
rsob.royalsocietypublishing.org
Research
Cite this article: Roux S, Krupovic M, Debroas

D, Forterre P, Enault F. 2013 Assessment of

viral community functional potential from viral

metagenomes may be hampered by

contamination with cellular sequences. Open

Biol 3: 130160.

http://dx.doi.org/10.1098/rsob.130160
Received: 23 September 2013

Accepted: 19 November 2013
Subject Area:
bioinformatics/microbiology/genomics

Keywords:
phages, viruses, metagenomics,

functional potential
Author for correspondence:
François Enault

e-mail: francois.enault@univ-bpclermont.fr
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsob.130160.
& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
Assessment of viral community
functional potential from viral
metagenomes may be hampered
by contamination with
cellular sequences
Simon Roux1,2, Mart Krupovic3, Didier Debroas1,2,

Patrick Forterre3,4 and François Enault1,2

1Laboratoire ‘Microorganismes: Génome et Environnement’, Clermont Université,
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1. Summary
Although the importance of viruses in natural ecosystems is widely acknowledged,

the functional potential of viral communities is yet to be determined. Viral genomes

are traditionally believed to carry only those genes that are directly pertinent to the

viral life cycle, though this view was challenged by the discovery of metabolism

genes in several phage genomes. Metagenomic approaches extended these analyses

to a community scale, and several studies concluded that microbial and viral com-

munities encompass similar functional potentials. However, these conclusions

could originate from the presence of cellular DNA within viral metagenomes. We

developed a computational method to estimate the proportion and origin of cellular

sequences in a set of 67 published viromes. A quarter of the datasets were found to

contain a substantial amount of sequences originating from cellular genomes.

When considering only viromes with no cellular DNA detected, the functional

potential of viral and microbial communities was found to be fundamentally differ-

ent—a conclusion more consistent with the actual picture drawn from known

viruses. Yet a significant number of cellular metabolism genes was still retrieved

in these viromes, suggesting that the presence of auxiliary genes involved in various

metabolic pathways within viral genomes is a general trend in the virosphere.
2. Introduction
Studies on the quantitative and functional importance of viruses in natural

environments emerged more than 20 years ago with reports on the high concen-

tration of bacteriophages in natural waters [1]. Viruses were progressively shown

to be the most abundant biological entities in the biosphere [2] and these obser-

vations have prompted scientists to determine the roles of viruses in diverse

ecosystems. Viruses are now considered an important factor in the control of micro-

organisms in various ecological niches [3,4], interfering with major biogeochemical
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cycles [2]. In addition, viruses also mediate genetic exchange

among bacteria by transduction (i.e. the process by which

DNA is transferred from one bacterium to another by a virus)

and may have been having a great influence on the evolution

of cellular organisms since the beginning of cellular life [5].

Although viruses were first believed to carry only those

genes that are directly involved in viral reproduction [6],

accumulation of complete viral genome sequences during the

past decade revealed a deviation from this general paradigm.

Besides the bona fide viral genes (i.e. for virion structure

and assembly, and genome replication), several viruses were

found to contain ‘auxiliary metabolism genes’. Phosphate

metabolism-associated genes, for example, were described in

Roseobacter phage SIOI [7], while several photosystem genes

were discovered in cyanophages [8,9]. The discovery of such

metabolism genes in several viral genomes was one of the

elements fuelling the recently renewed debate about the true

nature of viruses and their place among cellular life forms

[10,11]. However, the precise range of metabolism-associated

genes encompassed in viral genomes is still to be characterized.

Metagenomic approaches provide access to genetic mate-

rial at a community scale, and seem thereby well fitted to

address the question of the functional potential of environ-

mental viral communities. Owing to the growing awareness

of the key role of viruses in the biosphere, a great deal of

viromes (i.e. viral metagenomes) were generated to better

understand the structure and dynamics of viral communities

from various biomes. Surprisingly, for most viromes, reads

with detectable homologues are mostly affiliated to prokaryo-

tic genes [12–14]. This observation is explained by the protein

conservation across viral and cellular genomes, and the pres-

ence of prophage sequences within microbial genomes, these

two factors being amplified by the fact that more microbial

than viral sequences are available in databases [15]. Even

more puzzling, functional profiles were determined to be simi-

lar for microbial and viral metagenomes [16]. Nevertheless, a

reasonable doubt is associated with the fact that all cellular

functions are represented in a similar proportion in microbial

and viral genomes. Indeed, such a similarity could also result

from the presence of cellular DNA in viromes, presence that

cannot be excluded [17].

In this study, 67 published viral metagenomes from various

biomes were analysed to identify and quantify the extent and

possible origins of bacterial-like sequences in viromes. After

identification of datasets that correspond to viromes sensu
stricto (i.e. sequence datasets exclusively from the viral commu-

nity), a more accurate picture of the prevalence of diverse

metabolism genes encoded by viruses could be drawn, provid-

ing a first unbiased view of the functional potential of viral

communities across various biomes.
3. Material and methods
3.1. Genomic and metagenomic sequence data
The prokaryotic sequences used as references (1312 complete

genomes and the corresponding 4 457 923 protein sequences)
originated from KEGG database [18]. Viral genomes (2852)

and the encoded protein sequences (104 703) were obtained

from RefSeqVirus database [19]. Reference databases were

downloaded in June 2011 and March 2012, respectively.

