Key among the distinguishing features of a tumor’s
“glycan topography” is the anomalous expression of sialic acid–
carrying glycans (sialoglycans) (14). Sialic acids are a family
of negatively charged, nine-carbon sugar molecules linked to
mucins, extracellular matrix, cell surface glycoproteins (N- and
O-linked oligosaccharide chains), or glycolipids by α-2,3; α-2,6
and α-2,8 linkages (15).

Tumor cells are covered with a dense layer of sialoglycans,
some of which are uniquely associated with malignancy (16).
This coating protects tumor cells from being recognized and
eradicated by the immune system, as it can bothmask their “non-
self ” immunogenicity and interfere with immune cell function
(17, 18). For instance, elevated sialylation of cancer cells disrupts
the interaction of the NK-activating receptor natural killer group
2D (NKG2D) with ligands on the tumor cells, reducing NK-
activating signals derived from tumor cells (19). This strategy
by tumor cells is reminiscent of sialic acid coatings used by
parasites and other pathogens to evade immunity (20). Despite
these examples linking protein sialylation to pathology, we note
that this post-translational modification is not always deleterious.
Sialylation of some proteins is associated with neuroprotective
signals (15).

The Sialic Acid-Siglec Axis of Tumor
Immunomodulation
As “self-associated molecular patterns” (SAMPs), sialic acids
are recognized by sialic acid-binding Ig-type lectins (Siglecs).
Twenty years of study document the importance of sialic acids
in discriminating “self ” and “non-self,” showing the existence
of natural antibodies to a variety of sialidase-treated immune
cells in human serum [reviewed in (21)]. In humans, the
Siglec family comprises 14 members. These are subdivided into
the conserved Siglecs:−1 (Sialoadhesin/CD169),−2 (CD22),−4
(Myelin-associated glycoprotein/MAG),−15, and the CD33-
related Siglecs−3,−5 to−11,−14 and−16 (22). The Siglecs are
composed of modular immunoglobulin-like (Ig-like) domains,
usually with the V-like domain at the N-terminus mediating
binding to sialic acids. This domain shows a high degree
of sequence similarity to other Ig-like domains in the
receptor family with the exception of the C-2 set Ig domains
near the plasma membrane. The cytoplasmic domains have
immunoreceptor tyrosine-based inhibition motifs (ITIMs) that
bind to the protein tyrosine phosphatases src homology region
2 domain-containing phosphatases 1 and 2 (SHP-1 and SHP-2).
SHP-1 has a clear negative signaling role, while SHP-2 has been
shown to play both positive and negative roles in immune cells.

Functionally, Siglec binding to sialic acid facilitates tolerance
to cell membrane antigens expressed by the same cell. In B cells,
for example, Siglec-sialic acid binding suppresses B cell activation
and stimulates B cell apoptosis (23–25).While a key physiological
mechanism to prevent autoimmunity, inhibitory Siglec-sialic
acid interaction illustrates how an immunological fail-safe can be
hijacked by tumors to escape host immunity. The engagement of
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Siglec-7 and Siglec-9 on NK cells by tumor-associated sialic acids
inhibits NK cell activation (26–28). Conversely, the loss of Siglec-
7 expression on an NK cell line promotes sustained cytotoxic
activity against leukemia cells in vitro (29). Furthermore, the
binding of the cancer-associated sialylated glycoform of MUC1
to Siglec-9 on macrophages resulted in their differentiation to
immunosuppressive so-calledM2macrophages with upregulated
PD-L1 expression (30). Tumor-associated macrophages were
also shown to express Siglec-15, and the interaction between
Siglec-15 on M2 macrophages and tumor-associated sialyl-Tn
(sTn) antigen elevated macrophage-produced TGF-β, a known
pleiotropic mediator of pro-tumor responses (31). Recently,
tumor-expressed CD24 (a highly sialylated glycoprotein) was
shown to hinder the ability of tumor-associated macrophages to
phagocytize tumors via binding to Siglec-10 (32). The expression
of multiple members of the Siglec family was shown on myeloid-
derived suppressor cells (MDSCs) of glioma patients, although
the functional consequences of this expression on this already
immune suppressive cell type are unclear (33).

The innate and adaptive arms of the immune system can
influence each other, thus the effects of sialoglycan-Siglec
interactions may indirectly affect the activation status and
function of the cells of adaptive immunity. For example, the
interaction between sialylated antigens and Siglec-E (murine
ortholog of human Siglec-9) on dendritic cells can influence
the T cell population, favoring differentiation of antigen-specific
regulatory T cells and reducing the numbers of effector T cells
(34). Although the expression of Siglecs on normal T cells is
low, these can become elevated in tumor-infiltrating lymphocytes
(TILs), resulting in suppressed anti-tumor T cell function (35,
36). In melanoma, Haas et al. identified Siglec-9 expression
on tumor-infiltrating, but not peripheral, CD8+ cells (36). By
disrupting the sialoglycan-Siglec pathway between tumor cells
and T cells, Stanczak et al. demonstrated a delay of tumor growth
and an increased infiltration of CD8+ T cells in a mouse model
of colorectal cancer (35).

