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Abstract: The modeling and prediction of chaotic time series require proper reconstruction of the state
space from the available data in order to successfully estimate invariant properties of the embedded
attractor. Thus, one must choose appropriate time delay τ∗ and embedding dimension p for phase
space reconstruction. The value of τ∗ can be estimated from the Mutual Information, but this method
is rather cumbersome computationally. Additionally, some researchers have recommended that τ∗

should be chosen to be dependent on the embedding dimension p by means of an appropriate value
for the time delay τw = (p− 1)τ∗, which is the optimal time delay for independence of the time
series. The C-C method, based on Correlation Integral, is a method simpler than Mutual Information
and has been proposed to select optimally τw and τ∗. In this paper, we suggest a simple method for
estimating τ∗ and τw based on symbolic analysis and symbolic entropy. As in the C-C method, τ∗ is
estimated as the first local optimal time delay and τw as the time delay for independence of the time
series. The method is applied to several chaotic time series that are the base of comparison for several
techniques. The numerical simulations for these systems verify that the proposed symbolic-based
method is useful for practitioners and, according to the studied models, has a better performance
than the C-C method for the choice of the time delay and embedding dimension. In addition, the
method is applied to EEG data in order to study and compare some dynamic characteristics of brain
activity under epileptic episodes

Keywords: symbolic analysis; symbolic entropy; delay time selection; dynamic reconstruction

1. Introduction

For the theory of state space reconstruction suggested by Packard, Takens et al. [1,2]
is the base for data-driven analysis and prediction of chaotic systems. It can be proved
through Taken’s theorem [2] that the strange attractor of the chaotic systems could be
properly recovered from only one projection of the dynamic system. The fundamental
theorem of reconstruction of Takens establishes a sufficient condition (but not necessary)
given by p ≥ 2d+ 1, where d is the fractal dimension of the underlying chaotic attractor, and
p stands for the embedding dimension used for phase space reconstruction. Nevertheless,
no condition is given regarding the time delay.

A popular method for state space reconstruction is the method of delays. It consists of
embedding the observed scalar time series {Xt}t∈I in one p-dimensional space Xτ

p(t) =
(Xt, Xt+τ , . . . , Xt+(p−1)τ) for t ∈ I, where τ is the time delay for the reconstruction, p is
the embedding dimension, and I is a set of time indexes of cardinality T. Notice that the
number of points inserted in the p-dimensional space is M = T− (p− 1)τ and all dynamic
properties, such as dependencies, periodicity, and complexity changes, can be extracted
from it. That is, there is a differentiable homomorphism from the orbits of the chaotic
attractor in the reconstructed space Rp to the original system.
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The selection of the parameters p and τ∗ is a challenge. An improper choice can result
in a spurious indication of a nonlinear complex structure when the system is linear. Albeit
specialized literature provides different methods to select the parameters for state space
reconstruction, none of them that are superior to the remaining ones in all aspects. In
general, the optimal strategy for parameter selection will depend on the time series and
a complexity measure (e.g., Lyapunov Exponents or Correlation Dimension). There are
two different approaches to the selection of the parameters p and τ∗. The first approach
considers that p and τ∗ are selected independently from each other. For example, the G-P
algorithm for the selection of p proposed by Albano et al. [3] and different proposals for the
selection of the time delay τ∗ based on Mutual Information [4], autocorrelation and high-
order correlations [5], filling factor [6], wavering product [7], average displacement AD [8],
and multiple autocorrelation [9]. The second approach considers that the parameters
p and τ∗ are closely related when the time series under consideration is noisy and has
finite length. A great number of experiments indicate that p and τ∗ are related with the
time delay for independence of the time series through τw = (p− 1)τ∗. Therefore, a bad
selection of the parameters will directly impact the equivalence between the original system
and the reconstructed phase space. Thus, some authors are in favor of jointly selecting p
and τ∗ as, for example, the small-window solution [10], C–C method [11], and automated
embedding [12].