The metagenomic data were composed of 45 microbial and

67 viral publicly available metagenomes [14,16,20–22] (see

electronic supplementary material, table S1).
3.2. Detection of ribosomal DNA in viromes
Genes encoding the 16S and 23S rRNAs (from prokaryotic

genomes) were identified in viromes using rna_hmm, a sen-

sitive tool based on HMM search [23]. Ribosomal DNA

(rDNA) gene prediction was then checked through a BLAST

comparison with the SILVA database [24].
3.3. Detection of prophage-like regions in
prokaryotic genomes

Prokaryote sequences similar to viral sequences, referred to as

viral-like-genes, were identified by BLASTp comparison [25]

according to bit-score and E-value thresholds of 50 and 0.001,

respectively. Prophage-like regions were then defined accord-

ing to the following criteria: a region of four or more genes,

containing at least one viral-like gene, and composed of only

viral-like genes or hypothetical protein-coding genes (i.e. bac-

terial genes for which no function are identified, noted by the

keywords ‘hypothetical protein’ or ‘putative protein’ in their

annotation). Although several more sophisticated prophage

detection tools are available [26,27], we intentionally relied

on such ‘naive’ prophage definition criteria in order to detect

not only functional prophages but also the defective and

degenerated ones.
3.4. Comparison of viromes and microbiomes
to prokaryotic genomes

To avoid bias resulting from differences in the length of

metagenomic sequences (see electronic supplementary mate-

rial, table S1), all virome reads were randomly truncated to

100 bp before proceeding to comparison. Viral genomes

from RefSeqVirus were also truncated to 100 bp and used as

a simulated metagenome (100 000 sequences of 100 bp gener-

ated with GRINDER [28]). All resulting 100 bp reads were

compared with prokaryotic genomes using tBLASTx (bit-score

and E-value thresholds of 50 and 0.001, respectively). Each

read was affiliated to its best-matched prokaryotic genome

so that, for each metagenome, the microbial hit ratio (MHR)

was determined as

MHR =
number of reads with a hit in microbial genomes

total number of reads
�100.

According to the prophage-like regions formerly identified,

the prophage hit ratio (PHR) was determined as
PHR =
number of reads with a prophage as best hit in microbial genomes

number of reads with a hit in microbial genomes
� 100.
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Figure 1. (a) Distribution of relative number of rDNA genes detected in viromes. The three defined categories are coloured green for virome free from cellular DNA,
orange for a low level of cellular DNA and red for a high level of cellular DNA. (b) PHR/MHR plot for each metagenome, either viral ( filled dots) or microbial (black
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These two ratios are summarized on the PHR versus

MHR plot (figure 1b).
3.5. Identification of the origin of cellular DNA
in viromes

To ensure that a low PHR did not result from affiliation of reads

to specific genomic regions, such as unknown viral genes or

isolated genes common to prokaryotes and viruses, a comp-

lementary procedure was performed. For each virome,

recruitment plots were generated for each genome recruiting

500 or more reads. Plots were manually inspected when

the PHR of a virome–genome pair was lower than the pro-

phage ratio (+5%) of the genome determined from the

prophage detection step (i.e. in cases where the virome reads

did not seem to be specifically associated with prophage

regions, but rather equally distributed along the genome).

This detailed analysis of virome–genome pairs enabled us to

identify the genome(s) involved for each virome in which cellu-

lar DNA was detected. All recruitment plots are available on a

dedicated web page: http://metavir-meb.univ-bpclermont.fr/

Recruitment_plots/recruitment_plot_gallery.php.
3.6. Detection of gene transfer agent gene clusters
in microbial genomes

To determine the possible presence of cellular DNA in viromes

owing to gene transfer agents (GTAs), four previously described

GTA gene clusters (see electronic supplementary material,

table S4) were used to detect potential homologous clusters in

prokaryotic genomes using BLASTp (bit-score and E-value

thresholds of 50 and 0.001, respectively). Three of these clusters

are well documented and represent experimentally confirmed

GTA gene clusters [29]: one in the Spirochaetes Brachyspira
hyodysenteriae [30], and two in the a-proteobacteria Rhodobacter
capsulatus [31] and Silicibacter pomeroyi [32]. The fourth clus-

ter used is a predicted GTA-encoding genomic region from

Methanococcus voltae A3 [33], a methanogenic, anaerobic

archaeon previously demonstrated to produce GTA parti-

cles [34]. Genomic regions enriched in GTA-like genes were

manually inspected and GTA clusters in the reference set of pro-

karyotic genomes were predicted according to the following

conditions: the absence of gene coding for an integrase, the

size of the genomic region considered (less than 40 genes) and

the genomic neighbourhood of the putative cluster. According

to the identification of cellular DNA in viromes and of genomes

http://metavir-meb.univ-bpclermont.fr/Recruitment_plots/recruitment_plot_gallery.php
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containing GTA gene clusters, the ratio of GTA-containing

genome was calculated for each virome.