Given the role of tumor sialylation in the establishment
of an immunosuppressive TME, both sides of the sialoglycan-
Siglec axis have been targeted therapeutically. To reduce the
sensitivity of immune cells to tumor sialoglycans, Siglec function
can be blocked with monoclonal antibodies (mAbs). MAbs
have been tested pre-clinically against Siglec-7 (26), Siglec-9
(35), and Siglec-15 (37). A challenge of this approach is to
confine the response to the tumor setting, as deregulated immune
activation might have detrimental consequences outside of TME.
The expression of Siglec-9, for example, is restricted to TILs,
thus its systemic inhibition by a mAb is unlikely to impact
peripheral cytotoxic CD8+ T cell function. However, Siglec-
9 is also abundantly expressed by neutrophils and a blocking
antibody could result in their uncontrolled and potentially
damaging activation. An alternative direction is to target the
causative agents of immunosuppression, namely sialoglycans on
the tumor cells, rather than on receptors of immune cells. Stalling
de novo sialic acid synthesis, via the use of glycomimetic sialic
acid analogs that cannot be attached to the glycan chain, has been
shown to reduce the density of sialoglycans on the tumor surface
and delay of tumor growth and metastasis (38, 39).

Finally, the sialoglycan coverage on tumor cells might be
“shaved” using sialidases, sialic acid trimming enzymes. In
the 1960s and 1970s, it was found that injecting a tumor-
bearing animal with growth-arrested tumor digests treated with
sialidases—a very early form of cancer vaccination—impeded the
growth of the pre-existing tumor in mouse (40) and dog (17)
cancer models (41). Despite promising results in early trials on
advanced patients using sialidase-treated cancer cells to boost the
immune response, this form of immunotherapy did not become
a standard of care (42, 43). In recent years, in an approach
the authors termed precision glycocalyx editing, a pre-clinical
study coupled a recombinant sialidase to a therapeutic mAb
against the human epidermal growth factor receptor 2 (HER2)
(44). The antibody directed the effects of the sialidase to the
HER2-expressing tumor cells, simultaneously reducing Siglec-
mediated NK cell suppression and exposing the tumor cells to
NK cell-mediated antibody-dependent cytotoxicity.

GANGLIOSIDES AS PART OF THE TUMOR
“GLYCOCODE”

Among the key sialic acid-containing glycocompounds found
on the surface of tumors are the gangliosides—a family of
glycosphingolipids with one or several sialic acid molecules
attached to the extracellular carbohydrate chain. Though
named after the cell type from which they were first isolated—
“Ganglienzellen,” neurons—gangliosides are ubiquitously
expressed on the membranes of all eukaryotic cells, typically
clustering in cholesterol-rich lipid microdomains or rafts (45).
Indeed, evidence suggests that gangliosides co-localize with
signaling molecules and adhesion molecules in glyco-signaling
domains on the cell surface (46).

It is the unique glycan tree-structure that defines each different
ganglioside. In ganglioside nomenclature, the prefix G stands
for “ganglio” while the letters M (mono-), D (di-), T (tri-) and
Q (quad-) denote the number of sialic acid molecules. Further
classification is made on the basis of thin layer chromatography
migration and is represented by Arabic numerals and lower case
letters reflecting the order of migration of each corresponding
type (47). GM1 is expressed on most eukaryotic cells and has
a prominent role in the activation of intracellular signals in
neuronal and lymphoid cells. In particular, GM1 represents the
major ganglioside component of the brain (48), with several key
neuronal functions becoming compromised as a consequence
of decreasing GM1 levels during, for example, aging (49, 50).
In contrast, GD2 and GD3 are almost exclusively expressed in
tumor cells (51). As such, GD2 and GD3, are examples of a
subset of gangliosides referred to as tumor marker gangliosides
(TMGs), a family comprising about 20 different gangliosides
present preferentially or almost exclusively and at high density
on the cell surface of certain cancers (Table 1).

Ganglioside biosynthesis begins in the endoplasmic reticulum,
with the synthesis of the ceramide precursor, common to all
glycosphingolipids, and continues in the Golgi apparatus where
the ceramide is converted to glucosylceramide. Sugar residues—
galactose, glucose and sialic acids—are added, one by one,
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TABLE 1 | Tumor marker ganglioside targets.

Malignancy GD2 GD3 Fucosyl-GM1 GM2 GM3 PolySia (52) Sialyl Lewis X

Neuroblastoma (53–55) (55) (56) (57, 58) (59) (60, 61)

Melanoma (55) (55, 62) (63) (64) (65)

Glioma (66) (67–69) (52, 70) (71–73) (74)

Non-small cell lung cancer (NSCLC) (75) (76) (77, 78) (79, 80) (81, 82)

Small cell lung cancer (SCLC) (83) (83) (75, 83, 84) (83)

Breast carcinoma (85) (85–87) (85) (85) (88) (81, 82)

Renal cell cancer (89) (90) (91) (92)

Ovarian cancer (93) (94) (93) (93) (95)

Soft tissue sarcomas (96) (96)

Osteosarcoma (97) (98, 99)

