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Abstract: We have recently demonstrated in young adults that an anabolic response with mixed
meal protein intake above ~35 g/meal, previously recognized as an “optimal” protein dose, was
further stimulated. However, it is unknown if this applies to older adults. We therefore examined
anabolic response to a mixed meal containing either 35 g (MOD, moderate amount of protein) or
70 g (HIGH, high amount of protein) in a randomized cross-over metabolic study in older adults
(n = 8). Primed continuous infusions of L-[2H5] phenylalanine and L-[2H2]tyrosine were performed
to determine whole-body protein kinetics and muscle protein fractional synthesis rate (MPS) in basal
fasted and fed states. Whole-body protein kinetics (NB, net protein balance; PS, protein synthesis;
PB, protein breakdown) and MPS was expressed as changes from the baseline post-absorptive state.
Consistent with our previous findings in young adults, both feedings resulted in a positive NB,
with HIGH being more positive than MOD. Furthermore, NB (expressed as g protein·240 min)
increased linearly with an increasing amount of protein intake, expressed relative to lean body mass.
The positive NB was achieved due mainly to the suppression of PB in both MOD and to a greater
extent HIGH, while PS was only increased in HIGH. Consistent with the whole-body data, MPS was
significantly higher in HIGH than MOD. Plasma concentrations of essential amino acids and insulin
were greater in HIGH vs. MOD. We conclude that in the context of mixed meals, whole-body anabolic
response linearly increases with increasing protein intake primarily through the suppression of PB,
and MPS was further stimulated with protein intake above the previously considered “optimal”
protein dose in older adults.
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1. Introduction

Sarcopenia, a major factor of the fragility syndrome, is defined as progressive decrease of muscle
mass, strength, and function. It is considered a strong predictor of disability and mortality in
older adults [1,2]. Slowing or preventing the progression of sarcopenia is of upmost importance for
maintaining or improving the quality of life for older adults while it may not be possible to completely
reverse the progress of sarcopenia. It is well established that intake of dietary protein stimulates an
anabolic response [3,4] mainly via the stimulation of protein synthesis by essential amino acids (EAAs).
Especially, a moderate to large amount of protein or EAAs intake similarly increases muscle protein
synthesis in young and older adults [5–7]. The anabolic response in older individuals has been reported
to be maximized with consumption of 0.40 g protein/kg BW/meal or ~ 32 g protein/meal for an 80-kg
person [8]. However, this conclusion seems to be incomplete for several reasons. First, it was based
entirely on muscle protein fractional synthesis rate (MPS) data despite the fact that the whole-body
anabolic response is determined by the balance between protein synthesis and breakdown [9,10].
Second, the anabolic response which led to the conclusion was determined with a protein or AAs
supplement rather than in the context of a mixed meal, which is more representative of the manner
in which dietary protein is normally consumed [11,12]. Last and importantly, when quantifying an
anabolic response it is necessary to take into account the entire body protein pool, because more than
half of whole-body anabolic response occurs at organs such as gut [9]. With these points in mind,
we previously found in healthy young adults that increasing amounts of protein intake induced greater
anabolic responses in the context of a mixed meal [13]. Further, the total anabolic response was due
not only to a stimulation of protein synthesis (PS), but also to a suppression of protein breakdown
(PB) [13]. Consistent with previous dose-response studies [8,14], with respect to the MPS response to
dietary protein, we found that MPS was not different following consumption of 40 g or 70 g protein in
a mixed meal in young adults [13]. In the present study, we tested hypotheses that, similar to young
adults in the our previous study [13], (1) the whole-body net anabolic response would be greater with
70 g than 35 g of protein consumed in the context of a mixed meal; (2) the anabolic response would
increase linearly with increasing amounts of dietary protein intake; and (3) MPS would not be different
between 35 g and 70 g of protein consumed in a mixed meal in older individuals.