3.7. Functional analysis of viromes and microbiomes
Functional profiles of 42 viromes and 45 microbiomes, pre-

viously analysed by Dinsdale et al. [16] and Kristensen et al.
[17] (see electronic supplementary material, table S1), were

downloaded from the Mg-Rast web-server [35] and com-

pared. Three comparisons of profiles were performed: all

viromes versus all microbiomes, viromes with clearly ident-

ified microbial-originating sequences (‘red’ viromes) versus

all microbiomes, and viromes considered as mostly com-

posed of viral sequences (‘green’ and ‘orange’ viromes)

versus all microbiomes. Plots were generated for each combi-

nation and Pearson’s correlation coefficients were computed.

Functional annotation of the nine viral-only viromes was

performed using tBLASTx comparison between viromes and

the KEGG database, the KEGG Orthology (KO) system and

the associated online pathway representation [36].
4. Results and discussion
4.1. Evidence for the presence of cellular DNA in

some viromes
The detection of typical prokaryotic genes never retrieved in a

viral genome, such as those coding for ribosomal RNA (rDNA),

indicates that a virome most probably contains DNA from cel-

lular origin. The ratio of rDNA genes was determined in the 67

public viromes analysed in this study (see electronic sup-

plementary material, table S1). According to this ratio,

ranging from 0 to 5.3‰, viromes were separated into three

groups (figure 1a; electronic supplementary material, table S2):

— viromes with no rDNA genes that can be considered as

devoid of cellular sequences;

— viromes with a rDNA ratio lower than 0.2‰ (2 from 10 000

sequences), for which the amount of cellular sequences can

be considered as very low and likely to be negligible; and

— viromes with a rDNA ratio higher than 0.2‰ (up to

5.3‰), similar in average to the rDNA ratios observed

in microbiomes that can be considered as containing a

non-negligible proportion of cellular sequences.

A gradient of presence of rDNA genes is therefore observed

and is highly dependent on the investigated ecosystem. For

example, all of the human gut viromes were found to contain

rDNA sequences and only viromes from aquatic systems were

rDNA-free. This first observation illustrated that it might prove

difficult to purify viral capsids from complex matrices (e.g.

faeces, gut, coral samples, etc.), but also prompted us to deter-

mine the extent of cellular DNA in viromes beyond rDNA genes.

4.2. What is the extent of microbial DNA in viromes?
We complemented the detection of rDNA genes by determining

the ratio of virome reads with a hit against a microbial genome

(MHR). MHRs exhibited a great variability, ranging from 0.2 to

40.3% (6.2% on average; electronic supplementary material,

table S2). Moreover, viromes with a high MHR (more than

10%) also have a high rDNA ratio (more than 0.2‰), confirming

the presence of microbial sequences in some viromes. Even if
these two indices revealed similar trends, we had to verify

that sequences similar to microbial genomes highlighted

in the MHR are not bona fide viral sequences similar to

prophages (which are annotated as prokaryotic).
4.3. Is cellular-like DNA in fact prophage-like DNA?
Genomic studies have revealed the prevalence of prophages in

many and diverse prokaryotes [37]. We therefore hypothesized

that some virome reads are similar to bacterial genomes not

because of a cellular origin but because of a similarity to a

prophage. To confirm this assumption, prophage-like regions

in prokaryotic genomes were identified. We detected 55 837

prophage-like regions in the 1312 genomes analysed, which

encompassed 11% of the genes in the considered genomes.

Virome reads similar to prophage-like regions were then ident-

ified and a PHR was calculated, which spanned from 4.5 to

84.9% (37.7% on average; figure 1b; electronic supplementary

material, table S2) in the analysed viromes. The PHR was

also computed for microbiomes (10.1% on average) and, as

expected, was very close to the proportion of prophage-like

genes in microbial genomes.

To gain a more accurate view of prophage importance within

microbial hits from viromes, the MHR and the PHR were plotted

simultaneously for both microbiomes and viromes. The result-

ing plot reasserted that the 67 viromes investigated exhibited

different characteristics consistent with the rDNA ratio obser-

vations (figure 1b; electronic supplementary material, table S2):

— Viromes devoid of rDNA (depicted in green in figure 1) are

clearly distinct from microbial metagenomes: microbial-like

sequences in these viromes are rare (low MHR, 1.3% on

average), and most of them match prophage-like regions

(high PHR, 48.7% on average). These results further sup-

port the conclusion that these datasets can be considered

as viromes sensu stricto.

— Viromes with low rDNA ratio (depicted in orange in

figure 1) display low MHRs and high PHRs (average of

2.7% and 47.5%, respectively), indicating that most viromes

in this category contain only a few microbial sequences.

— Viromes with high rDNA ratio (depicted in red in figure 1) are

indistinguishable from microbial metagenomes. Indeed, the

average MHR and PHR values for viromes in this category

and microbiomes are very similar (MHR: 16.7% versus

15.8%; PHR: 12.4% versus 10.1%, for ‘red’ viromes and

microbial metagenomes, respectively), strongly indicating

that these viromes contain numerous microbial sequences.