Ewing’s sarcoma (100, 101) (99) (102)

Desmoplastic Round Cell (103) (99)

Rhabdomyosarc. (99) (99)

Retinoblastoma (104) (105)

Wilms tumor (91, 106) (107)

Medullary thyroid cancer (108)

Prostate Cancer (109)

Gastric cancer (109) (109) (81)

Endometrial (109) (52, 109)

Pancreatic (109) (109) (81)

Colon Cancer (109) (81, 82)

Esophageal (81)

Head and neck (81, 82)

Select cancers where there is evidence for TMG expression in >50% of all patients in the indicated malignancy. This table is shown to exemplify the prevalence of TMGs. The cells

with no entry reflect ≤50% prevalence, or that we omitted literature that we deem unreliable for this review because very few biopsies were phenotyped. The list ranges from ∼95%

(Neuroblastoma), to ∼80% (Melanoma), to ∼50% (Head and Neck) of patients. When expressed in a patient the TMGs are present homogeneously in tumor nodules and cells. Gold

color denotes literature from many laboratories, or evidence confirmed by the authors of this review.

catalyzed by specific glycosyltransferases. Some gangliosides can
also result from the removal of a sugar or sugar branch by
glycosidases. As several enzymes or pathways can generate a
ganglioside, their biosynthesis is hard to target. Nonetheless,
this strategy has been explored in pre-clinical studies. The
inhibition of glucosylceramide synthase, the enzyme which
catalyzes the first step in glycosphingolipid synthesis, by N-
butyldeoxynojirimycin (NB-DNJ) has been shown to temporarily
delay tumor onset in a mouse melanoma model (110). However,
prolonged treatment with NB-DNJ is toxic, and in the absence of
the inhibitor, ganglioside levels rapidly recovered. Targeting GD3
synthase, the enzyme responsible for the biosynthesis of GD2 and
GD3, reduced tumor stem cell functionality, abrogated in vivo
tumor formation (111), and interfered with the epithelial-to-
mesenchymal transition and metastasis in murine models (112).

Upon export to the plasma membrane, the sphingolipid
(ceramide) part of the molecule—two lipid tails consisting of
the long-chain amino alcohol sphingosine coupled to a fatty
acid—anchors the ganglioside to the cell surface, while the glycan
moiety is exposed to the external environment. Apart from the
plasma membrane, their main cellular location, gangliosides are
also detected in other cellular organelles, including the nuclear
envelope (113) and mitochondria (114). Importantly, they can
also be actively “shed” and taken up by other cells (115).
The excretion of gangliosides from a cell into the extracellular

environment is poorly studied, and may be the result of
release in the form of exosomes, microparticles, or as micelles
given the physical properties of the gangliosides (hydrophobic
tail and hydrophilic head). Extracellular gangliosides improve
tumorigenicity of poorly tumorigenic cells in mouse models
(116) and have been implicated as a mechanism by which tumors
suppress immune cell function (117, 118).

Biology and Function of Tumor Marker
Gangliosides
As the term “tumor marker” suggests, TMG expression is tightly
associated with malignant cells. Table 1 summarizes the cancer
types with a high TMG prevalence across patients. However, in
addition to their status as biomarkers of malignancy, GD2 and
GD3 play active roles during cancer development, with proven
links to tumor growth, metastasis, and immune evasion.

Because of their accumulation on the outer leaflet of
the plasma membrane (with the sugars being extracellular),
gangliosides participate in cellular communication. The
carbohydrate “head” of gangliosides can interact with proteins,
lipids, and glycans present in the extracellular matrix and on
other cells. It can also interact laterally within the membrane
to regulate lipid rafts or microdomain formation (119). As
components of rafts, gangliosides affect signaling processes
during cancer progression. For example, GD2 and GD3 promote
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ligand-independent activation of wild type receptor tyrosine
kinases (RTKs), including EGF-R, TrkA, TrkB, PDGF-R, IGF1-
R, MET, as well as cytoplasmic src-related kinases (e.g., Src, Lck)
(98, 120, 121). The expression of GD2 and GD3 can therefore be
viewed as pro-oncogenic and may be etiological in tumors where
oncogenic mutations are not clearly identified.

The pro-tumor roles of tumor gangliosides have been
implicated at all stages of tumor development. GD2 expression
was linked to breast cancer stem cell phenotypes, while
suppression of its biosynthesis in breast cancer cell lines
decreased mammosphere formation and tumor initiation (111).
In vitro experiments have connected ganglioside production to an
increase in cancer cell migration and invasion (98). Conversely,
a mAb against GD2 was shown to induce apoptosis in small cell
lung cancer cells (83, 122) and an anti-GD3 antibody inhibited
the growth of human melanoma cells in vitro (123). Cancer cells
devoid of GM2 and GM3 synthases formed avascular tumors,
suggesting the involvement of TMGs in angiogenesis during
tumor growth (124). Additionally, the exogenous addition of
GD3 to glioma cells stimulated VEGF production, suggesting
a role for tumor-shed gangliosides in de novo blood vessel
formation (125). In patient-derived melanoma cells, ganglioside
expression is tightly linked to melanoma aggressiveness and
patient survival, with patients expressing GD3 having the shortest
survival (126).

