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Targeted therapy is a rational and promising strategy for the treatment of

advanced cancer. For the development of clinical agents targeting oncogenic sig-

naling pathways, it is important to define the specificity of compounds to the

target molecular pathway. Genome-wide transcriptomic analysis is an unbiased

approach to evaluate the compound mode of action, but it is still unknown

whether the analysis could be widely applicable to classify molecularly targeted

anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic

datasets of cancer cells treated with 83 anticancer drugs or related agents, cover-

ing most clinically used, molecularly targeted drugs alongside promising inhibi-

tors of molecular cancer targets. Hierarchical clustering and principal component

analysis revealed that compounds targeting similar target molecules or pathways

were clustered together. These results confirmed that the gene signatures of

these drugs reflected their modes of action. Of note, inhibitors of oncogenic

kinase pathways formed a large unique cluster, showing that these agents affect

a shared molecular pathway distinct from classical antitumor agents and other

classes of agents. The gene signature analysis further classified kinome-targeting

agents depending on their target signaling pathways, and we identified target

pathway-selective signature gene sets. The gene expression analysis was also

valuable in uncovering unexpected target pathways of some anticancer agents.

These results indicate that comprehensive transcriptomic analysis with our data-

base (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evalu-

ate the target pathways of anticancer compounds.

M any cancer cells are addicted to driver oncogenes or to
cancer-selective survival factors, and their proliferation

and survival is highly dependent on oncogenic signaling path-
ways.(1,2) Therefore, molecularly targeted drugs that selectively
inhibit these pathways are critically important for the
pharmacological treatment of advanced cancer.(3) Presently,
various inhibitors of oncogenic kinase pathways are available
for the clinical treatment of cancer, such as inhibitors of onco-
genic tyrosine kinases (for example, EGFR, HER2, BCR-ABL,
and ALK), the RAF ⁄MEK ⁄ERK pathway, the PI3K ⁄AKT
⁄mTOR pathway, and multikinases.(4) However, after treatment
with each agent, cancer cells soon acquire drug-resistant
phenotypes by several mechanisms including gatekeeper muta-
tions in the target kinases and bypassing of signaling path-
ways.(5,6) To improve treatment outcomes, additional next-
generation inhibitors that possess better activity or overcome
drug resistance to the primary agent should be further
developed.

Target validation of agents is critically important for the
development of new compounds as clinical antitumor agents.
In the initial stages of drug development, high-throughput
screens are usually carried out based on enzyme inhibition
assays. As a result, candidate agents that have the potential to
inhibit target enzymes are screened out. In some cases, how-
ever, the agents are found to affect additional target molecules
in cancer cells and cause unexpected cytotoxicity during drug
development or in clinical trials,(7,8) which may mislead the
selection of proper cancer subtypes for the agents and cause
delay or failure in clinical trials. To ensure rational targeted
therapy, target validation of compounds should be carried out
with multiple reliable and unbiased methods.
Genome-wide gene expression analysis is an unbiased method

to evaluate the mode of action of chemical compounds.(9) We
previously analyzed gene expression data of cancer cells that
were mainly treated with classical antitumor agents, including
DNA topoisomerase inhibitors, anti-metabolites, and
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tubulin-binding agents. We showed that the gene signature data
reflected the modes of action of the respective agents.(10) How-
ever, it is still not clear whether this signature-based analysis
could widely be applied to classify the target pathways of molec-
ularly targeted agents in cancer. To address these questions, in
this study, we comprehensively obtained and analyzed gene
expression data of cancer cells treated with 83 anticancer drugs
or related agents covering most clinical (small molecule) anti-
cancer drugs, such as oncogenic receptor tyrosine kinase inhibi-
tors and other kinase inhibitors as well as inhibitors of promising
molecular cancer targets. Our data indicated that this gene
expression-based analysis efficiently classified the oncogenic
kinase inhibitors as well as other classes of agents in a target
pathway-dependent manner. Our data provide a platform to eval-
uate molecular pathways or primary cellular targets of com-
pounds for further development of antitumor agents.