2. Materials and Methods

2.1. Subjects

Eight healthy older individuals (>60 years) were recruited by using flyers posted around the
Little Rock area and the University of Arkansas for Medical Sciences (UAMS) campus (September 2015
through January 2016). Subject eligibility for the study was accessed based on a battery of medical
tests including liver and renal function, plasma electrolytes, blood glucose concentration, and medical
history tests. Exclusion criteria precluded participants with active malignancy within the past
6 months, a chronic inflammatory disease, diabetes, low hematocrit or hemoglobin concentration,
gastrointestinal bypass surgery, low platelets, concomitant use of corticosteroids, and any unstable
medical conditions. In addition, participants who performed any types of strenuous physical activity
more than once a week were excluded. Prior to study initiation, the ethics committee of the Institutional
Review Board at the UAMS approved this study (IRB# 204291) which was performed in accordance
with the Declaration of Helsinki and written informed consent was obtained from all subjects.
Clinical Trial Registry number and website: NCT03765710, https://register.clinicaltrials.gov/prs/app/

action/SelectProtocol?sid=S0008HGW&selectaction=Edit&uid=U0003YFM&ts=2&cx=9zc687.

2.2. Experimental Design

Body composition was determined by dual-energy X-ray absorptiometry (QDR4500A; Holologic,
Waltham, MA, USA) (Table 1) at the time of study screening for eligibility. In a randomized cross-over
design, eligible subjects consumed two different amounts of protein intake in isocaloric mixed meals in

https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S0008HGW&selectaction=Edit&uid=U0003YFM&ts=2&cx=9zc687
https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S0008HGW&selectaction=Edit&uid=U0003YFM&ts=2&cx=9zc687


Nutrients 2020, 12, 3276 3 of 11

a random order with at least 1 week apart between trials: 35 g (MOD) vs. 70 g (HIGH) of protein. As in
the previous study [13], beef patties were the main source of protein in the mixed meal. Participants
were instructed not to perform strenuous physical activity for >72 h before each metabolic experiment.
Meals were provided in the 2-day run-in period for dietary normalization followed by the metabolic
experiment on day 3. In the Metabolic Kitchen at the Reynolds Institute on Aging (RIOA), a study
dietician prepared all foods (Table 2). Subjects were provided a dietary record and point and shoot
digital camera when they received the 2-day meal allotments at RIOA and consumed them in their
own convenient places including home. Subjects were instructed to record percentage of the meal
consumed and to photograph the meal before and after the consumption. Participants were instructed
to return camera on the morning of the third day when they reported to the RIOA for the metabolic
experiment following >10 h fasting. The order of the two feeding experiments was randomized using
drawing lots.

Table 1. Subject characteristics.

Subjects (M/F) 8 (4/4)

Age, year 69.3 ± 1.8
Weight, kg 82.9 ± 4.9
BMI, kg/m2 27.4 ± 0.9

LBM, kg 49.9 ± 3.5
Fat mass, % 34.5 ± 2.3

BMI, body mass index; LBM, lean body mass; M/F, the No. of male and female subjects. Values are expressed as
means ± SEM.

Table 2. Macronutrients of 2-day run-in meal on day 1–2 and metabolic study on day 3.

Run-in Foods on Day 1–2

Protein
Levels

Energy
Intake, Kcal

Protein Fat CHO

g % g % g %

MOD 2324 ± 135 83.1 ± 4.9 14.1 ± 0.3 91.0 ± 5.6 34.7 ± 0.3 301.0 ± 16.7 51.2 ± 0.2
HIGH 2328 ± 135 83.2 ± 4.8 14.1 ± 0.3 91.7 ± 5.6 34.9 ± 0.2 300.5 ± 16.9 51.0 ± 0.2

Interventional Meals of Metabolic Infusion Study on Day 3

Protein
Levels

Meal, Kcal
Beef

Protein, g
Protein Fat CHO Nonprotein Energy, %

g % g % g % Fat CHO

MOD 1100 23.6 35.7 12.9 41.3 33.6 147.9 53.5 38.6 61.4
HIGH 1100 59 70.3 25.9 36.2 30 119.6 44.1 40.5 59.5

MOD, moderate amount of protein; HIGH, high amount of protein; CHO, carbohydrate. Values are expressed as
means ± SEM (n = 8).