Recruitment plots as well as genome coverage ratio

generated for selected virome–genome pairs (pairs with a low

PHR; see electronic supplementary material) confirmed these

observations. For ‘green’ and ‘orange’ viromes, the reads similar

to non-prophage genes were often restricted to specific regions,

and thus likely to be unpredicted prophage-like region or

unknown genes shared by viruses and prokaryotes (figure 2a;

electronic supplementary material, table S3). Alternatively,

low and scattered coverage of bacterial genomes could also

result from the rare and random integration of bacterial DNA

in generalized transducing phage genomes. Conversely, all

recruitment plots for ‘red’ viromes displayed a hit distri-

bution throughout all bacterial genomes with high gene

coverage ratios (figure 2b; electronic supplementary material,

table S3). A virome from Arctic Sea samples [38] represents
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one of the most striking examples of a virome containing

bacterial genomic DNA. Recruitment analysis showed that 91

315 reads from this virome can be matched with Sphingopyxis
alaskensis (figure 2c), covering almost the entire genome.

These results confirm that low rates of affiliation to

microbes are mainly owing to prophage-like hits, whereas

high rates of affiliation to microbes (correlated to a significant

detection of rDNA) are clearly linked to the presence of cellular

DNA in samples. However, two different routes of acquisition

of this bacterial DNA seem to exist. Indeed, the presence of cel-

lular DNA in eukaryote-associated samples is consistent with

potential shortcomings in experimental protocols, as virus-

like particles (VLPs) are described as difficult to purify from

such matrices [39]. Thus, even the most elaborate protocols

are likely to be susceptible to residual contamination with

microbial cells or free extracellular nucleic acids. More surpris-

ingly, even though the purification of VLPs from aquatic

samples seems possible, the presence of cellular DNA was

still detected in several aquatic viromes. Thereby, methodo-

logical constraints may not be the sole factor explaining the

detection of microbial sequences in viromes.

4.4. Source of prokaryotic sequences: gene transfer
agents are invited to the party

Several types of VLPs were described as containing genetic

material coming from a cellular genome, the most well-known
being the GTAs [17,40]. GTAs are host-encoded virus-like

elements that package random fragments of the host chromo-

some [29]. Structurally, GTAs resemble small-tailed phages

[41], but do not possess any of the properties (e.g. plaque

formation, transmission of viral genes) that are typically associ-

ated with phages [41,42]. In our attempt to identify the origin

of prokaryotic material in viromes, we verified the viability of

the ‘GTA hypothesis’ presented by Kristensen et al. [17].

To this purpose, each prokaryotic genome from KEGG

database was analysed for the presence of potential GTA

gene clusters similar to the four GTA gene clusters reported

previously (see electronic supplementary material, table S4).

We identified 72 prokaryotic strains (approx. 6% of the

known prokaryotic genomes), predominantly affiliated to

the a-proteobacteria, containing putative GTA gene clusters

(see electronic supplementary material, table S4). We then

identified for each ‘red’ virome how many genomes, among

the 50 most detected, exhibited GTA gene clusters (see elec-

tronic supplementary material, table S3). From this analysis,

a dichotomous distribution of viromes emerged:

— Eukaryote-associated samples appear to be free from GTA

as only approximately 9% of the bacterial genomes

detected in viromes displayed GTA gene clusters.

— Marine samples could contain a significant amount of GTA

particles, as more than 50% of the bacterial genomes retrieved

in viromes contained at least one GTA cluster. Accordingly,
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the presence of microbial sequences in seawater viromes

could be linked to GTAs rather than to technical limits.

This high ratio of sequences similar to GTA-encoding

bacterial genomes in marine viromes is consistent with the

high abundance of GTA particles predicted in marine bacter-

ioplankton [43]. However, the definition used to detect GTA

gene cluster is likely to include defective prophages, which

most probably lead to an over-estimation of GTA in microbial

genomes. In any case, GTA now identified in many diverse

prokaryotes and particularly in marine Roseobacter [31,32]

could be of major importance for directed gene transfer

between phylogenetically related bacteria in low-density

habitats such as seawater.

4.5. Towards a new picture of virus-associated
functional profiles

Viromes are usually considered as entirely composed of viral

sequences, and therefore used to determine the functions

encoded in genomes of environmental viral communities.

When comparing functional profiles, the enrichment in

VLPs in viromes does not result in significant differences

between viromes and microbial metagenomes (Pearson corre-

lation coefficient of 0.93; figure 3a). This is consistent with a

previous observation [16], and was suggested to result from

both the high number of genes exchanged between viral

and microbial genomes and the registered functional cat-

egories in databases which describe cellular rather than

viral functions [17]. Yet another explanation could be that

the presence of prokaryotic DNA in viromes introduces a

bias into functional profile analyses [17]. Following identifi-

cation of viromes containing cellular sequences, we

postulated that a new picture of the functional profiles of

viral communities might emerge from these data. To test

this hypothesis, we computed functional profiles for two

sets of viromes using their rDNA ratios: (i) viromes with

clearly identified microbial-originating sequences (‘red’ vir-

omes; figure 3b) and (ii) viromes considered as mostly

composed of viral sequences (‘green and orange’ viromes;