Materials and Methods

Cell lines and compounds. Human colon cancer HT-29 cells,
ovarian cancer SKOV3 cells, leukemia K562 cells, and prostate
cancer PC3 cells were obtained and cultured as described previ-
ously.(10–12) Human lung cancer H2228 cells were obtained from
ATCC (Manassas, VA, USA). Human lung cancer PC-9 cells
were a kind gift from Dr. Kazuto Nishio (Department of Gen-
ome Biology, Kinki University Faculty of Medicine, Osaka,
Japan).(13) These cells were cultured in RPMI-1640 medium
supplemented with 10% heat-inactivated FBS and 100 lg ⁄mL
kanamycin. The anticancer drugs or compounds used in our
analysis are listed in Table 1. The agents were obtained as
described in Table S1. Stock solutions of the compounds were
prepared using dimethyl sulfoxide as a solvent or as described
previously.(10) We examined the growth inhibitory effect of each
agent (Fig. S1) and determined the GI50 values (Table S1).
Growth inhibition assays were carried out and the GI50 values
for each agent was determined as described previously.(10)

Drug treatment and GeneChip analysis. For gene expression
analysis, we chose a concentration of drugs that were 3- to 10-

fold greater than the GI50 value and caused >80% growth inhi-
bition after 48 h of treatment, and gene expression data were
obtained after 6 h of treatment(10) Drug treatment concentra-
tions and treatment duration for each agent are summarized in
Table S1. Total RNA was extracted using an RNeasy Mini kit
(Qiagen, Hilden, Germany). Microarray analysis was carried
out as described previously with the GeneChip Human Gen-
ome U133 Plus 2.0 array (Affymetrix, Santa Clara, CA,
USA).(10) The signature data will be released on our website
(http://scads.jfcr.or.jp/db/cs/).

Statistical analysis. All analyses were carried out using the
statistical programming language R version 2.15.0 (http://
www.r-project.org/) and Bioconductor version 2.10 (http://bio-
conductor.org/).
Data preprocessing. The R package software of Affymetrix

Microarray Suite 5.0 was used to generate signal intensities for
each of the HG-U133 Plus 2.0 arrays in the study. Expression
values were normalized to a mean target level of 100.
Identifying gene signatures. Gene sets were extracted and

classified as up- or downregulated after exposure to the
drug. For each treatment sample, we calculated treatment-to-
control ratio statistics, where, if any intensity value was
<50, the value was replaced as 50. For the hierarchical clus-
tering and the principal component analyses, we selected
probe sets if the treatment-to-control ratio was >3 for upreg-
ulated genes or less than one-third for downregulated genes
and the intensity of at least the treatment or control was
>300 (Table S2).
To identify the signature gene sets characteristic of some

drug subsets, we extracted the probe sets whose expression
changes after drug treatment were statistically significantly dif-
ferent between the drug subsets and other agents. Statistical
evaluations were carried out using Student’s t-test. Probes with
more than a twofold differential expression and a P-value of
<0.05 were extracted.
Hierarchical clustering. Probe sets for hierarchical cluster-

ing comprised the collection of all gene signatures. We car-
ried out hierarchical clustering using the logarithm of the

Table 1. Cancer cell line–anticancer drug combinations used in this study

Cell Compound Criteria Target ⁄Mode of action

K562 Imatinib BCR-ABL inhibitor BCR-ABL ⁄KIT
Dasatinib BCR-ABL inhibitor BCR-ABL ⁄ Src
Nilotinib BCR-ABL inhibitor BCR-ABL

Bosutinib BCR-ABL inhibitor BCR-ABL ⁄ Src
Ponatinib BCR-ABL inhibitor BCR-ABL (T315I)

