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Purpose: A convolutional neural network (CNN) can perform well in either of two
independent tasks [classification and axillary lymph-node metastasis (ALNM) prediction]
based on breast ultrasound (US) images. This study is aimed to investigate the feasibility of
performing the two tasks simultaneously.

Methods:We developed a multi-task CNNmodel based on a self-built dataset containing
5911 breast US images from 2131 patients. A hierarchical loss (HL) function was designed
to relate the two tasks. Sensitivity, specificity, accuracy, precision, F1-score, and analyses
of receiver operating characteristic (ROC) curves and heatmaps were calculated. A
radiomics model was built by the PyRadiomics package.

Results: The sensitivity, specificity and area under the ROC curve (AUC) of our CNNmodel
for classification and ALNM tasks were 83.5%, 71.6%, 0.878 and 76.9%, 78.3%, 0.836,
respectively. The inconsistency error of ALNM prediction corrected by HL function
decreased from 7.5% to 4.2%. Predictive ability of the CNN model for ALNM burden
(≥3 or ≥4) was 77.3%, 62.7%, and 0.752, and 66.6%, 76.8%, and 0.768, respectively, for
sensitivity, specificity and AUC.

Conclusion: The proposed multi-task CNN model highlights its novelty in simultaneously
distinguishing breast lesions and indicating nodal burden through US, which is valuable for
“personalized” treatment.
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INTRODUCTION

The accurate diagnosis and precise staging of breast cancer (BC)
is crucial for clinical decision-making, and is based on imaging
examinations (Plevritis et al., 2018; Guo et al., 2018a; da Costa
Vieira et al., 2017). According to the Tumor–Node–Metastasis
(TNM) staging system, axillary lymph node (ALN) status is the
principal factor for the clinical staging of BC (Giuliano et al.,
2017). Ultrasound (US) is a routine imaging modality used to
evaluate breast masses and is recommended for ALN assessment
according to guidelines (Chang et al., 2020). Studies have shown
the pooled sensitivity and specificity to be 0.87 and 0.80,
respectively, and the area under the receiver operating
characteristic curve (AUC) to be 0.9049, for conventional US
in breast-lesion classification (Wubulihasimu et al., 2018). For
ALNs, US can detect axillary lymph node metastases (ALNM)
with sensitivity and specificity ranging from 26% to 76%, and 88%
to 98%, respectively, based on morphologic criteria (Houssami
et al., 2014). However, operator dependence and unclear
diagnostic criteria for US of the breast limit its progress
towards a precise diagnosis. These knowledge gaps call for
confirmation of the presence/absence and extent of ALNM
preoperatively for suspicious breast lesions concurrently for
“tailored” treatment plans.

Several studies have shown that the US findings of primary BC
might be associated with its malignancy and ALNM (Akissue de
Camargo Teixeira et al., 2017; Bae et al., 2018; Guo et al., 2018b;
Yu et al., 2018). Thus, one can predict malignancy and ALNM
status simultaneously based on the morphologic characteristics of
a primary breast mass. These relevant morphologic features
include the tumor diameter, indistinct margins, and
architectural distortion (Akissue de Camargo Teixeira et al.,
2017; Bae et al., 2018; Guo et al., 2018b; Yu et al., 2018).
However, some of these morphologic features are subjective
and even invisible to the naked eyes of radiologists. Therefore,
completing such sophisticated work is challenging for
radiologists.

The advent of powerful artificial intelligence (AI)
technology [particularly deep learning (DL) algorithms]
could help to reduce the number of hospital visits and
financial costs for patients because only US examination
would be used (Sadoughi et al., 2018; Le et al., 2019). With
self-learned features from US images of the breast, Zhao and
others reported that the diagnostic performance of deep
convolutional neural networks (CNNs) was comparable
with that of expert radiologists, and also improved inter-
observer agreement among radiologists (Zhao et al., 2019).
Other studies have demonstrated the feasibility of predicting
ALNM through the characteristics of US images of primary BC
using DL models (Moon et al., 2018; Sun et al., 2020).
However, AI studies have not explored the dual-task
performance of breast-mass classification and ALNM
prediction on US images.