figure 3c). The functional profiles obtained were very differ-

ent (figure 3b,c). The functional profile of the first category

of viromes was strongly correlated to the profile of micro-

biomes (Pearson correlation coefficient of 0.98), and the

typical viral category ‘phages, prophages, transposable

elements, plasmids’ ranked only at the 17th position in

these viromes (2.09% of the functions; figure 3b). Conversely,

a low correlation was found between functional profiles of

the second category of viromes and microbiomes (Pearson

correlation coefficient of 0.18), and these viromes displayed

a strong enrichment in phage-like genes (39.8% for ‘phages,

prophages, transposable elements, plasmids’). Furthermore,

prevalence of other categories in viromes and microbiomes

was also no longer equivalent: ‘green’ and ‘orange’ viromes

were depleted of typical cellular categories rarely observed

in sequenced phages (e.g. ‘cofactors, vitamins, prosthetic

groups, pigments’), but cellular categories commonly ident-

ified in known phages were retrieved (e.g. ‘nucleosides and

nucleotides’, ‘DNA metabolism’; figure 3c).

From this analysis, we demonstrated that the presence of

bacterial DNA in several viromes biased the previous func-

tional analyses of viromes, leading to an artefactual

correlation between functional profiles of viromes and
microbiomes. Even if all functional categories are retrieved in

‘viral-only’ viromes, indicating that all types of bacterial genes

could be carried by the viral community, their proportions in

viromes are highly different from those in microbiomes. More-

over, cellular sequences in viromes can have significant effects

on the conclusions drawn from the functional analyses of

these datasets. For example, the category ‘motility and chemo-

taxis’ enriched in viromes compared with microbiomes (1.00%

and 0.66%) has been previously proposed as ‘an unexpected

example of specialized metabolisms being carried within the

viromes’ [16], but, according to our analysis, we postulate that

this result was artefactual and linked to the presence of cellular

DNA in viromes (enrichment of only 0.37% for ‘green’ and

‘orange’ viromes; figure 3c).

4.6. Viral pan-genome encompasses an unexpected
diversity of metabolism genes

Owing to its numerical vastness and genetic diversity, the

virosphere is expected to embrace a tremendous functio-

nal potential. However, the extent of this potential remains

unclear. Furthermore, the finding that a number of published

viromes is also composed of cellular sequences suggests that

conclusions originally drawn from the analyses of the complete

set of viromes might be inaccurate for depicting the functional

potential of viruses per se. Obviously, the validity of the results

is directly proportional to the ‘purity’ of the analysed dataset,

and even if this presumed slight presence of non-viral DNA

(‘orange’ viromes) generates only a background noise in a

large spectrum analysis such as functional profiling, it can

bias the results when considering cellular functions one by

one. Thus, in order to increase the likelihood of functional

assignments being associated with viruses rather than cellular

organisms, we hereafter only considered ‘green’ viromes, in

which no rDNA sequences were found.

A total number of 1233 different KEGG orthology (KO)

groups were detected in this dataset from the total of 14 645

KO groups present in KEGG database. Comparison of these

1233 KO groups against the viral RefSeq sequences showed

that 30% of them are represented in complete viral genomes.

The most retrieved KO groups are often those already associ-

ated with viruses: 75% of the highly retrieved KO (associated

to more than 20 sequences) are also represented in complete

viral genomes, including proteins involved in all steps of

viral infection cycle (i.e. virion morphogenesis, viral genome

transcription, replication, recombination and repair, as well

as cell lysis). These functional categories are well represented

in the currently available viral genomes and will not be further

discussed. Perhaps more unexpected was the identification of

diverse protein functions responsible for modulation of cellular

metabolism and virus–host interactions. Below, we briefly out-

line the most prominent KEGG functional categories retrieved

and highlight potential roles of these proteins in the framework

of viral infection cycles.

4.7. Energy metabolism genes
One of the landmark discoveries of the past decade was the

identification of functional photosystem (PS) II genes in cya-

nophage genomes [9]. More recently, metagenomics analysis

revealed that marine cyanophages might also encode the

entire suite of proteins composing PSI (seven proteins) [44].
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These findings have clearly demonstrated that viruses may play

an active role in energy transformation. In accordance with pre-

vious results, our list of KO groups included components of

both PSII (including proteins D1 and D2) and PSI (including
PsaA and PsaB; table 1 and figure 4). These photosynthesis

genes did not present the same pattern of distribution: PSI

genes were found exclusively in marine viromes, while those

of PSII were also present in freshwater and hypersaline



Table 1. Subset of KO retrieved more than five times in non-contaminated viromes, never described in complete viral genomes, and implicated in selected
pathways. The complete list of KO retrieved in the nine viral-only viromes is available as electronic supplementary material, table S5.