Many researchers consider that the second approach (joint selection) is more reason-
able than the first one (independent selection) in the engineering practice. They consider
that the estimation of mutual information is rather cumbersome computationally, whereas
the autocorrelation function only accounts for the linear dependence and therefore does not
properly treat the presence of nonlinearities. On the other hand, the C-C method suggested
by Kim et al. [11] is the most popular, which provides the delay time τ∗ and embedding
dimension p simultaneously by using correlation integral, and it has the advantage of low
complexity and robustness in finite samples [13].

In the present paper, we propose a new method for selection p and τ∗ based on sym-
bolic dynamics and Information Theory. Symbolic Dynamics studies dynamical systems
on the basis of the symbol sequences obtained for a suitable partition of the state space.
The basic idea behind symbolic dynamics is to divide the phase space into finite number of
regions and label each region by an alphabetical letter. In this regard, symbolic dynamics
is a coarse-grained description of dynamics. Even though coarse-grained methods lose a
certain amount of detailed information, some essential features of the dynamics may be
kept, e.g., periodicities and dependencies, among others. Symbolic dynamics has been
used for investigation of nonlinear dynamical systems (central references for the interested
reader are [14–18]; for an overview, see Hao and Zheng [19]). In general terms, there is
a broad agreement in that symbolization can increase the efficiency of finding and even
quantifying information for characterizing and recognizing temporal patterns (see [20] for
a review on experimental data). The process of symbolizing a time series is based upon the
method of delay time coordinates, introduced by Takens, in order to carry out the phase
space reconstruction.

Since the methods of state space reconstruction are based to some extent on detection
of delays for which there is some sort of dependence (linear or nonlinear), and Symbolic
Dynamics has been used as a statistical tool to detect the presence of dependence in
time series [21]; symbolic dynamics is a suitable tool to select the optimal state space
reconstruction parameters of chaotic time series.

Thus, we will select p and τ∗ by translating the problem into symbolic dynamics and
then we use a entropy measure associated with the symbols space (symbolic entropy) as
a tool for the parameter selection. On the one hand, we have compared the performance
of the proposed method with other available methods. Results seem to be in favor of this
proposal. On the other hand, and from an empirical point of view, we have applied it to
EEG data, which allows for understanding some dynamic characteristics of brain activity
under epileptic episodes.
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The rest of the paper is structured as follows: in Section 2, we introduce the basic
concepts of symbolic analysis, and we also provide a symbolization procedure that works
for estimation of the parameters for Phase Space reconstruction. In Section 3, we show the
performance of the symbolic method to estimate phase space reconstruction parameters,
and we compare it with the well known Mutual Information based methods and C-C
method. In Section 4, the new techniques presented in this paper are applied to a real
EEG database obtained from the University of Bonn and studied well for understanding
epileptic phenomena. Finally, Section 5 presents conclusions.

2. Definitions and Symbolization Procedure

In this section, we will introduce some definitions and basic notations referred to
symbolic dynamics.

Let {Xt}t∈I be a real valued time series. We will use symbolic analysis to study the
state space reconstruction parameters associated with it. Symbolic analysis in our context
is a coarse-grained approach to the study of time series, consisting of embedding the time
series in a p-dimensional space, then constructing a partition of this p-dimensional space
and labeling each set of the partition with a symbol. Therefore, all the p-dimensional vectors
belonging to the same set of the partition are labelled with the same symbol. Afterwards,
with information theory based measures, we will study the distribution of the symbols that
will help us in the estimation of the parameters for state space reconstruction.

More concretely, in mathematical terms, given a positive integer p ≥ 2, and a time
delay τ, we consider that the time series is embedded in an p-dimensional space as follows:

Xτ
p(t) =

(
Xt, Xt+τ , ..., Xt+(p−1)τ

)
. (1)

The parameter p is usually known as embedding dimension and Xτ
p(t) p, τ-history.