We explored the feasibility of predicting both malignancy and
ALNM using a unified CNN model based on US images of
primary breast masses and exploring the underlying
relationship between these two tasks. Such feasibility indicates

that it is potential to build a multi-functional AI that could
perform comprehensive analysis given US images. Specifically,
the relationship among the multiple clinical tasks could be
potentially learned as prior knowledge to guide feature
optimization procedure and thus constrain the proposed CNN
model to obtain a more accurate diagnosis result. Such a working
mechanism could be considered as an extension of the diagnosis
process of radiologist and could not be built by a radiomics
model. Actually, it can be expected that we extend the model for
more related AI functions by simply adding more task-specific
heads, for example, molecular subtypes predictor.

MATERIALS AND METHODS

Study Cohort
For this retrospective study, Institutional Review Board approval
was obtained from our ethics committee (No. 2019KY055). The
requirement for obtaining written informed consent from the
subjects was waived by the Institutional Review Board. From
August 2011 to December 2019, 5911 US images of breast masses
were collected from 2131 patients (2120 females and 11 males).
The nodules included in our study matched those detected by
pathology after surgical resection. The inclusion criteria of this
study were as follows: 1) All the breast masses were pathologically
proven; 2) The patients had not undergone radiotherapy,
chemotherapy and other anti-tumor treatments; 3) Breast
cancer with ALNM were all ipsilateral with one malignant
tumor. The flowchart of our study is shown as Figure 1. The
dataset was split into sets (training, validation and testing), where
images from the same patient were confirmed in the same part,
and 30% of patients were chosen randomly once for all as the test
set. All hyperparameters were chosen based on the performance
on validation parts.

US images were acquired using US equipment obtained from
Aixplorer (Super Imagine; Aix-en-Provence, France), Philips
(IU22; Amsterdam, Netherlands), GE Healthcare (LOGIQ E9;
Pittsburgh, PA, United States), Hitachi (EUB 8500; Tokyo,
Japan), Esaote (MyLab™Twice; Genoa, Italy) and Siemens
(Sequia512 and ACUSON S3000; Munich, Germany) with
linear transducers of frequency 5–12 MHz.

Data Preprocessing
An annotation tool for graphical images, LabelImg (https://
github.com/tzutalin/labelImg), was used to crop the box-level
region of interest (RoI), which was delineated manually and
confirmed by two radiologists with >5 years of experience in
breast US interpretation. Two radiologists delineated different
parts of the study cohort and therefore there is no discrepancy. To
achieve data diversity and to prevent overfitting, strong data
augmentation was adopted for image processing. Geometric
transformations of random images (including random
cropping and scaling, random flipping, and random color
distortion) were used. The augmented images were resized to
256 × 256 pixels before being fed into the model. We
implemented the training-and-testing framework with
PyTorch (https://pytorch.org/).
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Hierarchical Loss for Prediction
Consistency Between Two Tasks
We proposed a multi-task framework to predict the malignancy
of the tumor and ALNM simultaneously. Tumors with ALNM are
always malignant. Accordingly, HL was designed to constrain the
model to achieve consistent predictions between two tasks (if
there was a high/low score for ALNM, there should also be a high/
low score for malignancy) and formed as:

LIH � 1
N

∑
N

i�1
max(0, ŷi2 − ŷi1 −m),

where N is the batch size and ŷi2 is the model prediction of
ALNM for sample i. Correspondingly, ŷi1 is the model prediction
of malignancy for sample i. Parameter m is the margin. HL
produces gradients only if the relative prediction confidence
between two tasks is larger than the margin. A large margin
denotes a “looser” constraint, which allows a larger gap of

prediction confidence between two tasks. A small margin
indicates a more stringent constraint. The margin is set as 0.1
for all experiments as selected based on the preliminary
experiments conducted on training and validation cohort. To
be specific, we performed a grid search to find the margin that
resulted in best classification performance on validation cohort.

Multi-Task Convolutional Neural Network
Framework
The overall learning architecture of our model is illustrated in
Figure 2. We used ResNet as feature extractor. The classifiers
were fully connected layers with a sigmoid function as the
activation. The sigmoid function scaled the output of
classifiers to a range of [0,1], which could be explained as the
probability of a malignant tumor with ALNM. Binary cross
entropy (BCE) loss was used for classification loss because
both tasks could be formulated as a binary classification. The

FIGURE 1 | Flowchart of the procedures in the development and evaluation of our deep-learning model and radiomics model for malignancy prediction and ALNM
prediction.