KO category/ID KO name KO definition
no.
reads

no.
viromes

ko00195 photosynthesis

K02689 psaA photosystem I P700 chlorophyll a apoprotein A1 52 1

K02690 psaB photosystem I P700 chlorophyll a apoprotein A2 50 1

K02691 psaC photosystem I subunit VII 10 1

K02692 psaD photosystem I subunit II 10 1

K02705 psbC photosystem II CP43 chlorophyll apoprotein 6 2

ko00190 oxidative phosphorylation

K00240 sdhB succinate dehydrogenase iron-sulfur protein [EC:1.3.99.1] 18 1

K00412 CYTB, petB ubiquinol-cytochrome c reductase cytochrome b subunit [EC:1.10.2.2] 7 2

K00425 cydA cytochrome bd-I oxidase subunit I [EC:1.10.3.-] 15 1

K02274 coxA cytochrome c oxidase subunit I [EC:1.9.3.1] 7 2

K05580 ndhI NADH dehydrogenase I subunit I [EC:1.6.5.3] 66 1

ko00010 glycolysis/gluconeogenesis

K00162 PDHB, pdhB pyruvate dehydrogenase E1 component subunit beta [EC:1.2.4.1] 37 3

K01623 ALDO, fbaB fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 12 1

ko00020 citrate cycle (TCA cycle)

K00162 PDHB, pdhB pyruvate dehydrogenase E1 component subunit beta [EC:1.2.4.1] 37 3

K00240 sdhB succinate dehydrogenase iron-sulfur protein [EC:1.3.99.1] 18 1

ko00030 pentose phosphate pathway

K00615 E2.2.1.1, tktA, tktB transketolase [EC:2.2.1.1] 59 3

K01623 ALDO, fbaB fructose-bisphosphate aldolase, class I [EC:4.1.2.13] 12 1

K01808 E5.3.1.6B, rpiB ribose 5-phosphate isomerase B [EC:5.3.1.6] 10 3

ko00520 amino sugar and nucleotide sugar metabolism

K00523 ascD, ddhD, rfbI CDP-4-dehydro-6-deoxyglucose reductase [EC:1.17.1.1] 7 2

K00790 murA UDP-N-acetylglucosamine 1-carboxyvinyltransferase [EC:2.5.1.7] 12 2

K00978 rfbF glucose-1-phosphate cytidylyltransferase [EC:2.7.7.33] 6 1

K00983 E2.7.7.43, neuA,

CMAS

N-acylneuraminate cytidylyltransferase [EC:2.7.7.43] 11 5

K01654 E2.5.1.56, neuB N-acetylneuraminate synthase [EC:2.5.1.56] 126 8

K01709 rfbG CDP-glucose 4,6-dehydratase [EC:4.2.1.45] 6 3

K01809 E5.3.1.8, manA mannose-6-phosphate isomerase [EC:5.3.1.8] 17 3

K03431 glmM phosphoglucosamine mutase [EC:5.4.2.10] 5 2

K12454 rfbE CDP-paratose 2-epimerase [EC:5.1.3.10] 19 4

ko00540 lipopolysaccharide biosynthesis

K02535 lpxC UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase [EC:3.5.1.-] 5 2

K02536 lpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase [EC:2.3.1.-] 12 2

K02843 waaF, rfaF heptosyltransferase II [EC:2.4.-.-] 18 2

ko00550 peptidoglycan biosynthesis

K00790 murA UDP-N-acetylglucosamine 1-carboxyvinyltransferase [EC:2.5.1.7] 12 2

ko00970 aminoacyl-tRNA biosynthesis

K01872 AARS, alaS alanyl-tRNA synthetase [EC:6.1.1.7] 7 4

K04567 KARS, lysS lysyl-tRNA synthetase, class II [EC:6.1.1.6] 18 2

ko03010 ribosome

K02945 RP-S1, rpsA small subunit ribosomal protein S1 17 3

K02970 RP-S21, rpsU small subunit ribosomal protein S21 18 4
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Figure 4. Mapping of virome-retrieved functions on the different types of photosystem. On this general representation of the photosystems, KO retrieved in uncon-
taminated viromes are highlighted in red on the list of KO at the bottom, and when possible on the chart at the top.
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environments (see electronic supplementary material, table S5).

Surprisingly, our analysis suggests that besides photosynthesis

genes viruses may encode a set of proteins involved in oxidative

phosphorylation. We identified several components of the

prokaryotic electron transport chain Complexes I, II, III and IV
(table 1 and figure 5). Intriguingly, it appears that viruses

might also harbour genes for at least some subunits (a, b) of

the F0F1 ATP synthase (also referred to as Complex V) as well

as genes for inorganic pyrophosphatase (Ppa), which is respon-

sible for supplying inorganic phosphate for ATP synthesis by

ATP synthase. Notably, the latter set of enzymes might also

operate in conjunction with the photosystem genes. Indeed,

genes for the a, b and c subunits of the F0F1 ATP synthase have

recently been reported in the environmental Global Ocean

Sampling (GOS) cyanophage clone JCVI_SCAF_1096628171668

[45]. Similarly, metagenomic studies have previously suggested

that cyanophages might harbour the ndhI, ndhD and ndhP

genes of the Complex I [44,45]. Finally, we found both subunits

(CydA and CydB) of the two-component cytochrome bd quinol
oxidase, which is associated with microaerobic dioxygen respir-

ation [46].
4.8. Carbon metabolism genes
Unexpectedly, the dataset contained a substantial number of

enzymes involved in such fundamental cellular metabolism

pathways as glycolysis, tricarboxylic acid (TCA) cycle and

pentose phosphate pathway (PPP) (table 1; electronic sup-

plementary material, table S5). With few exceptions, genes

of this category are not typically found in viral genomes.
4.8.1. Glycolysis

Glycolysis is a universal metabolic pathway of converting

glucose into pyruvate and generating small amounts of the

high-energy compounds adenosine triphosphate (ATP) and

nicotinamide adenine dinucleotide (NADH). The glycolytic

breakdown of glucose in anaerobic or severely hypoxic con-

ditions is the sole source of ATP for many microorganisms.