Next, given a positive real number ε and in order to provide a partition of Rp, we
define for any element v = (v1, v2, . . . , vp) ∈ Rp the following indicator function:

δij(v) =
{

1 if |vi|, |vj| < ε or |vi|, |vj| ≥ ε

0 otherwise.
(2)

That is, δij(v) = 1 if and only if its entries vi and vj satisfy that |vi| and |vj| are both either
smaller or greater than ε. Let the set Γp be the set of cardinality 2p−1 formed by the vectors
of length p− 1 with entries in the set {0, 1}. Then, we can define a map fε : Rp −→ Γp
defined as

fε(v = (v1, v2, . . . , vp)) = (δ12(v), δ13(v), . . . , δ1p(v)).

The map fε defines an equivalence relation in Rp such that v1 v2 if and only if fε(v1) =
fε(v2). Therefore, this equivalence relation provides a partition of Rp in 2p−1 disjoint sets.
Each of these sets is labeled with an element of Γp. The elements in Γp are called symbols
and fε symbolization map. In general, if π ∈ Γp is a symbol and v ∈ Rp is such that
fε(v) = π, then we will say that v is of π-type.

Next, we are interested in the application of the symbolization map fε to the p, τ-
history Xτ

p(t) =
(

Xt, Xt+τ , ..., Xt+(p−1)τ

)
. Notice that fε(Xτ

p(t)) is a vector (symbol) whose
i-th entry provides information on whether |Xt| and |Xt+i| are both either smaller or
greater than ε. Then, we want to extract information on the dynamics of the time series
{Xt}t∈I by using information theory based measures on its associated symbols distribution{

fε(Xτ
p(t))

}T−(p−1)τ

t=1
. More concretely, we can estimate the probability of a symbol π ∈

Γp as

pπ =
# {Xτ

p(t) of π − type}
T − (p− 1)τ

(3)
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Now, under this setting, given a time delay τ and embedding dimension p ≥ 2, we
can define the symbolic entropy of a time process {Xt}t∈I . This entropy is defined as the
Shannon’s entropy [22] of the 2p−1 distinct symbols as follows:

h(p, τ) = − ∑
π∈Γm

pπ ln(pπ). (4)

Symbolic entropy h(p, τ) is the information contained in comparing p, τ-histories generated
by the time process. Notice that 0 ≤ h(p, τ) ≤ ln(n), where the lower bound is attained
when only one symbol occurs, and the upper bound for a completely random system (i.i.d
temporal sequence) where all possible symbols appear with the same probability.

Then, if τ = τ∗ is an optimal time delay, for a positive integer k, the dependence
between Xt and Xt+kτ∗ vanishes, and hence the symbolic entropy associated with the time
series {Xt} should be maximum. Therefore, in order to select the optimal time delay τ∗,
we select the first τ satisfying

τ∗ = arg max
τ
{h(p, τ)} (5)

With respect to the optimal embedding window τw = (p− 1)τ∗, this can be associated
with the mean orbital period Pw of low-dimensional chaotic systems that shows pseudo-
periodicity. That is, Pw can be considered the time dependence of the chaotic time series.
Although the chaotic systems oscillate without periodicity, low dimensional chaotic systems
show pseudo-periodicity. The mean orbital period could naturally be associated with the
mean time between two consecutive visits to a Poincare section [23]. For the time series
with mean orbital period Pw, all points at a time multiple of Pw are in the same Poincare
section in phase space. Therefore, a local minimum of symbolic entropy h(p, τ) is reached
for τ = kPw and thus

τw = arg min
τ
{h(p, τ)}. (6)

To finish this section, we are going to illustrate the symbolization procedure with an
easy example. Let {Xt}t∈I be the following finite time series:

{X1 = 2; X2 = −7; X3 = −12; X4 = 5; X5 = −1; X6 = 9; X7 = 14} (7)

and assume that ε = 3, τ = 1 and p = 3. Then, the symbols’ set remains as

Γ3 = {(0, 0); (0, 1); (1, 0); (1, 1)}.