FIGURE 2 | Overall framework of our model.
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overall loss function for training was the weighted sum of BCE
loss and HL, as follows:

Lall � λLIH + LBCE,

where the hyperparameter λ was set as 0.05 by default as selected
on the validation set.

Radiomics Model
We also built an advanced radiomics model proposed by Sun
et al. (2020) as a baseline to compare with our proposed multitask
CNN. The radiomics model extracts statistical features from
ultrasound images and performs classification with random
forest algorithms. The advantages of our proposed multitask
CNN framework against the radiomics model are twofold: 1)
The features extracted by CNN model are optimized by the
classification objective, while those extracted by the radiomics
model are manually designed, which are difficult to be generalized
for extensively varied image contents and inclined to be non-
optimal towards classification; 2) In our framework, the two tasks
could be performed simultaneously without re-training and more
importantly, the relationship between the two tasks could be
utilized to enhance the feature representation and results in
classification performance improvements. For each US image,
102 radiomics features were extracted using Pyradiomics (https://
pyradiomics.readthedocs.io) (Supplementary Table S1),
including intensity features and texture features. When
extracting these features, data augmentation is not utilized for
the reproduction of extracted features. Shape features were not
considered because pixel-level labeling of RoIs required very
expensive manual labor. The Boruta feature-selection
algorithm was used for dimension reduction to avoid
overfitting. The selected features for each task are summarized
in Supplementary Table S2. We used the Python package Boruta
for implementation (https://pypi.org/project/Boruta/). The
classifier of our radiomics model was the Random Forest (RF)
classifier with a maximum depth of 300. The scikit-learn package
(https://scikit-learn.org/stable/) in Python was used for
implementation.

Evaluation and Statistical Analyses
The difference in the characteristics of patients and lesions were
assessed with the chi-square test or Student’s t-test, where
appropriate. Descriptive data are the mean ± SD. Statistical
tests were two-sided and undertaken with the scipy package
(https://www.scipy.org/) in Python. p < 0.05 was considered
significant. Experiments were repeated five times to ensure
reproducibility. We introduced gradient-weighted class
activation mapping (Grad-CAM) (Selvaraju et al., 2017) to
visualize the feature extracted by the model (heatmap).
Accuracy, sensitivity, specificity, F1-score and precision were
used for performance evaluation. It should be noted that these
metrics are calculated according to the relationship between
model prediction and the ground truth. Actually, these metrics
are calculated according to the number of true-positive, true-
negative, false-positive and false-negatives, the definition of
which regarding the pathological result could be found in
Appendix. It should be also noted that calculating these

metrics require a discrete prediction while the output of model
is a real value in range [0, 1] interpreted as the probability of being
positive. Therefore, we follow the common practice of setting a
threshold as 0.5 on both ALNM task and BM task. That is, if the
output of model is greater than 0.5, the prediction would be
considered as positive. To further evaluate the performance of
model under different thresholds, receiver operating
characteristic (ROC) curve would be plotted and the area
under curve (AUC) would be reported.

Experimental Configuration
ResNet50 (He et al., 2016) was used for all feature extractors in
our DL models. The Adam optimization algorithm was selected
to train our models with initial learning rate of 1e-4. All models
were trained for 200 epochs, with the learning rate reduced by a
factor of 10 every 50 epochs. Two ablation experiments were
conducted whereby the two tasks were undertaken independently
and then together but without the HL function. In the present
study, “Single-BM” denotes the algorithm using ResNet to
conduct malignancy prediction, “Single-ALNM” denotes the
algorithm using ResNet to conduct ALNM prediction, and
“Multi-task” denotes the algorithm which uses ResNet as the
shared backbone and two classifiers to predict the scores of the
two tasks simultaneously without the HL term.

RESULTS

Patient Data
The clinical and pathological results of the whole dataset are shown
in Table 1. Finally, 1491 patients (mean age± SD: 54.25 ±
14.29 years; range: 17–88 years) with 4077 images were used for
the training set and validation set, and 640 patients (mean age± SD:
55.04 ± 14.49 years; range: 21–91 years) with 1834 images were used
for the test set. For prediction of breast-mass malignancy, the dataset
comprised 3909 images of 1811 malignant breast lesions and 2002
images of 320 benign lesions. For ALNM prediction, 489 ALN-
positive patients with 1067 images and 1322 ALN-negative patients
with 2842 images were sorted for investigation.