We identified 11 KO groups that were related to glycolysis

pathway and detected more than once in viromes (table 1;

electronic supplementary material, table S5). A growing

body of evidence suggests that viruses might modulate the

host metabolism according to their needs. For example, it

has been suggested that cyanophage-encoded proteins may

modify the photosynthetic electron transfer chain such that

the cyclic electron flow around PSI would be favoured over

the linear one, leading to preferential production of ATP

[45]. In this light, it is tempting to speculate that the viral

versions of glycolysis enzymes might be differentially sus-

ceptible to allosteric regulation compared with their cellular

counterparts so as to maximize the energy production for

optimal virus replication.
4.8.2. Tricarboxylic acid cycle and pyruvate metabolism

In aerobic conditions, glycolysis, fat and protein catabolic path-

ways converge on the TCA cycle. As a result, carbohydrates,

fatty acids and amino acids are oxidized to CO2 with most of

the energy of oxidation temporarily held in the electron carriers

FADH2 and NADH, which eventually enter the respiratory

chain where the energy of electron flow is converted to ATP.



Figure 5. Mapping of virome-retrieved functions on oxydative phosphorylation pathway. On this general representation of the oxydative phosphorylation pathway,
KO retrieved in uncontaminated viromes are highlighted in red on the list of KO at the bottom, and when possible on the chart at the top.
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Thus, the TCA cycle represents the central catabolic pathway in

aerobic organisms. We identified 10 non-singleton virome-

associated KO groups involved in the TCA cycle (KO groups

detected more than once in viromes), including pyruvate
dehydrogenase (E1 subunits a and b), which is responsible for

converting pyruvate generated during glycolysis into acetyl-

CoA. In addition, 11 non-singleton KO groups were found

to be affiliated with the pyruvate metabolism pathway

(ko00620) (table 1; electronic supplementary material, table S5).
4.8.3. Pentose phosphate pathway

Ten non-singleton KO groups in our dataset mapped to the

PPP, which represents an alternative route of glucose metab-

olism. PPP is a two-phase pathway leading to production of

reducing equivalent NADPH (during oxidative phase) and

pentose phosphates for synthesis of nucleotides and amino

acids (during non-oxidative phase). It has previously been

demonstrated that some cyanophages encode functional

homologues of cyanobacterial transaldolase (TalC) [47,48],

6-phosphogluconate dehydrogenase (Gnd) and glucose-6-phosphate
1-dehydrogenase (G6PD) [49], key enzymes of the PPP. TalC,

Gnd and G6PD were all retrieved in our analysis among

high-confidence virome-associated KO groups. In addition

to the three enzymes mentioned above, our data suggest

that viruses carry genes for other PPP enzymes, including

transketolase (Tkt), phosphoribosyl pyrophosphate synthase
(PRPS), ribose-5-phosphate isomerase (rpiB) and fructose-
biphosphate aldolase of class I and II (fbaB and fbaA; table 1;

electronic supplementary material, table S5). Notably, G6PD

catalyses the first, essentially irreversible reaction in the oxi-

dative phase of the PPP and is the rate-limiting enzyme of

the pathway. Expression of viral G6PD might thus stimulate
PPP, indicating that this pathway is beneficial for virus replica-

tion. Indeed, it has been shown that cyanophages specifically

direct carbon flux away from the Calvin cycle towards the

PPP, this way ensuring that the ATP and NADPH produced

by photosynthesis are not consumed in the Calvin cycle but

are rather used to fuel phage dNTP biosynthesis [47]. This is

consistent with the identification of the virome-associated

genes for PRPS, one of the key enzymes in the de novo and

salvage biosynthesis of nucleotides.
4.9. Translation genes
Sequencing of the Mimivirus genome revealed that viruses

might occasionally encode proteins involved in translation,

such as aminoacyl tRNA synthetases (aaRS), and translation

initiation and elongation factors [50]. This finding has sub-

sequently been confirmed by additional genome sequences

of large eukaryotic [51,52] and, more recently, bacterial [53]

viruses. To date, members of the Mimiviridae were found to

encode seven different aaRS—ArgRS, TyrRS, CysRS, MetRS,

IleRS, TrpRS and AsnRS [50–52]—while Bacillus megaterium
phage G carries a gene for SerRS [53]. In the uncontaminated

viromes, we identified aaRS genes specific for 18 of the 20 pro-

teinogenic amino acids, as well as several genes for enzymes

involved in the modification of aminoacyl-tRNAs, including

methionyl-tRNA formyltransferase (required for formation of

formylMet-tRNA, an initiator tRNA in bacteria, mitochon-

dria and chloroplasts) and aminoacyl-tRNA amidotransferase

(table 1; electronic supplementary material, table S5). In

addition, we found genes for translation initiation (IF-1, 2

and 3), elongation (EF-G) and peptide chain release (RF-1

and RF-3) factors.
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As expected, no rRNA genes were retrieved. However,