Under this setting, we can construct the following five p, τ-histories: X1
3(1) =

(1,−7,−12); X1
3(2) = (−7,−12, 5); X1

3(3) = (12, 5,−1); X1
3(4) = (5,−1, 9); and

X1
3(5) = (−1, 9, 14). Then, the symbolization map fε associate each p, τ-history

to a symbol. Concretely, f3(X1
3(1) = (1,−7,−12)) = (0, 0) because the first en-

try of the m-history, 1 is in absolute value smaller than ε = 3 while the second
and the third are both greater than ε = 3, and hence the agreement indicator that
defines the symbolization map takes the value 0. Similarly, we find that X1

3(2)
is of (1, 1)−type, X1

3(3) is of (1, 0)−type, X1
3(4) is of (0, 1)−type, and X1

3(5) is of
(0, 0)−type. Thus, we can estimate the symbols distribution by its relative frequency
p((0, 0)) = 2

5 , p((0, 1)) = p((1, 0)) = p((1, 1)) = 1
5 and the entropy associated with them

h(p, τ) = h(3, 1) = − 2
5 log( 2

5 )−
1
5 log( 1

5 )−
1
5 log( 1

5 )−
1
5 log( 1

5 ) = 1.3322.

Selection of p and ε for Finite Sample Sizes

When determining the parameters of phase space reconstruction of a finite chaotic
time series by using the symbolic entropy, one needs to select in advance the values of p
and ε. In addition, sample size T also plays an important role. In [21], some general criteria
are recommended to select the embedding dimension p and sample size T in order to
compute the symbolic entropy. First, the sample size T should be as larger than the number
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of symbols 2p−1 of the symbolization map fε. Second, from a statistical point of view, data
sets must contain at least five times the number of possible events or symbols. Thus, the
embedding dimension will be the largest positive integer p that satisfies 5 · 2p−1 ≤ T.

To select ε, we propose to use a data driven method which is based on symbolic
entropy. Particularly, we partially rely on the methodology described in [24] based on
the construction of peak detection functions (FPs). The selected ε will be the largest ε
that locally maximizes the absolute value of a pick function FP(i, xi), where FP associates
values to the symbolic entropy of a time series. More concretely, define

FP+(k, τ) =
max{hτ − hτ−1, hτ − hτ−2, ..., hτ − hτ−k}+ max{hτ − hτ+1, hτ − hτ+2, ..., hτ − hτ+k}

2
(8)

and

FP−(k, τ) =
min{hτ − hτ−1, hτ − hτ−2, ..., hτ − hτ−k}+ min{hτ − hτ+1, hτ − hτ+2, ..., hτ − hτ+k}

2
(9)

where hτ+l = h(p, τ + l) for l = 0, 1, ..k. The functions FP+(k, τ) (respectively FP−(k, τ))
allows for selecting the time delay τ for which value h(p, τ) is maximum (respectively
minimum) in the neighborhood of (τ − k, τ + k). As stated in [24], values of k in the range
[3, 5] are usually suitable. Notice that, by construction, 0 < ε < max{Xt}. Then, the
selected parameter, namely ε∗, will be the one in the interval (0, max{Xt}) that satisfies

ε∗ = max
ε
{max

τ
{FP+(k, τ)}, min

τ
{|FP−(k, τ)|}} (10)

3. Simulation Analysis

The following examples illustrate the performance of the proposed symbolic method
when estimating the parameters time delay τ∗ and embedding dimension p for phase
space reconstruction of a chaotic time series. The aim of this set of simulations is, firstly,
to empirically evaluate the performance of the new symbolic procedure to select the
“correct” parameters. Secondly, we aim to compare with the symbolic method with other
competitive available methods that have been commented in the introductory section and
that are fully documented in the bibliographical references of this paper.

To this end, we extract univariate time series {Xt} of length T = 3000 from five chaotic
systems that have been extensively studied. In all cases, we set the embedded time series
in a six-dimensional space that is p = 6. To evaluate the performance of the novel symbolic
method, we compare the performances of the new method with other available selection
methods: the C-C method (C-C), the Nearest Neighbor method, and the method based on
the first minimum of the autocorrelation function (FAC) selection parameters of these last
two methods are based on the Mutual Information (MI) criteria.