Building on the discussion of glycan-containing sialic acids
as a segment of the tumor glycocode used by the tumor to
evade anti-tumor immunity, GD2 and GD3 can be regarded
as immunosuppressive, even in cases where other immune
escape proteins such as PD-1 or PD-L1 are absent. Indeed,
the observations that TMGs can inhibit antibody production
and lymphocyte proliferation were first made decades ago (127,
128). This is increasingly relevant in modern immunotherapy
as it is possible that the high failure rate of conventional ICB
therapy in melanoma (targeting PD-1 or PD-L1) is associated
with high GD2/GD3 expression, a hypothesis that we are
evaluating experimentally. As sialic acid-containing compounds,
GD2 and GD3 can interact with Siglecs (129–131). Siglec-
7, in particular, displays a strong affinity for the α2,8-linked
disialic acids found on GD2 and GD3 (132). Additionally,
TMGs influence the recruitment and function of immune cells
in Siglec-independent ways. TMGs interfere with IL-2/IL-2R
binding, key to T cell proliferation (133). They have also been
shown to induce apoptosis in T cells (90) and dendritic cells
(134), and impair antigen presentation in human monocytes
(135). In a tumor model engineered to lack GM3, GM2, GM1,
and GD1a, the observed impairment of tumor growth was
attributed to a reduction, and decreased activity, of MDSCs
(136). Intriguingly, the presence of MDSCs could be restored
by exogenous supplementation of gangliosides which suggests a
direct connection between tumor-produced gangliosides and the
recruitment of immunosuppressive MDSCs to the TME.

TMGs as Therapeutic Targets
In 2009, GD2 was “ranked” by the NCI as 12th in priority of
all clinical cancer antigens, with additional three gangliosides
(GD3, fucosyl-GM1, and N-acetyl GM3) included in the

list of 75 prioritized antigens (137). The high expression of
GD2 and GD3 in cancer makes these promising targets for
therapeutic intervention. Moreover, when GD2 or GD3 are
present in a cancer, tumor cells express them stably and
homogeneously, and tumor microheterogeneity with regards to
TMG expression has not been reported. GD2 or GD3 persist
throughout tumor progression, and expression does not appear
to downregulate after chemotherapy, in at least the reported
studies of neuroblastoma (138), osteosarcoma (139), and in the
ex vivo examination of several cell lines (140).

The etiological role of GD2/GD3 in oncogenesis and immune
suppression are additional features that would make these
glycolipids ideal therapeutic targets for clinical translation.
However, exploiting GD2 or GD3 has been challenging.
Monoclonal antibodies against GD2 [Dinutuximab/Ch14.18
mAb (141–143) and 3F8 mAb (144)] and GD3 [BEC2 (145),
R24 (146)] achieved partial success in cancer therapy as passive
immunity (i.e., the administration of purified antibodies against
a target). However, they cause serious adverse effects, such as
high-grade visceral pain, that is not blocked by morphine (147).
While Ch14.18 mAb, in combination with GM-CSF and IL-
2, stimulates antibody-dependent cell-mediated cytotoxicity and
improves overall survival in neuroblastoma (141), in clinical trials
it had low efficacy or exhibited a low therapeutic index [reviewed
in (148)]. More recently, engineered chimeric antigen receptors
(CAR) expressing an anti-GD2 mAb sequence in T or NK cells,
were used in combination with ICB inhibitors and cytokines
(149), but the cells did not persist in circulation and the treatment
showed no efficacy (150). The failure is not surprising given
that the CAR was engineered from mAbs that also exhibit a low
therapeutic index in passive immunity. In addition to the clinical
CAR T cell studies performed in neuroblastoma and melanoma,
pre-clinically, CAR anti-GD2T cells have recently been tested
against breast cancer (151) and diffuse midline glioma (152).

Historically, the development of anti-GD2 or anti-GD3
vaccines has been tried without success. Glycolipids are poorly
immunogenic and are not thought to be processed by antigen
presenting cells or presented by MHC antigens. While lipids can
be recognized by specialized CD1 (MHC class I-like molecules)–
restricted T cells, each ganglioside does not have a unique type
of lipid. In fact, the lipid tails can be heterogeneous within a
single ganglioside (ranging in carbon chain length, oxidation and
saturation state). Hence, only subtle differences exist between
normal GM1 and tumor GD2 and GD3 carbohydrate heads, and
their lipid tails can be shared or can exhibit heterogeneity across
all gangliosides whether they are normal or TMGs. Thus, when
using whole TMGs as immunogens, there are concerns with
regards to tolerance, cross-reactivity or transient and ineffective
immune reactions.

Notwithstanding the aforementioned concerns, initial
attempts at developing GD2/GD3 vaccines used native
GD2 or GD3 glycolipids chemically conjugated to carriers
(153, 154). These were somewhat immunogenic and induced
humoral responses that delayed tumor growth in mice via
a complement-dependent cytotoxicity (CDC) mechanism.
However, anti-ganglioside antibody titers were not long-
lasting even after multiple immunizations, and there was no
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correlation between humoral titer and tumor therapeutic
efficacy (147).