2.3. Preparation of Interventional Meals

Interventional meals were prepared as previously described [13]. Briefly, precooked 85% lean
ground beef was purchased from a local grocery to form into patties weighing 128.7 g or 321.7 g.
A gas burning stove was used to fully cook the beef patties in a skillet. We individually packaged the
cooked beef patties and stored the patties at −18 ◦C. The non-beef components of the mixed meals
which are components of routine such as canned peaches, corn kernel, and rice krispies were prepared
in the Metabolic Kitchen in advance. Under refrigeration at 4 ◦C, the meals were thawed overnight
and microwaved immediately before being provided. The protein content was ~19 g per 100 g raw
beef. Amino acid composition in the intervention meal of MOD and HIGH was tryptophan (0.21, 0.4),
threonine (1.25, 2.58), isoleucine (1.42, 2.95), leucine (2.71, 5.46), lysine (2.45, 5.35), methionine (0.83, 1.72),
phenylalanine (1.35, 2.72), valine (1.68, 3.4), and histidine (0.99, 2.13), respectively, in the unit of gram.
MOD and HIGH contained total 12.9 g and 26.7 g EAAs, respectively.
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2.4. Stable Isotope Tracer Infusion Protocol

The 8-h tracer infusion protocol is shown in Figure 1. On the third day, participants reported to the
RIOA following an overnight fasting (after 22:00). Before the initiation of tracer infusion, two catheters
were inserted into veins of each lower arm; one for the infusion of tracers and the other for “arterialized”
blood sampling through a heating box. First blood sample was obtained to determine baseline isotopic
enrichments, followed by initiation of a primed-continuous infusion of tracers: L-[2H5]phenylalanine
(prime, 4.60 µmol·kg−1; rate, 3.92 µmol·kg−1

·h−1) and L-[2H2]tyrosine (prime, 0.95 µmol·kg−1; rate,
1.57 µmol·kg−1

·h−1) with a priming of L-[2H4]tyrosine (0.33 µmol·kg−1). All isotope tracers were
purchased from Cambridge Isotope Laboratories (Andover, MA, USA). To measure tracer enrichment
and plasma insulin concentrations and AAs, blood samples were collected throughout the metabolic
study at 0, 120, 180, and 210 min prior to a meal consumption (the fasted states) and at 270, 300, 330, 360,
390, 420, 450, and 480 min (the fed states). Muscle samples from vastus lateralis muscles were obtained
before meal intake (at 120 and 240 min) and at the termination of the metabolic study (at 480 min)
(Figure 1) to determine MPS (%/h) in the fasted and fed states.
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2.5. Calculations of Protein Kinetics

Whole-body protein kinetics were analyzed according to a 2 pool model, as previously
described [15]. Briefly, in the fasted state, appearance rate of phenylalanine, Ra Phe, reflects rate of
protein breakdown while disappearance rate of phenylalanine, Rd Phe, reflects the sum of protein
synthesis rate and rate of phenylalanine hydroxylation to tyrosine (HYDROX). In the fed state, however,
Ra Phe reflects both rate of protein breakdown and rate of appearance of protein from the meal, latter of
which was to be subtracted to determine rate of protein breakdown. To convert kinetics at the level
of amino acid to the level of protein, kinetic values of phenylalanine were divided by 0.04 with the
assumption that Phe contributes 4% to protein in muscle. To determine hydroxylation rate of Phe to
tyrosine (Tyr), Ra Tyr was also determined as the product of Ra Tyr and % of Ra Tyr derived from Phe
(%Ra Tyr) divided by 100. The specific equations for calculations of whole-body protein kinetics [15–17]
are listed below:

1. Total appearance rate into plasma (Ra) (µmol/kg/min) = F/E
2. Fractional Ra of Tyr from Phe (%/100) = ETyr M + 4/EPhe M + 5
3. Rate of Phe hydroxylation (HYDROX) (µmol/kg/min) = fractional Ra of Tyr from Phe × Ra TyrMPE