Scientific literature has shown that the C-C method has a good performance when
used for selecting time delays and embedding dimensions. Thus, the C-C method can be
thought of as a natural competitor and therefore it is worth comparing the performance
against it. For this reason, we will compare results for several well-known dynamic systems.
In order to compare and evaluate the performance of each method, we will use the selected
parameters of each method for reconstructing the attractor and estimating two complexity
measures of each system. These two measures are theoretically known for each of the
three systems, and therefore they are used as a base of comparison. A final user will prefer
using reconstruction parameters that lead to estimations that are as close as possible to the
theoretical ones.

Accordingly, we will use the following systems to conduct the comparisons:

• Lorenz system [25]:

.
x = −a(x− y)
.
y = −xz + cx− y (11)
.
z = xy− bz
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The time series was obtained by projecting the x-coordinate of the system defined
by the parameters a = 16, c = 45.92, b = 4 , with an integral step 0.01, and initial
conditions x0 = −1, y0 = 0 y z0 = 1. The computed optimal ratio is ε∗ = 1.2σx,
where σx is the standard deviation of the chaotic time series under consideration.
For this optimal radio, Figure 1 illustrates the series of the normalized symbolic
entropy h(6, τ)/6 as a function of the time delay τ for the Lorenz system. Clearly,
we observe that the first local maximum is attained at τ∗ = 12 and the minimum at
τw = 46. Then, an estimated value of embedding dimension p can be computed by
solving τw = (p− 1)τ∗ obtaining an approximate value of p = 5. For the Mutual
Information method, the optimal time delay was τ∗ = 11, while, for the C-C method,
the estimated parameters were τ∗ = 10 τw = 100 and p = 11. Notice that the optimal
time delay τ∗ estimated by the three methods are quite close to each other while the
estimated time delay window τw strongly differs between C-C and symbolic methods:

• Rossler system [26]:

.
x = −y− z
.
y = x + dy (12)
.
x = z(x− f ) + e

The time series was obtained by projecting the x-coordinate of the system defined by
the parameters d = 0.15, e = 0.2 and f = 10, with an integral step 0.05, and initial
conditions x0 = −1, y0 = 0 and z0 = 1. The computed optimal radio is ε∗ = 0.4σx,
where σx is the standard deviation of the chaotic time series under consideration.
Figure 2 shows the normalized symbolic entropy h(6, τ)/6 as a function of the time
delay τ for the Rossler system. It can be seen that the selected parameters by the
symbolic method are τ∗ = 18 and τw = 121, and consequently the estimated value for
p is 8. The estimated time delay for Mutual Information method is τ∗ = 20. For the
C-C method, the estimated parameters are τ∗ = 17 and τw = 191. Again, the optimal
time delay τ∗ estimated by the three methods is very similar while the time delay
window τw estimated by the C-C method is much different than the one estimated
with symbolic entropy.

• Duffing System [27]:

.
x = y
.
y = −gy− kx(1 + x2) + lcosz (13)
.
z = v

The time series was obtained by projecting the x-coordinate of the system defined
by the parameters g = 0.05, k = 0.25, l = 7.5 and v = 1, with an integral step
0.05, and initial conditions x0 = −1, y0 = 0 y z0 = 1. The computed optimal radio
is ε∗ = 0.275σx, where σx is the standard deviation of the chaotic time series under
consideration. Figure 3 shows the normalized symbolic entropy h(6, τ)/6 as a function
of the time delay τ for the Duffing system. The estimated optimal time delay and
time delay window with the symbolic method are τ∗ = 14 and τw = 126, respectively.
Then, the estimated embedding dimension is p = 10. As in the previous examples, the
estimated time delay for the Mutual Information method (τ∗ = 12) and for the C-C
method (τ∗ = 12) are fairly close to the one estimated by symbolic method. Again,
the time delay window estimated based on the C-C method τw = 161 is far from the
one estimated with symbolic method.
These first three models are well-known and well-studied and have served as a base
of comparison of new techniques for similar aims as this paper. In order to complete
this analysis, we have also considered the next two models that we refer to as the
Mackey–Glass model and Chen model:
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• Mackey-Glass system [28]:

dx
dt

=
ax(t− τ)

1 + xc(t− τ)
− bx (14)