THE POTENTIAL OF γδ T CELLS IN
TARGETING THE “GLYCOCODE”

γδ T cells, expressing the gamma and delta chains of the T-cell
receptor (TCR) coupled to the CD3 invariant signaling chains,
are a subclass of T lymphocytes whose defining characteristic
is their ability to display traits of both the innate and adaptive
immune systems (155). They express a TCR whose engagement
with its target mediates T cell activation. Human γδ T cell
subsets—the subsets in other species will differ—are classified
according to the Vδ chain in the TCR. Vδ(1-8) together with one
of 6 different Vγ chains (2–5, 8, and 9) forms the mature TCR
via V(D)J recombination. In this manner, they generate TCR
diversity similarly to conventional αβ T cells.

On the other hand, the TCRs of the γδ type recognize
qualitatively distinct antigens, with kinetics, antigen recognition
mechanisms and tissue localization fundamentally distinct from
αβ T cells. While some γδ T cells can found in circulation, with
the Vγ9Vδ2 being the major subset corresponding to about 5%
of total CD3+ cells in the periphery (156), the two other main γδ

T cell subsets, Vδ1 and Vδ3, are predominantly tissue-resident.
Like innate immune cells, γδ T cells recognize targets with broad
patterns of pathogen-encoded or dysregulated-self signatures, as
opposed to the specificity displayed by the αβ T cells.

Antigen Recognition by γδ T Cells
Unlike αβ T cells, γδ T cells do not rely on peptide presentation
by the MHC complex of antigen-presenting cell to become
activated. The precise mechanisms behind γδ T cell antigen
recognition remains a field of intense research, complicated by
the vast array of structurally diverse classes of self and non-self-
ligands recognized by the γδ TCR (157). This includes soluble
and membrane-bound proteins and peptides of a wide range
of sizes, as well as non-protein targets such as phospholipids,
non-peptidic antigens and carbohydrates.

Although often referred to as MHC-unrestricted, some of
the most well-characterized targets of γδ-TCR include the non-
classical class I MHC molecules. The MHC-I related molecules
T10 and T22, found specifically in mice, were the first ligands
whose binding to the γδ-TCR was confirmed biochemically (158,
159). Recognition of lipids presented by the CD1 family of MHC
class I-like proteins was established a few years later (160–162)
and is a key aspect of TME-related γδ T cell biology. Vδ1 and
Vδ3 T cells can recognize the sphingolipid α-galactosylceramide
(α-GalCer) presented by CD1d and, as a consequence, upregulate
cytokine production characteristic of Th0 (i.e. IFNγ and IL-4),
Th1 (i.e., IFNγ) and Th2 (i.e., IL-4) cells (163, 164). Recently,
a third type of non-classical class I MHC molecule, the MHC-
related protein 1 (MR1), was shown to be a target of γδ-
TCR (165). This protein is involved in the presentation of
microbial metabolites related to vitamin B2 biosynthesis and
is known to stimulate a special subset of αβ T cells known as
mucosal-associated invariant T cells (MAIT cells). Intriguingly,

the resolved crystal structure of a γδTCR–MR1–antigen complex
revealed a key difference to the previously proposed modes
of TCR-ligand recognition. The γδ TCR was found to bind
underneath the MR1 antigen-binding cleft, suggesting a new
“antigen-agnostic”mode of TCR-target interaction, the biological
implications of which are not yet understood.

In addition to targets presented as a part of non-classical
MHC molecules, several types of non-peptidic antigens have
been described to activate T cells with γδ TCRs. Tumor cell
recognition, in particular, is enhanced by the ability of γδ T
cells to recognize such antigens, which often are by-products
of dysregulated tumor processes (and which do not bind
MHC molecules). Phosphoantigens, or phosphorylated non-
peptide antigens, are the classical example of this principle. The
phosphoantigen isopentenyl pyrophosphate (IPP) accumulates
in tumor cells due to the deregulated mevalonate pathway
(166), and specifically and potently activates Vγ9Vδ2 T cells
(167). Although phosphoantigens were originally thought to
activate the γδ TCR directly, new evidence shows that this
recognition requires the participation of Ig superfamily family
members known as the butyrophilins. In addition to the
previously implicated butyrophilin 3A1 (168–170), two recent
studies identified butyrophilin 2A1 as key for the recognition
of phosphoantigens by γδ T cells (171, 172). Rigau et al.
propose a model in which the phosphoantigen production by
a target cell modifies a complex composed of butyrophilin 3A1
and butyrophilin 2A1 causing it to co-bind and activate the
Vγ9Vδ2 TCR.