SN-38 DNA damaging agent Topoisomerase I

Doxorubicin DNA damaging agent DNA intercalator ⁄ Topoisomoerase II

PC-9 Gefitinib EGFR ⁄HER2 inhibitor EGFR

Erlotinib EGFR ⁄HER2 inhibitor EGFR

Afatinib EGFR ⁄HER2 inhibitor EGFR ⁄HER2
Trametinib RAF ⁄MEK ⁄ ERK inhibitor MEK

SN-38 DNA damaging agent Topoisomerase I

Doxorubicin DNA damaging agent DNA intercalator ⁄ Topoisomerase II

H2228 Crizotinib ALK inhibitor ALK

Alectinib ALK inhibitor ALK

SN38 DNA damaging agent Topoisomerase I

Doxorubicin DNA damaging agent DNA intercalator ⁄ Topoisomerase II

SKOV3 Lapatinib EGFR ⁄HER2 inhibtor EGFR ⁄HER2
SN-38 DNA damaging agent Topoisomerase I

Doxorubicin DNA damaging agent DNA intercalator ⁄ Topoisomerase II
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sample and probe set ratio statistics. We used Ward’s
method for linkage and Pearson’s correlation for distance
metric.
Principal component analysis. We carried out a principal

component analysis based on the cancer cell gene expression
data to examine 3-D clustering patterns of subclasses of anti-
cancer drugs (oncogenic kinase inhibitors, HDAC inhibitors,
proteasome inhibitors, mitosis inhibitors, and DNA damaging
agents). We plotted cancer cells treated with anticancer drugs
in a 3-D space consisting of three principal components. We
used the same probe sets used for hierarchical clustering in
this analysis.
Gene ontology analysis. To interpret the extracted gene signa-

tures, we used gene ontology analyses using the DAVID analyti-

cal tool;(14,15) this analysis is a method of highlighting relevant
gene ontology terms associated with a given gene signature.
Analysis with the C-map algorithm (connectivity scoring

analysis). To investigate the relationship between gene signa-
ture and compound, we adopted the connectivity score based
on the Kolmogorov–Smirnov statistic as developed by Lamb
et al.(9) For each treatment sample, all probe sets were ranked
based on the treatment-to-control ratio and the rank matrix
was configured using a similar method to Lamb et al.(9) We
modified our program and calculated the connectivity scores
for all compounds, as described previously.(10)

Western blot analysis. Cells were lysed in TNE buffer
(150 mM NaCl, 1.0% NP-40, 1 mM EDTA, and 10 mM Tris–
HCl, pH 8.0) supplemented with 19 protease inhibitor cocktail

Table 1 (continued)

Cell Compound Criteria Target ⁄Mode of action

HT-29 Vemurafenib RAF ⁄MEK ⁄ ERK inhibitor BRAF (V600E)

Dabrafenib RAF ⁄MEK ⁄ ERK inhibitor BRAF (V600E)

Trametinib RAF ⁄MEK ⁄ ERK inhibitor MEK

U-0126 RAF ⁄MEK ⁄ ERK inhibitor MEK

Everolimus† PI3K ⁄AKT ⁄mTOR inhibitor mTOR

Temsirolimus† PI3K ⁄AKT ⁄mTOR inhibitor mTOR

PP242† PI3K ⁄AKT ⁄mTOR inhibitor mTOR

BKM120 PI3K ⁄AKT ⁄mTOR inhibitor PI3K

BEZ235 PI3K ⁄AKT ⁄mTOR inhibitor PI3K ⁄mTOR

AKT Inhibitor VIII PI3K ⁄AKT ⁄mTOR inhibitor AKT 1 ⁄ 2
Regorafenib Multikinase inhibitor VEGFR, RAF, KIT, RET etc