The time series was obtained by fixing parameters a = 0;2, b = 0;1, c = 10, y = 17,
with initial conditions x(t < 0) = 0 y x(t = 0) = 1;2. The first 2000 iterations were
discarded. The computed optimal radio is ε∗ = 0.79σx, where σx is the standard
deviation of the chaotic time series under consideration. The estimated optimal time
delay and time delay window with the symbolic method are τ∗ = 13 and τw = 49,
respectively. Figure 4 shows the normalized symbolic entropy h(6, τ)/6 as a function
of the time delay τ for the Mackey-Glass system Then, the estimated embedding
dimension is p = 5. In this case, the estimated time delay for the Mutual Information
method (τ∗ = 12) and for the C-C method (τ∗ = 14) are fairly close to the one
estimated by symbolic method (τ = 13). Again, the time delay window estimated
based on the C-C method τw = 166 is far from the one estimated with symbolic
method(τw = 49):

• Chen system [29]:

ẋ = a(y− x)

ẏ = (c− a)x + cy− xz

ż = xy− bz

The time series was obtained by projecting the x-coordinate of the system defined by
the parameters a = 35, b = 3, c = 28, with an integral step 0.01, and initial conditions
x0 = −1, y0 = 0 y z0 = 1. The first 2000 iterations were discarded. The computed
optimal radio is ε∗ = 0.89σx, where σx is the standard deviation of the chaotic time
series under consideration. The estimated optimal time delay and time delay window
with the symbolic method are τ∗ = 11 and τw = 60, respectively. Figure 5 shows
the normalized symbolic entropy h(6, τ)/6 as a function of the time delay τ for the
Chen system. Then, the estimated embedding dimension is p = 6. As in the previous
examples, the estimated time delay for the Mutual Information method (τ∗ = 10) and
for the C-C method (τ∗ = 9) are fairly close to the one estimated by symbolic method.
Again, the time delay window estimated based on the C-C method τw = 104 is far
from the one estimated with symbolic method (τw = 60).
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Figure 1. Normalized symbolic entropy h(6, τ)/6 for ε = 1.2σx of Lorenz system.
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Figure 2. Normalized symbolic entropy h(6, τ)/6 for ε = 0.4σx of Rossler system.
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Figure 3. Normalized symbolic entropy h(6, τ)/6 for ε = 0.275σx of the Duffing system.
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Figure 4. h(6, τ)/6 for ε = 0.79σx of the Mackey–Glass system.
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Figure 5. Normalized symbolic entropy h(6, τ)/6 for ε = 0.89σx of the Chen system.

Table 1 summarizes for each method the estimated parameters for phase space re-
construction of the five systems. Bold is reserved for the results obtained with the new
selecting method.

Table 1. Estimated parameters for phase space reconstruction for the studied systems.

MI Method C-C Method Symbolic Method NN FAC

System τ∗ τ∗ τw p τ∗ τw p τ∗ p τ∗ p

Lorenz 11 10 100 11 12 46 5 11 3 11 3
Rossler 20 17 191 12 18 121 8 20 4 20 4
Duffing 12 14 161 12 14 126 10 12 2 12 2

Mc-Glass 12 14 166 13 13 49 5 12 4 12 4
Chen 10 9 104 27 11 60 6 10 4 10 4

In order to check whether the symbolic method is reliable when estimating the parame-
ters for phase space reconstruction, τ∗, τw, and p, we will compute, based on this estimation,
two complexity measures for each one of the systems that needs these parameters for its
computation. These complexity measures are the largest Lyapunov exponent LLE [30],
which is a measure of the complexity of the time process, and the Correlation Dimension
D [31], which is a measure of the dimension of the space occupied by the chaotic attractor.
For the computation of these two geometric invariants, the time delay τ∗ and embedding
dimension p are essential parameters, and a bad selection of them would produce a big
bias in LLE and D. The largest Lyapunov exponent LLE for the five systems have been
computed in [27,32–35] and the Correlation Dimension D in [32,33,36,37]. Furthermore,
we have completed the study by increasing the sample size to 10,000 observations. Tables 2
and 3 show the values of LLE andD based on the values of the estimated parameters τ∗, τw
and p with symbolic and C− C methods together with the reference values, respectively.