In addition to TCR receptor-mediated activation, it should be
emphasized that γδ T cells also express other activating receptors,
such as the NK cell receptors (173, 174). Building on an early
study showing susceptibility to carcinogenesis in the absence of
γδ T cells (175), Strid et al. showed that activation of NKG2D
receptor by ligand Rae-1 (known as MICA in humans) on tissue-
resident Vγ5Vδ1 γδ T cells inhibits skin cancer in a mouse model
(176). In addition to skin, the role of NKG2D for γδ T cell
activation was further shown in peripheral Vγ9Vδ2 cells (177).
In NK cells, the NKG2D receptor has previously been mentioned
in this text as being disrupted by elevated levels of sialylation on
tumor cells. Given its now known functional roles in γδ T cells,
it is thus possible that the immunosuppressive effects of elevated
cancer cell sialylation can extend to impaired γδ T cell function.

γδ T Cell Targeting of Carbohydrates in
Tumor Gangliosides
The broad repertoire of targets recognizable by the γδTCR as well
as other receptors on the γδ T cells is suggestive of their potential
use against specific carbohydrate targets on tumor cells, such as
TMGs. However, this is an emergent field and concrete examples
of such carbohydrate reactivity remain scarce.

The role of CD1d in γδ T cell activation provides an indirect
example in which the spheres of γδ T cells and TMGs intersect.
In one study, ovarian tumor-shed GD3 inhibited NKT-cell
activation, with GD3 binding with high affinity to both human
and murine CD1d. In vivo administration of GD3 suppressed
α-GalCer-induced NKT cell activation in a dose-dependent
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manner, leading to the establishment of an immunosuppressive
TME (94). While experimentally proven only in the context of
NKT cells, it is possible that anti-GD3 blockade of the GD3-CD1d
interaction would free up its recognition by, and subsequent
activation of, γδ T cells, providing an additional therapeutic
benefit. It should be noted that GD3-CD1d interaction can
conversely have an immune activating effect. In melanoma, GD3
has been shown to activate NKT cells in a CD1d-dependent
manner (178, 179).

Key to the potential of γδ T cells in targeting tumor-associated
glycans is the fact that they do not require MHC presentation
of antigens. This is relevant to tumor glycobiology because
pure carbohydrates are typically not presented by MHC (180).
While αβ T cells can recognize MHC-processed glycopeptides
(peptides attached to a glycan), an early study determined
the MHC-unrestricted carbohydrate specificity of γδ T cells

(181). In addition, some MHC-restricted T-cell epitopes can
be unaffected by glycosylation. An H-2Kb-restricted peptide
retains an ability to be presented in its glycosylated form
(hence, presentation is unaffected by peptide glycosylation) as
the tethered carbohydrate fits in the central region of the TCR
binding site. Hence, manipulation of γδ or αβ TCRs may yield
previously unexploited strategies to target non-protein antigens
in an MHC-unrestricted manner.

We recently reported the generation of synthetic GD2 and
GD3 carbohydrate head-groups displayed on a multivalent
polyamidoamine scaffold (PAMAM-GD2 and PAMAM-GD3).
The PAMAM-GDs are lipid-free, water-soluble, inexpensive
to produce, well-characterized chemically and structurally
(including a crucial β-configuration at the first sugar),
and identical to native carbohydrate head-groups on the
surface of tumors (182, 183). These products (hereafter,

FIGURE 1 | TMG glycomimetic vaccine mechanisms of immune activation. After systemic delivery of the vaccine antigens, (1) there is a rapid expansion of γδ T cells.

It is unknown whether γδ TCRs expand by binding directly to the vaccine glycomimetic product, or whether the antigen is presented by DCs. Expansion of γδ T cells is

independent of whether mice bear tumors expressing TMGs, so while the vaccine may also block the immune-suppressive action of TMGs upon T cells this

mechanism is unlikely to account for the initial expansion. (2) In mice bearing TMG-expressing tumors, vaccination affords a significant increase in γδ T cells TILs. (3)

The effector activity generates secondary antigens or neoantigens. (4) Putative neoantigens (not yet identified) circulate and are presented to CD8+ αβ T cells which

(5, 6) expand as a second wave mainly comprising CD8+ T cells that also become TILs. The generation of in vivo T-cell memory in glycomimetic vaccines was not

evaluated. However, anti-TMG humoral immunity (evaluated as a surrogate marker) matures and class-switches from IgM to IgG.
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called vaccines) are potent immunogens—when inoculated in
mice, they stimulate B- and T cell immunity. The vaccines,
as monotherapy, are therapeutic against four aggressive and
metastatic syngeneic cancer models, significantly reducing
primary tumors, metastatic burden, and importantly extending
overall survival. Unexpectedly, this study revealed the expansion
of γδ T cells mediated by a pure carbohydrate dendrimer.
This occurs rapidly after vaccination in mice (independent of
tumor presence) and in tumor-bearing mice (or upon tumor
challenge) was followed by the expansion of the CD8+ T cells
in vivo. Adoptive transfer of a relatively low number of the
T cells isolated after vaccination is also therapeutic in tumor
models (182).