4. Rate of protein synthesis (µmol/kg/min) = [(Ra Phe − HYDROX)/0.04]
5. Ra Exo = (Protein intake × GITD) × (1 fraction of Ra Phe HYDROX)
6. Protein breakdown rate (µmol/kg/min) = [(Ra Phe − FPhe)/0.04 − Ra Exo]
7. Net protein balance (µmol/kg/min) = Protein synthesis rate − Protein breakdown rate
8. MPS (%/h) = [(EBP2 − EBP1)/(EIC × t)] × 60 × 100
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Enrichment is expressed as tracer to tracee ratio (TTR) (Figure 2) or mole percent excess (MPE),
calculated as TTR/(TTR + 1). TTR was used for PB calculation whereas MPE was used for PS
calculation. E is enrichment of respective tracers. F is the tracer infusion rate into a venous site: FPhe for
phenylalanine tracer. ETyr M + 4 and EPhe M + 5 are plasma enrichments of tyrosine and phenylalanine at
M + 4 and M + 5 relative to M + 0, respectively. Ra Exo is the rate of exogenous amino acids appearing
in the circulation as a result of the protein digestion, accounting for gastrointestinal tract digestibility
(GITD) according to previously reported values [18–20] and the fraction of absorbed amino acids
directly hydroxylated before reaching the peripheral circulation. HYDROX is the appearance rate
of tyrosine derived from phenylalanine via process of hydroxylation. As previously described [15],
MPS was calculated. For the MPS analysis, five out of total eight older adult subjects were included
due to issues regarding muscle samples. EBP1 and EBP2 are the enrichments of protein bound
L-[ring-2H5]phenylalanine from muscle samples at t1 and t2, respectively, and EIC is enrichment of
intracellular free L-[ring-2H5]phenylalanine (120, 240, and 480 min). t is the duration in minutes
elapsed between two muscle biopsies; 60 and 100 are factors used to express MPS in percent per hour.
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Figure 2. Plasma enrichments of tracers of phenylalanine (Phe M5) and tyrosine (Tyr M2) before and
after the meal consumption containing 35 g (MOD) or 70 g (HIGH) of protein. Values are expressed as
means ± SEM. TTR, tracer to tracee ratio (n = 8).

2.6. Analytic Methods

Determination of plasma tracer enrichments was performed by gas chromatography-mass
spectrometry (GCMS: Models 7890A/5975; Agilent Technologies, Santa Clara, CA, USA). As previously
described [15], muscle tissue samples were prepared by homogenizing with 0.5 mL of 10% sulfosalicylic
acid and centrifuged for collecting supernatant. Muscle intracellular free AAs were extracted from
300 µl supernatant fluid by cation-exchange resin columns and dried under Speed Vac. The remaining
pellet was hydrolyzed in 3 mL of 6 N HCl at 105 ◦C for one day. Phenylalanine tracer enrichment from
intracellular free and bound tracer in muscle was analyzed as in plasma analyses. Concentrations of
plasma amino acid (AAs) were analyzed by liquid chromatography-mass spectrometry (QTrap 5500
MS; AB Sciex, Foster City, CA, USA) as previously described [21]. Concentrations of plasma insulin
were analyzed using commercially available human insulin ELISA kit (Alpco Diagnostics, Salem,
MA, USA).

2.7. Statistical Analysis

A two-tailed student’s t-test was used to compare differences in protein kinetics (NB, PS, and PB),
MPS, and area under the curve (AUC) of plasma insulin. All variances we analyzed were homogeneous,
which we tested using Levene’s homogeneity of variance test (for all; p > 0.15). The analyses of
the plasma insulin and AAs including concentrations and sampling time, a continuous variable,
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were determined by using two-way repeated-measures of ANOVA. If there were significant main effects
or interactions, a two tailed student’s t-test was performed for specific comparisons. To compare protein
intake to NB in older adults, Pearson’s correlation coefficients and linear regression were performed.
p < 0.05 was considered to be statistically significant. This analysis was performed using SPSS statistical
package (version 24.0; IBM Inc, Chicago, IL, USA) or Microsoft Excel (Microsoft Corporation, CA,
USA). All data are presented as mean ± standard error of the mean (SEM). A sample size of subjects in
a crossover design was estimated to have 80% power based on the power analysis (two-sample equal
variance t-test) of NB, PS, and PB to detect differences in means of 1.68 standard deviations or larger
which was based on the previous study we completed in young, healthy adults [13]. We assumed the
standard deviations of the older population will be similar.