Convolutional Neural Network Model
Versus Radiomics Model
For the BM task, our model showed an encouraging improvement
in performance, with an AUC of 0.878, sensitivity of 83.5% and
specificity of 71.6% compared with those in the radiomics model,
which achieved an AUC of 0.848 (p < 0.001) (Table 2; Figure 3).
With respect to ALNM prediction, the AUC, sensitivity, and
specificity of our model was 0.836, 76.9% and 78.3%, respectively,
which were all superior to those of the radiomics model (p < 0.05
for all metrics).

Evaluation of Hierarchical Loss Function
The malignancy prediction for Multi-Task showed no significant
difference from Single-BM (0.874 vs. 0.871, p = 0.379) (Table 3).
The ALNM prediction for Multi-Task showed no significant
difference from Single-BM (0.820 vs. 0.817, p = 0.597), and we
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TABLE 1 | Characteristics of patients and lesions.

Characteristic Training and Validation Testing Total p

Whole Datasets
Number of patients 1491 640 2131
Number of images 4077 1834 5911
Age (mean ± SD) 54.25 ± 14.29 55.04 ± 14.49 54.49 ± 14.35 0.25
Sex 0.90
Female 1480 640 2120
Male 8 3 11

Tumor diameter (cm) 0.99
≤ 2.0 925 396 1321
2.0–5.0 538 230 768
≥5.0 29 13 42

Histological type
Malignant 0.95
Invasive ductal carcinoma 942 398 1340
Invasive lobular carcinoma 22 11 33
Ductal carcinoma in situ 110 49 159
Others 193 86 279
Benign 0.12
Adenopathy 63 20 83
Fibroadenoma 40 17 57
Intraductal papillary carcinoma 4 6 10
Others 117 53 170

Surgery type for Breast cancer 0.26
Modified radical mastectomy 482 208 690
Mastectomy 156 51 207
Lumpectomy 486 212 698
Radical mastectomy 48 20 68
Unsure 95 53 148

Location 0.65
Right 734 346 1080
Left 725 326 1051

Family history 0.99
Yes 54 24 78
No 1437 616 2053

Malignancy prediction 0.96/0.2
Number of malignant tumors (patients/images) 1267/2674 544/1235 1811/3909
Number of benign masses (patients/images) 224/1403 96/599 320/2002

ALNM prediction 0.61/0.72
No lymph-node metastasis 920/1939 402/903 1322/2842
Lymph-node metastasis (patients/images) 347/735 142/332 489/1067
ALNM ≥ 2 242/510 95/219 337/729
ALNM ≥ 3 179/389 68/147 247/536
ALNM ≥ 4 122/259 52/111 174/370

ALNM, axillary lymph-node metastasis.

TABLE 2 | Performance of the deep-learning model and radiomics model on the test cohort on ALNM prediction and benign/malignant classification task.

ALNM

ACC SE Prec SP F1 AUC

Radiomics 0.751 0.700 0.220 0.757 0.335 0.804

Our method
0.782 ± 0.01 (0.753,

0.808)
0.769 ± 0.025 (0.699,

0.838)
0.259 ± 0.008 (0.236,

0.281)
0.783 ± 0.013 (0.747,

0.819)
0.387 ± 0.009 (0.362,

0.412)
0.836 ± 0.011 (0.805,

0.866)
p 0.0001 0.0002 <0.0001 0.002 <0.0001 0.0002

BM
Radiomics 0.780 0.801 0.802 0.754 0.801 0.848

Our method
0.782 ± 0.01 (0.754,

0.809)
0.835 ± 0.007 (0.815,

0.854)
0.784 ± 0.012 (0.750,

0.817)
0.716 ± 0.019 (0.663,

0.768)
0.810 ± 0.008 (0.787,

0.832)
0.878 ± 0.007 (0.858,

0.897)
p 0.666 <0.0001 0.01 0.002 0.04 <0.001

ACC, accuracy; SE, sensitivity, Prec, precision, SP, specificity; AUC, area under the ROC, curve; ALNM, axillary lymph node metastasis; BM, Benign/malignant classification. When
applicable, statistical quantifications are demonstrated with 95% confidential interval (CI).
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noticed that combining the two tasks together did not necessarily
improve the performance because the collaboration between the
two tasks was not well-built. The AUC value of ALNM prediction
with HL introduction surpassed that of Multi-Task (0.836 vs.
0.817, p = 0.009), which indicated that the prior knowledge that
tumors with ALNM are always malignant imposed a valid
interactive constraint between two classifiers. All p-values are
listed in Supplementary Table S3. We further study the impact of
HL for reducing inconsistent predictions. The percentages of two
types of inconsistency error in the test set for models without
HL and with HL are 7.5% vs. 4.2% and 2.0% vs. 1.1%, respectively.
The impact of HL for reducing inconsistent predictions are
shown in Figure 4.