The data support the notion that vaccination can expand
and activate γδ T cells directly (and perhaps through APCs),
which then bypass the immunosuppressive TME and become
TILs (Figure 1). Expansion of γδ T cells is detected in tumor-
bearing as well as in non-tumor-bearing mice. Hence while
the vaccine may also block the immune-suppressive action of
TMGs upon T cells this mechanism is unlikely to account for
the initial expansion, but may be relevant to anti-tumor efficacy.
The initial expansion of γδ T cells is followed by a second
wave of expansion and recruitment of CD8+ effector TILs.
The ability of γδ T cells to activate other T cell subsets has
been shown previously (184, 185). It is possible that the second
wave of CD8+ effector TILs recognize neoantigens presented,
or shed, by injured or stressed tumor cells. We note that while
in vivo T-cell memory generated by glycomimetic vaccines was
not evaluated, the anti-TMG humoral immunity matures and
class-switches from IgM to IgG, and is a surrogate marker
of memory.

The mechanism of action of the PAMAM-GD2 and GD3
vaccines and the role of γδ T cells in mediating immunity
against TMGs is paradigm-shifting, because virtually all previous
experimental and clinical data using vaccines directed against
TMGs have focused on humoral immunity rather than on
cellular immunity. Such bias was perhaps motivated by
the early promising results of using anti-TMG mAbs as
therapeutic agents.

The γδ T cells are susceptible to PD-1–mediated inhibition
(186, 187), and the tumor models where the vaccines
were evaluated express high levels of PD-L1. The high
therapeutic efficacy suggests that the vaccines partially
overcome the inhibitory effects of PD-L1 upon γδ T cells.
Ongoing studies are evaluating whether combination
therapy with ICB might augment the anti-cancer effects
of vaccines.

Adoptive transfer of T cells isolated from vaccinated mice
resulted in the appearance of γδ T cells as TILs, and in a
high therapeutic index. However, the study did not evaluate the
sequence of γδ TCRs that were expanded, and did not address
whether the glycomimetic vaccine products bind directly to the
γδ TCRs or are presented via CD1, for example. Moreover, the
antigens and the mechanism causing a second wave of CD8+ T
cell expansion, whether it is γδ T cell dependent, and whether it
is relevant therapeutically, are key for the proper development
of a future cancer vaccine. The TMG glycomimetic cancer

vaccine is an exciting approach that requires further evaluation
of immune-mechanisms and connections between TMG and γδ

T cells. Also, it is noteworthy that the concept of harnessing
γδ T cells and targeting sugars for cancer therapy has been
under examination for non-cancer pathologies ranging from
anti-viral, anti-bacteria, and anti-parasitic therapy (188–191) to
autoimmune diseases (192).

THERAPEUTIC TARGETING OF γδ T CELLS

The scientific literature regarding the clinical efficacy of γδ T cell
therapy is overall positive, supporting the further exploration of
their use in a clinical setting (156, 193). Studies performed thus
far included patients with hematological malignancies (follicular
lymphoma, multiple myeloma and acute myeloid leukemia),
and non-hematological tumors, such as renal cell, breast and
prostate cancer (194). Vδ1+ cells have shown promising results
pre-clinically (195), and the infiltration of these cells correlated
with necrotizing tumors and patient survival in melanoma (196).
However, the bulk of clinical studies have used Vγ9Vδ2 T-
cells due to their relatively high availability in the peripheral
blood and their potential to be cultured, expanded and activated
ex vivo. To activate the Vγ9Vδ2 T-cells, the butyrophilin-
mediated reactivity of the Vγ9Vδ2 TCR to phosphoantigens
can be exploited, using chemical compounds to elevate or
mimic the expression of phosphoantigens either on tumor cells
or on antigen-presenting cells in the TME. Such compounds
include aminobisphosphonates (for example pamidronate and
zoledronate) or synthetic phosphoantigen analogs (197, 198).
The approach offers a useful tool for expansion, but is not
necessarily a useful therapeutic approach, because the expanded
Vγ9Vδ2 T cells are nearly monoclonal and are not specific for
a desired antigen. Indeed, the clinical response in the trials
conducted thus far has been minimal [reviewed in (199) and
(200)]. Therefore, these experiments are an interrogation of γδ

T cell biology, with some examination of safety parameters.
Furthermore, the clinical data strongly point to the need for a
combinatorial approach with other immune-based therapies for
maximum efficacy (193, 201). Even with these limitations, the
early results reported are encouraging (193).

CAR γδT cell Therapy
T cells engineered to express chimeric antigen receptors (CARs)
comprise a branch of immunotherapy that combines the antigen
specificity of monoclonal antibodies with the signaling motifs
of receptors to promote the proliferation of cytotoxic effector T
cells. CAR therapy has been successfully applied in several types
of hematologic malignancies (202–204), and while translation to
solid tumors has been somewhat limited there is some success
reported with CARs in breast cancer (151) and diffuse midline
glioma (152).

It is possible that engineered CAR T cells, just as naturally
occurring T cells, are restricted by the immunosuppressive TME.
This could impair T cell recruitment, function, and survival. In
this context, γδ CAR T cells are an intriguing alternative target.
Transduction of γδ T cells with CARsmight direct their cytotoxic
activity specifically against a tumor antigen, while retaining their
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TABLE 2 | Immunotherapeutic approaches involving γδ T cells or γδ TCRs.