3. Results

3.1. Protein Kinetics at Whole-Body and Muscle Levels

Our primary focus was the anabolic responses to different amounts of dietary protein intake
in a mixed meal. Both feedings significantly increased the anabolic response, as reflected by NB,
and to a greater extent in HIGH vs. MOD (Figure 3). The positive NB was due primarily to a
significant suppression of PB in both feedings; only HIGH significantly increased PS (for all; p < 0.002).
In agreement with our previous study in young adults [13], increasing amounts of protein consumption
in the context of the mixed meal showed a linear positive relationship with increase in NB in older
adults when protein intake is expressed relative to lean body mass (p < 0.001) (Figure 4). Changes in
MPS from the fasted state were greater in HIGH compared to MOD (p = 0.03) (Figure 5).
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Figure 3. Changes in rates of whole-body protein net balance (NB), synthesis (PS), and breakdown
(PB) above basal fasted states following consumption of a meal containing either 35 g (MOD) or 70 g
(HIGH) of dietary protein. * Significantly different from MOD, p < 0.002. Values are expressed as
means ± SEM (n = 8).

3.2. Plasma Profile

Plasma amino acid concentration responses are shown in Figures 6 and 7. For the EAAs, leucine,
and BCAA, there was a main effect for the amount of protein intake and an interaction effect for the
amount of protein intake by time (p < 0.001). Following a meal intake, EAAs, leucine, and BCAA
were greatly elevated in HIGH but not in MOD (p < 0.001) while there existed no difference in NEAAs
between MOD and HIGH (Figure 6). Insulin area under the curve was significantly increased in HIGH
compared with MOD (p = 0.02) (Figure 7).
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4. Discussion

In the present study, we found (1) a positive NB following both feedings, with HIGH greater than
MOD (by 101%); (2) a modest but significant increase of PS only in HIGH above basal fasted states;
and (3) a greater postprandial MPS above the basal state in HIGH as compared to MOD. In accordance
with our previous findings in young adults [13], we found a positive linear relation between protein
intake, normalized for lean body mass, and NB in older adults.

In our previous study in young adults, we showed that in the context of mixed meals, intake of
dietary protein (~40 g or ~70 g protein/meal) above the previously considered “optimal” protein intake
(e.g., ~0.24 g/kg/meal or ~20 g protein/meal for an 80-kg person) further stimulated the whole-body
anabolic response, but not MPS [13]. In the current study, we tested if the same responses occurred in
older adults. The current study question was derived in part from previous studies demonstrating that
maximal anabolic response in muscle (i.e., MPS) can be achieved with consumption of high-quality
protein of 0.4 g/kg/meal (e.g., ~32 g protein/meal for an 80-kg person) in older adults [8]. However,
this conclusion is limited by several factors, including: (1) it was entirely based upon MPS, whereas the
anabolic response is the balance between MPS and MPB (muscle protein breakdown); (2) MPS was
determined following consumptions of a high quality pure AA/protein, which is not analogous to
mixed meal protein intake which is how most people consume protein; and (3) more than half of protein
turnover occurs in tissues other than muscle [9,22], indicating that muscle specific anabolic response
does not represent the whole-body anabolic response (i.e., total anabolic response). In accordance
with our previous study in young adults [13], we demonstrated that the stimulation of whole-body
anabolic response is not limited by the maximal stimulation of MPS, but instead increases linearly with
increasing amounts of mixed meal protein intake in older adults. The increased anabolic response
following feeding in the present study was largely due to a suppression of PB, which agrees with our
previous findings [11–13,15]. However, we found that PS was stimulated above basal fasted states with
HIGH but not MOD. These results are contrary to our previous findings in young adults, where both
feedings resulted in a simulation of PS, but to a greater extent with the higher dose [13]. The current
study findings point to an anabolic resistance at the whole-body level in older adults in terms of protein
synthesis [6,23,24].