several rRNA modification enzymes, such as rRNA methyl-

transferases and rRNA pseudouridine synthase, were

identified. Finally, a set of six non-singleton ribosomal pro-

teins were also present in the filtered dataset (table 1;

electronic supplementary material, table S5). To our knowl-

edge, there are no precedents of ribosomal proteins being

encoded by viruses. Thus, it is not clear whether the two

genes signify the presence of cellular sequences or genuine

gene acquisitions by viruses. However, the point can be

made that there is no obvious reason why these ribosomal

protein genes, which are detected up to 18 times within

four different viromes, should be recovered in the viral frac-

tion to the exclusion of all other ribosomal genes, including

those for rRNA, which are often present in multiple copies

per cellular genome and are statistically more likely to be

identified among cellular-originating sequence [54]. Riboso-

mal protein genes are known to be transferred horizontally

[55–58], although the particular routes of such transfer

remain unclear. One possibility, which might be strengthened

by observations presented above, is that viruses serve as

vehicles for horizontal transfer of ribosomal protein genes,

as is the case with many other cellular genes [59]. What

could be a role of ribosomal protein in the course of a viral

cycle? Modification of the ribosomes by viral versions of

the ribosomal proteins might allow viruses to overcome a

translational shutoff in the host, which may be triggered by

viral infection. Indeed, bacterial viruses are known to

induce the toxin components of certain toxin–antitoxin sys-

tems [60], some of which are known to poison or stall the

ribosomes [61]. Alternatively, many ribosomal proteins per-

form extraribosomal functions, a phenomenon known as

moonlighting [62,63]. Notably, protein S1, one of the most

detected in our dataset, is one of such proteins; in addition

to being a structural component of the ribosomes, S1 regulates

expression of several ribosomal operons, including its own

[62]. Finally, Qb and other leviviruses hijack S1 to serve as a

subunit of their RNA replicases [64]. It is thus possible that

viruses recruit ribosomal protein genes for functions that

have little to do with ribosome structure.

Peculiarly, ribosomes represent one of the final frontiers dis-

tinguishing viruses and cellular organisms [65], at least from the

genomic perspective. Additional efforts focused on exploration

of genetic diversity in the virosphere, and especially these intri-

guing ribosomal proteins, are undoubtedly needed to resolve

this puzzle.
5. Conclusion
The putative presence of non-viral sequences in viromes

undoubtedly raises questions about these datasets, but must

not be seen as challenging all previous results and conclusions.

Indeed, the presence of cellular DNA in viromes certainly has
little effect on the analysis and interpretation of sequences that

can be unequivocally assigned to viruses (i.e. when reasonably

close homologues are present in the genomes of cultivated

viruses), as was the case in most virome studies published.

However, questions related to functional capacity of uncul-

tured viral communities, and specifically the diversity of

microbial-like genes in viral genomes, require all sequences

in the viromes to be of viral origin in order to be rigorously

addressed. If the latter point is neglected, the validity and

value of conclusions drawn from the virome analyses

become questionable, as illustrated by the results presented

in this study.

Our study also pinpoints the different sources of cellular

sequences in viromes obtained from different environments,

stressing the role of GTAs in the case of seawater samples.

Unfortunately, as GTAs display a viral capsid structure, it is

probable that no preparation step will be able to separate

them from actual viral capsids, and hence this type of ‘con-

tamination’ is probably irremediable. Moreover, beyond

GTAs, other bacteria-produced elements such as DNA-con-

taining membrane vesicles can also be confused with viral

particles [40], thus being potential entry points for cellular

DNA in viromes. In such cases, downstream bioinformatics

analysis will be needed to check their presence in viromes.

Ultimately, one of the most significant findings resulting

from this analysis was the abundance and global distribution

of virome-associated operational (metabolic) genes. Indeed, it

appears that in all analysed biomes, viruses intensively tinker

with the metabolism of their hosts. A great deal of functional

and genomic data on photosynthetic genes in cyanopha-

ges made this viral group stand out as an exception, or a

peculiarity within the virosphere in the eyes of many (micro)-

biologists. Here, we provided evidence suggesting that beside

photosynthesis, viruses might tap into such central metabolic

pathways as oxidative phosphorylation, glycolysis, TCA and

PPP. It is noteworthy that some of these metabolic enzymes

have been previously identified in viral genomes. In order

to validate these observations (e.g. the presence of ribosomal

protein S1 in viral genomes), methods such as gene-targeted

metagenomics [66] could help one to get a genomic context

for gene(s) of interest. Although the available scattered data

did not allow one to draw generalizing conclusions on the

role of viruses in the cellular metabolism beyond particular

virus–host systems, our analysis of viromes issued from

diverse environments illuminates a somewhat unexpected

picture of global ‘viral’ metabolism, suggesting that viruses

might actively dictate the metabolism of infected cells on a

global scale.
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