Cancer immunotherapy approaches

Features and mechanisms Ganglioside

Vaccines

mAbs, CAR-T, TILs, protein vaccines,

antigen-pulsed dendritic cells, neoantigens

Therapeutic γδ T cells

HLA-independent Yes No Yes

Can present antigens Yes No/Poor Yes/No

Can expand endogenous cytotoxic cells Yes No/Poor Yes

Polyclonal responses Yes Yes in some, No in others No/unknown

Genetic engineering required No Yes in some, No in others Yes in some

No in others

Target translates from animal models to humans Yes Often variable and model-or target-dependent In progress

Validated targets Yes Yes in some, No in others Yes/unknown

Target has known etiology in cancer Yes Yes in some, No in others Yes/unknown

Invariant expression of tumor target Yes No Unknown

Target expression may be quantified (personalized

medicine)

Yes Yes in some, No in others No/unknown

Adjuvant or multiple dosing required No Yes Unknown

Platform addressing multiple molecular targets Yes Yes in some, no in others No

May be applied to multiple indications Yes Mostly no No

Time to manufacture Short Long Long

Manufacturing costs Lower/low High High

Lymphodepletion or chemotherapy or cytokine

treatment required

No Yes Yes/unknown

FDA regulatory hurdles Lower Higher Higher

Examples of late preclinical or clinical development Academic

programs

Gritstone, Targovax, Gradalis, Agenus, Jounce,

BioNTech, Neon, Precision Biologics, Vaccibody, Juno,

Aurora, Triumvira, Adicet, Kite, etc

GammaDelta, Incysus, Gadeta,

Lymphact, Immatics, etc

The relative advantages and disadvantages of each are listed. The experience is evolving rapidly, and this list is only presented as an example, not meant to be comprehensive.

other advantageous features such as the ability to cross-present
antigen to αβ T cells. Moreover, a key advantage of the non-MHC
restricted nature of γδ T cells is that CAR γδ T-cell preparations
can be generated and expanded from pooled healthy donors.

To maximize the efficacy of the CAR therapy, an ideal antigen
for CAR generation would need to be tumor-specific, highly and
stably expressed by all malignant cells, and etiological to tumor
development. Highlighting the therapeutic potential of TMGs,
one of the first studies to engineer γδ CAR T cells used the GD2-
antigen (205). The authors reported that GD2-CARs of both
Vδ1 and Vδ2 subsets were expanded in sufficient numbers for
clinical studies. The expression of the GD2-CAR by γδ T cells
enhanced their innate cytotoxicity by directing its effects against
GD2-expressing tumor cells. Further amplifying the anti-tumor
immune response, expanded CAR-transduced Vδ2 cells retained
the ability to internalize and cross-present tumor antigens to αβ

T lymphocytes.
γδ T cells were originally thought to lack memory, and this

was a concern in the design of CAR γδ T cell therapies. A
lack of memory potentially translates into short-lived anti-tumor
responses, but this may be overcome by using the CAR γδ T cell
therapy in multiple treatment cycles. Encouragingly, recent data
from mouse and human studies suggest that γδ T cells indeed
have characteristics reminiscent of memory αβ T lymphocytes,
promoting antigen-specific adaptive immunity (206–209). For

example, inmice infected with B. pertussis, lung residentmemory
γδ T cells were shown to expand upon secondary infection with
increased production of the cytokine, IL-17 (207). In humans,
Vδ1+ and Vδ2+ γδ T cells are evidenced to promote microbial-
specific adaptive immunity (208, 209).

CONCLUDING REMARKS

The concept of the “glycocode” (6, 210) poses that protein
glycosylation—with sialic acids appearing to be key—regulates
biological events that are crucial to immunity and cancer
progression, comparable to, but beyond, the PD-1–type of
checkpoint inhibition. This concept extends to the glycosylation
of membrane and matrix proteins, mucins, and gangliosides,
where TMGs represent a glyco-immune-checkpoint. Vaccines,
antibodies, small molecules, soluble glycoproteins, enzymatic
cleavage of sialic acids, or soluble competitors targeting the
glyco-immune-checkpoint would be a promising approach to
therapy (211).

It will be important to consider γδ T cell biology in the context
of strategies targeting the glycocode and sialic acid-containing
protein and ganglioside targets. Table 2 shows a comparison
of the features of different cancer immunotherapies, including
many that have a γδ T cell mechanism of action. Table 2 lists our
view of their relative advantages and disadvantages. We present
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an overview of their current stage of development, which we
view as a benchmark of the time that each approach has been
in development (factoring time and investment of resources) and
the degree of expectation of success. However, based on history,
most approaches are expected to perhaps find a narrow niche or
indication where they may be of utility. Unfortunately, most will
either fail clinically, or will face difficult regulatory hurdles, or
become untenable in the marketplace.

Our work in developing glycomimetic vaccines surprisingly
resulted in early activation of γδ T cells in vivo, and in high
therapeutic efficacy in cancer. In addition to cancer, conceptually,
this advance is applicable to therapies for other pathologies (e.g.,
antivirals) that could benefit from the activation of the innate
and the adaptive immune systems by targeting sialic acids and
other glycans.
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