The potential mechanisms responsible for different levels of anabolism following a mixed meal
containing varying amounts of protein may involve two main factors: (1) increased peripheral EAA
availability and (2) hyperinsulinemia. First, HIGH induces increased EAA availability in the plasma
and inward transport into the intracellular compartment [25]. Thus, an increase in PB is not required
to maintain intracellular EAAs [26]. Our previous studies [12,13,27] have demonstrated that higher
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extracellular EAA concentration in HIGH induced higher intracellular AA availability, which plays
an important role in further suppression in PB [25]. The greater responses of leucine and total EAAs
may explain why only HIGH increased PS at the whole-body level [3,5] (Figure 3). The fact that there
was no change in EAAs and leucine following MOD is at odds with our previous studies in young
subjects, in which 38 g of protein intake in a mixed meal induced a significant elevation of leucine [15]
and EAAs [13]. The discrepancy in responses between young and older adults may be due to different
sources of interventional protein and/or age-related changes in splanchnic amino acid retention [5,28].

The increase in insulin concentrations in response to the mixed meal may also have impacted
the total anabolic response. Insulin can stimulate an anabolic state by activating PS and/or
suppressing PB [29]. The greater insulin response with HIGH is consistent with the kinetic data
(i.e., greater suppression of PB and stimulation of PS with HIGH vs. MOD). However, this is contrary
to our previous study in young adults, in which the insulin responses following the mixed meal were
not different between the protein doses. It is not clear why the insulin response following HIGH in
the current study was greater than MOD, despite the smaller carbohydrate content of the mixed meal
(Table 2). Although a greater EAA content in HIGH can stimulate insulin secretion, it is unlikely that
EAA is more potent than carbohydrate in stimulating insulin secretion for a given calorie content [30].
Thus, the role of the higher insulin response in the current study is also unclear. In the previous study
in young adults, the higher protein dose resulted in a greater suppression of PB despite similar insulin
responses in the two meals. Furthermore, GreenHaff et al. [31] showed that PB was significantly
suppressed with increasing insulin concentrations up to 30 µIU/mL, with no further suppression in PB
above this level. In the present study, both feedings induced an insulin response above 30 µIU/mL.

Finally, we found that the amount of protein intake was linearly associated with NB in older
adults, when intake was normalized for lean body mass [13]. This observation is consistent with our
previous finding in young adults [13]. In addition, we found that protein intake (i.e., HIGH of 70 g
vs. MOD of 35 g) above 32 g of protein (or 0.4 g/kg/meal) further stimulated MPS in the context of a
mixed meal in older adults. The finding is contrary to the findings from previous studies showing
no further stimulation in MPS with consumption of protein intake above 32 g in older adults [8,23]
and young adults [13]. While the discrepancy cannot be unequivocally explained, it is likely due to
the attenuated plasma EAA responses following consumption of dietary protein in the context of
mixed meals compared to young adults or those following consumption of pure protein/AA, and due
partly to insulin-mediated suppression of protein breakdown. The attenuated plasma EAA responses
may require more dietary protein/AA consumption to induce a comparable hyperaminoacidemia for
stimulation of MPS.

Our study has limitations. First, we have examined the acute anabolic response, which does not
guarantee meaningful changes in muscle mass and/or strength over time. However, it is important
to appreciate that long-term changes in strength and muscle mass are the cumulative result of
acute anabolic responses. Second, the sample size of the current study was relatively small (n = 8),
although the sample size was determined based on power analysis, and was sufficient to find
statistically significant results. A longer-term study with more subjects is warranted to address these
limitations empirically.

5. Conclusions

Our principal conclusion is that in older individuals a level of protein intake of 70 g in the context
of a mixed meal induces a greater anabolic response than when an isocaloric meal contains 35 g protein.
The higher protein intake stimulated a greater protein synthetic response, both in the whole-body
and skeletal muscle. Whole-body PB was also suppressed to a greater extent with the higher level of
protein intake. These data indicate that the previously proposed “optimal” level of dietary protein in a
meal of 30–35 g significantly underestimates the true value for older individuals.
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