Table 2. Largest Lyapunov exponent LLE based on the estimation of the phase space parameters τ∗, τw and p if C-C method
and symbolic method, together with the reference true value. Values in parentheses report estimated LLE for series of
10,000 observations.

LLE Estimated LLE Estimated LLE Estimated LLE Estimated LLE
Reference Value C-C Method Symbolic Method NN FAC

Lorenz 1.500 0.940 (1.667) 1.50 (1.670) 1.438 (1.659) 0.771 (0.742)
Rossler 0.090 0.095 (0.066) 0.09 (0.080) 0.061 (0.079) 1.108 (0.068)
Duffing 0.183 0.168 (0.021) 0.184 (0.200) 0.014 (0.215) 0.019 (0.02)

Mc-Glass 0.007 0.006 (0.008) 0.007 (0.007) 0.006 (0.009) 0.007 (0.008)
Chen 1.997 1.852 (1.773) 1.982 (1.852) 2.483 (2.160) 1.359 (1.120)
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Table 3. Correlation dimension D based on the estimation of the phase space parameters τ∗, τw, and p of the C-C method
and symbolic method, together with the reference true value. Values in parentheses report estimated D for series of
10,000 observations.

D EstimatedD EstimatedD EstimatedD EstimatedD
Reference Value C-C Method Symbolic Method NN FAC

Lorenz 2.06 1.93 (2.41) 2.01 (2.02) 1.76 (2.23) 2.02 (3.63)
Rossler 2.01 2.13 (2.31) 2.09 (2.01) 1.79 (1.77) 1.92 (1.49)
Duffing 2.23 2.10 (2.56) 2.21 (2.37) 1.13 (1.16) 1.51 (1.47)

Mc-Glass 2.10 2.83 (2.20) 2.12 (2.11) 1.94 (1.80) 2.01 (1.97)
Chen 2.16 2.19 (3.67) 2.13 (2.12) 2.05 (2.26) 2.36 (3.49)

We can observe the estimated values of the largest Lyapunov exponent and Correlation
dimension based on the Symbolic method in Tables 2 and 3, respectively. Importantly, these
symbolic-based estimations are very close to their reference (theoretical) values, regardless
of the sample size, which suggests the good behavior of the new method for reconstruction
of the dynamics of the system. On the other hand, we were wondering if the symbolic
method is competitive with its main competitor, namely, the C-C method. In this regard,
we can devise that the estimated values for the Lyapunov Exponents are clearly in favor of
the Symbolic method as the estimation is closer to the theoretical reference value than in
the case of the C-C method. This is true for the five systems. Similar conclusions can be
obtained from the results regarding correlation dimension: the symbolic-based estimated
dimensions are closer to the true value than C-C estimation, regardless the studied system.
On the other hand, methods based on nearest neighbors and autocorrelation function are
reported. Results show the symbolic based method also has better empirical behavior. All
of these results could be explained by a wrong selection of delay time window τw by the
C-C method as stated in [23,38–40].

4. EEG Dynamics under Epileptic Activity

The Electroencephalogram (EEG) is a spontaneous bioelectricity activity that is pro-
duced by the central nervous system. Therefore, EEG can be understood as a representative
signal containing information about the activity of the brain. Currently, EEG is widely used
in clinic and neuralelectricity physiological research. The shape of the waves may contain
useful information about the state of the brain. EEG does include abundant information
about the state and change of the neural system.

The dynamics of brain activity is considered to be of a nonlinear nature. Accordingly,
EEG signals are studied by means of nonlinear dynamic tools. Indeed, a large body of
studies have reported that the EEG was derived from chaotic systems [41–44].

In this section of the paper, we apply the symbolic-based approach for reconstruction
of dynamics generated by empirical EEG recording from a public dataset by the University
of Bonn [41]. Epilepsy is characterized by recurring seizures in which abnormal electrical
activity in the brain causes the loss of consciousness or a whole body convulsion. From this
point of view, our results will contribute to the empirical analysis of role on nonlinear
dynamics in epileptology. The Bonn University EEG database is comprised of five types of
EEG signals (EEG recordings from healthy volunteer with eyes open and closed, epilepsy
patients in the epileptogenic zone during a seizure-free interval and in an opposite brain
zone, and epilepsy patients during epileptic seizures) were studied.