Deep Learning Interpretability With
Gradient-Weighted Class Activation
Mapping
Heatmaps are shown as Figure 5. The color change from blue to red
represents the significance of the regions for prediction of amalignant
tumor or ALNM ranging from low to high, respectively. In Figures
5B,C, intratumoral regions and peritumoral regions are highlighted
with hot colors, and contribute dominantly to the prediction of
malignant tumors or ALNM. We also studied the average CAM
response over different distances to image centers on the test set
(Supplementary Figure S1). The result indicated that pixels closer to
the image center (which denotes a higher probability of being the
inratumoral region) contributedmore to the prediction. Pixels distant

FIGURE 3 | Receiver operating characteristic curves of our deep-learning model and a traditional radiomics model on malignancy prediction and ALNM prediction.
(A) and ALNM prediction (B) tasks.

TABLE 3 | Ablation studies for our proposed model.

ALNM

Methods ACC SE Prec SP F1 AUC

Single-BM \ \ \ \ \ \
Single-

ALNM
0.774 ± 0.01 (0.746,

0.801)
0.724 ± 0.05 (0.585,

0.862)
0.243 ± 0.006 (0.226,

0.259)
0.778 ± 0.015 (0.736,

0.819)
0.365 ± 0.01 (0.337,

0.392)
0.820 ± 0.010 (0.792,

0.847)
Multi-Task 0.771 ± 0.008 (0.748,

0.793)
0.673 ± 0.018 (0.623,

0.723)
0.232 ± 0.006 (0.215,

0.248)
0.780 ± 0.01 (0.752,

0.807)
0.345 ± 0.008 (0.322,

0.367)
0.817 ± 0.007 (0.797,

0.836)
Ours 0.782 ± 0.01 (0.753,

0.808)
0.769 ± 0.025 (0.699,

0.838)
0.259 ± 0.008 (0.236,

0.281)
0.783 ± 0.013 (0.747,

0.819)
0.387 ± 0.009 (0.362,

0.412)
0.836 ± 0.011 (0.805,

0.866)
BM

Single-BM 0.770 ± 0.005 (0.756,
0.783)

0.826 ± 0.01 (0.798,
0.853)

0.774 ± 0.007 (0.754,
0.793)

0.703 ± 0.013 (0.666,
0.739)

0.799 ± 0.005 (0.785,
0.812)

0.871 ± 0.006 (0.854,
0.887)

Single-
ALNM

\ \ \ \ \ \

Multi-Task 0.773 ± 0.005 (0.759,
0.786)

0.830 ± 0.023 (0.766,
0.893)

0.776 ± 0.016 (0.731,
0.820)

0.702 ± 0.034 (0.607,
0.796)

0.801 ± 0.004 (0.789,
0.812)

0.874 ± 0.004 (0.862,
0.885)

Ours 0.782 ± 0.01 (0.754,
0.809)

0.835 ± 0.007 (0.815,
0.854)

0.784 ± 0.012 (0.750,
0.817)

0.716 ± 0.019 (0.663,
0.768)

0.810 ± 0.008 (0.787,
0.832)

0.878 ± 0.007 (0.858,
0.897)

Single-BM, training on malignancy prediction task only; Single-ALNM, training on ALNM prediction task only; Multi-task, combination of two tasks together without hierarchical loss. When
applicable, statistical quantifications are demonstrated with 95% confidential interval (CI).
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from the image center tended to be the intratumoral region and
background. In Figure 6, the heatmap of the model supervised only
by the ALNM label (third row) showed that the model highlighted
only the smooth peritumoral region rather than considering the
peritumoral and intratumoral information together. However, for the
model supervised bymalignancy and ALNM labels (second row), the
peritumoral and intratumoral regions were highlighted. These data
might explain the reason for the performance gain of ALNM
prediction: introduction of HL and malignancy supervision.