To conduct this empirical analysis, we firstly use Theiler’s method of surrogate data
to distinguish between linearity and nonlinearity. To do so, the null hypothesis of linearity
is tested against nonlinearity [45]. Chaos cannot come from a linear signal. Secondly, we
test for chaoticity against pure stochasticity. Linear signals are expected to be of stochastic
nature while nonlinear signals can come from either a stochastic process or a pure chaotic
one. The statistical test for chaos [46] tests the null hypothesis of chaos versus the alternative
of stochastic process. We also estimate correlation dimension using Theiler’s approach in
order to exclude time correlated states in the correlation integral estimation [47].
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Table 4. Complexity measures for EEG data sets.

Brain Status τ∗ τw p Non Linearity Test Chaos vs. Stochastic EstimatedD
Healthy with open eyes 13 98 9 NL (pval = 0.03) Stochastic(pval < 0.001) 5.56

Healthy with closed eyes 9 109 13 L (pval = 0.64) - 7.98
Seizure free non-epileptogenic zone 9 120 14 L (pval = 0.76) - 4.99

Seizure free epileptogenic zone 18 108 7 NL (pval < 0.001) Chaos(pval = 1) 3.48
Seizure activity 11 65 7 NL (pval < 0.001) Chaos(pval = 1) 3.69

Table 4 collects the outcomes of all procedures. Results firstly indicate that the brain’s
activity is of a nonlinear nature for a healthy person with open eyes and for records of
epileptic person regardless if s/he is under seizure activity or not, whenever measure-
ment is done in the epileptogenic zone. The test for chaos applied to nonlinear signals
helps to conclude that only the nonlinear dynamics found for epileptic patients are sta-
tistically compatible with chaotic dynamics, while the dynamics are nonlinear stochastic
for a healthy person with open eyes. Finally, the estimated correlation dimensions show
how (correlation) dimension is reduced as the process moves from stochastic to chaotic,
as expected.

These results support the nonlinear deterministic structure of brain dynamics related
to epileptic activity as earlier reported in [48,49]. Our estimates of correlation dimensions
are in line with other previous studies [50] on the same dataset, although with different
parameter configurations. Thus, the conclusion in this regard is that epileptic seizures are
emergent states with reduced dimensionality compared to non-epileptic activity. This is
in line with the clinical common knowledge that establishes that healthy systems evolve
with time and their adaptive capability is higher, resulting in higher complexity. On the
other hand, the alternations in the structural components and/or decreased functional
capability of the subsystem cause dysfunction in the regularity mechanism of the overall
system, which results in the loss of complexity, as indicated in [51,52].

5. Conclusions

In this paper, we have introduced a new method based in Symbolic Dynamics, for the
estimation of the phase space reconstruction parameters τ∗, τw and p. In the simulation
analysis, we applied the Symbolic method to choose the phase space reconstruction pa-
rameters from the time series generated from several dynamical models that have been
well-studied and used for evaluating the ability of different reconstruction methodologies.
The values found for τ∗ agree well with those found for the mutual information and the
C-C method. The values found for τw do not agree with the values estimated by the
C-C method. For this reason, in order to clarify which method for selecting phase space
reconstruction parameters is more reliable, we use them in the computation of two com-
plexity measures, namely largest Lyapunov exponent (LLE) and Correlation dimension (D).
Results indicate that the parameters estimated by the Symbolic method produces a closer
approach to reference (theoretical) values of LLE and D than the C-C method. Finally,
the proposed method is used to study the dynamics of brain activity under epilepsy by
means of real EEG signals. The empirical results hint that epileptic patients show chaotic
dynamics in EEG signals. Furthermore, our results are statistically significant and therefore
hint the potential of symbolic based tools in distinguishing healthy and epileptic subjects.
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