Prediction of the Nodal Burden of Axillary
Lymph-Node Metastasis
To calculate the nodal burden of ALNM, we built several binary
classification tasks whereby positive samples were images from

patients with ALNM number no less than a given number
ranging from 1 to 4. The detailed performance evaluation of
the CNN method and radiomics method on this set of binary
classification tasks is summarized in Table 4. The score for
accuracy, sensitivity, specificity, and the AUC for the number
of ALNM ≥ 2, ALNM ≥ 3 and ALNM ≥ 4 by the CNNmodel was,
respectively: 63.4%, 67.2%, 63.0%, and 0.715; 63.6%, 77.3%,
62.7%, and 0.752; 75.3%,66.6%, 76.8%, and 0.768.

DISCUSSION

We successfully developed a multi-task architecture to
integrate two traditional single-mode classification tasks to
achieve prediction of ALNM and malignancy in parallel. In

FIGURE 4 | Example of reduced inconsistency by introduction of a hierarchical-loss function.

FIGURE 5 | Heatmaps generated by Grad-CAM. The color ranges from blue to red, and represents the significance value of the region ranging from low to high,
respectively, for the prediction of amalignant tumor or ALNM. (A)Benign case which was classified correctly. (B)Malignant masses without ALNM. (C) and (D)Malignant
masses.
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the practical work, the radiologist must make the classification
of breast nodules firstly, and then the lymph node status
assessment. This sequence is a comprehensive diagnosis.
However, many previous research for the prediction of
lymph node were based on selective breast cancer tumors,
do not tally with the actual diagnosis process. Therefore, in
our opinion, this study is consistent with the clinical diagnostic
process and has good clinical relevance based on clinical issues.
The HL function was utilized to embed the prior constraint
between the two tasks that tumors predicted with ALNM
should obtain a label of “malignancy” while there must be
no metastasis to LNs in a benign breast tumor. Ablation studies
were undertaken to evaluate the impact of the HL function,
which was shown to be effective for reducing inconsistent

prediction errors. This is an innovative study that is
different from the previous task of single classification or
lymph node prediction model. In clinical practice, if US
examination cannot provide a correct assessment of lymph
node status, patients may need MRI examination or sentinel
lymph node biopsy to confirm the status of lymph nodes. Using
our model, radiologists and physicians could reach a diagnosis
quickly without resorting to other examinations efficiently and
economically.

Numerous studies suggested that DL provides a powerful
assistant tool for radiologists to reduce their workload (Xiao
et al., 2018; Wu et al., 2019). The excellent ability of CNNs to
extract image features was proved to be superior to radiomics
using CT, US or MRI (Truhn et al., 2019; Caballo et al., 2020; Sun

FIGURE 6 | Heatmaps produced using Grad-CAM. The first row (A–D) shows US images from patients with ALNM. The second row shows heatmaps generated
from our model that performed ALNMprediction andmalignancy prediction. The third row shows heatmaps generated from themodel performing only ALNM prediction.

TABLE 4 | Performance of the radiomics model and our model on prediction of the exact number of lymph-node metastases.

Task Model Metrics

ACC SE Prec SP F1 AUC

ALNM
≥ 2

Radiomics 0.611 0.592 0.141 0.613 0.228 0.667
Ours 0.634 ± 0.023 (0.570,

0.697)
0.672 ± 0.039 (0.563,

0.780)
0.163 ± 0.005 (0.149,

0.176)
0.63 ± 0.291 (0.549,

0.710)
0.263 ± 0.006 (0.246,

0.279)
0.715 ± 0.015 (0.673,

0.756)
ALNM
≥ 3

Radiomics 0.575 0.607 0.087 0.573 0.152 0.602
Ours 0.636 ± 0.016 (0.591,

0.680)
0.773 ± 0.051 (0.631,

0.914)
0.121 ± 0.002 (0.115,

0.126)
0.627 ± 0.002 (0.621,

0.632)
0.211 ± 0.004 (0.199,

0.222)
0.752 ± 0.013 (0.715,

0.788)
ALNM
≥ 4

Radiomics 0.683 0.417 0.06 0.695 0.105 0.588
Ours 0.753 ± 0.018 (0.703,

0.802)
0.666 ± 0.065 (0.485,

0.846)
0.119 ± 0.006 (0.102,

0.135)
0.768 ± 0.012 (0.734,

0.801)
0.202 ± 0.013 (0.165,

0.238)
0.768 ± 0.009 (0.743,

0.792)

ACC, accuracy; SE, sensitivity, Prec, precision, SP, specificity; AUC, area under the ROC curve. When applicable, statistical quantifications are demonstrated with 95% confidential
interval (CI).
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et al., 2020). Consistent with those results, our CNN model was
also superior to the radiomics model based on the same dataset.
Han and others used a CNN framework based on large-scale data
to differentiate breast lesions on US images, and achieved an
accuracy of ~0.9, sensitivity of ~0.86, and specificity of ~0.96
(Han et al., 2017). Our model achieved a relatively lower
specificity (0.72) due to the sample composition, in which the
number of breast tumors was in the majority. As a retrospective
study, images from multiple machines were also responsible for
this classification performance. However, our model had the
possibility of eliciting reproducibility and repeatability in daily
practice. Moreover, based on this preliminary study, our next
work is to build a comprehensive model by combining clinical
data and multimodal ultrasound image data to accomplish this
dual task, which may yield better diagnostic performance.

Most importantly, our study provides a valid approach to
predict the nodal burden of ALNM of malignant breast tumors.
Zhou and others revealed that the best-performing model
significantly outperformed the three experienced radiologists
in ALNM prediction, but detailed data were not provided
(Zhou et al., 2020). The nodal burden of ALNM is an
important parameter for clinical treatment. According to the
results of the Z0011 trial from the American College of Surgeons
Oncology Group, the clinical treatment for ALN has been
changed further worldwide. This is because dissection of ALNs
does not affect the overall survival or disease-free survival of
patients with T1–T2 BC, or <3 positive sentinel LNs under
different treatment regimens (Giuliano et al., 2016). In the
TNM staging system, ALNM ≥ 4 increases the clinical stage of
BC, which corresponds to a change in the treatment regimen
(Giuliano et al., 2017). Compared with the study conducted by
Zheng et al. (2020), in addition to prediction of ALN status of N0,
N+(≥1),N+(1–2), N+(≥3), our study carried out more attempts at
lymph node metastasis status (N ≥ 4), which is important
reference information for the clinical staging of breast cancer.

Our study showed moderate performance in prediction of
ALNM number, which might have been due to our small
sample size. Nevertheless, we demonstrated the potential of
CNN model in predicting the ALN staging of BC. Our model
achieved better performance on ALNM prediction with higher
nodal burden, which indicates that there were more hard
samples among breast tumors with a lower nodal burden. For
training the CNN model, these hard samples might provide
incorrect gradients, which should be ignored to prevent the
model from overfitting. A possible explanation for this
scenario could be that the metastatic biological behaviors
of breast tumors with a lower nodal burden are
inconspicuous compared with those of a heavier breast
tumor which displays well-marked morphologic features
(Bae et al., 2018; Yu et al., 2018). Moreover, our results are
in accordance with the fact that US has greater accuracy in
detecting a heavy nodal burden of BC compared with lower
nodal involvement (Rukanskienė et al., 2020).

To assist radiologists in understanding our CNN model
and reveal the inter relationship of the two tasks, we visualized
the heatmap (which shows the important parts of the US
image of the breast during prediction). We discovered that

peritumoral and intratumoral regions contributed to
prediction of ALNM. This result is in accordance with
studies suggesting that the biological changes of
peritumoral regions might lead to metastatic spread (Wu
et al., 2017; Cheon et al., 2018). This result might also
explain the reason for the performance gain of ALNM
prediction by introducing HL and malignancy supervision.
The useful interaction between two tasks provides extra
information, thereby forcing model to consider
intratumoral and peritumoral regions to make more precise
predictions.

Our study had twomain limitations. First, the self-built dataset
was of limited size. Further expansion of data with larger and
multicenter datasets should be undertaken in the future. Second,
our data were only derived from two-dimensional US images,
future studies which focus on a combination of multi-mode US
images of breast masses should be taken to improve the diagnostic
performance of ALN status.

CONCLUSION

We developed a novel multi-task CNN model to predict
malignancy and detailed LN status simultaneously based on
US images of primary BC. For patients, US can be a cost-
effective, convenient, and functional alternative examination.
For physicians, preoperative evaluation could be accomplished
with fewer screening items and shorter intervals between visits.
Our CNNmodel has considerable potential for assisting clinically
precise treatment for BC.
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