Sorafenib Multikinase inhibitor VEGFR, RAF etc

Pazopanib Multikinase inhibitor VEGFR, PDGFR,, KIT, FGFR etc

Sunitinib Multikinase inhibitor VEGFR, PDGFR, KIT etc

Cabozantinib Multikinase inhibitor VEGFR, MET,RET,KIT,FLT1 ⁄ 3 ⁄ 4 etc

Vandetanib Multikinase inhibitor VEGFR, EGFR etc

Axitinib Multikinase inhibitor VEGFR, KIT, PDGFR etc

Gefitinib EGFR ⁄HER2 inhibitor EGFR

Erlotinib EGFR ⁄HER2 inhibitor EGFR

Afatinib EGFR ⁄HER2 inhibitor EGFR ⁄HER2
Lapatinib EGFR ⁄HER2 inhibitor EGFR ⁄HER2
Crizotinib ALK inhibitor ALK

Alectinib ALK inhibitor ALK

SU11274 MET inhibitor MET

AG1024 IGFR inhibitor IGF1R

PDGFR inhibitor V PDGFR inhibitor PDGFR

Dasatinib BCR-ABL ⁄ Src inhibitor BCR-ABL ⁄ Src
CDK4 inhibitor Cell cycle inhibitor CDK4

NU6102 Cell cycle inhibitor CDK1 ⁄ Cyclin B

ATM ⁄ATR kinase inhibitor DNA damage check point inhibitor ATM,ATR

SB218078 DNA damage check point inhibitor CHK1

CHK2 inhibitor II DNA damage check point inhibitor CHK2

GSK-3 inhibitor IX GSK-3 inhibitor GSK-3

FH535 b-catenin ⁄ TCF inhibitor b-catenin ⁄ TCF
Celecoxib COX2 inhibitor COX2

BI 2536 Mitosis inhibitor Polo-like kinase

Aurora kinase inhibitor III Mitosis inhibitor Aurora kinase

Docetaxel† Mitosis inhibitor Tubulin

Paclitaxel† Mitosis inhibitor Tubulin

Vincristine† Mitosis inhibitor Tubulin

Trichostatin A† HDAC inhibitor HDAC

Vorinostat† HDAC inhibitor HDAC

Romidepsin HDAC inhibitor HDAC
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(Nacalai Tesque, Kyoto, Japan) and PhosSTOP phosphatase
inhibitor cocktail (Roche, Mannheim, Germany). Western blot
analysis was carried out as described previously,(16) using the
following primary antibodies: anti-phospho-p70S6 kinase
(p70S6K), anti-p70S6K, anti-phospho-AKT, anti-AKT, anti-
phospho-ERK (Cell Signaling Technology, Danvers, MA,
USA), anti-ERK (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), and anti-b-actin (Sigma, St. Louis, MO, USA).

Results

Comprehensive collection of gene expression data related to

molecularly targeted, anticancer drug effects. In our previous
analysis, we obtained gene expression data from human colon
cancer HT-29 cells treated with 35 compounds mainly consist-

ing of classical antitumor agents.(10) For comprehensive tran-
scriptomic analysis, we further obtained gene expression data
from cancer cells treated with the most commonly used clini-
cal molecularly targeted anticancer drugs, such as inhibitors of
driver oncogenes (EGFR, HER2, BCR-ABL, ALK), RAF
⁄MEK ⁄ERK pathway inhibitors, PI3K ⁄AKT ⁄mTOR pathway
inhibitors, multikinase inhibitors, HDAC inhibitors, and protea-
some inhibitors (Table 1). Alongside the anticancer compounds
that are presently in clinical trials, we also included “promis-
ing” next-generation targeted inhibitors in our analysis, such as
inhibitors of several receptor tyrosine kinases (MET, IGF1R,
PDGFR), regulators of the cell cycle ⁄ check point (CDK4,
ATM ⁄ATR, CHK1, CHK2, Aurora kinase, and Polo-like
kinase), b-catenin ⁄TCF, COX2, and NAE.(17–20) We used HT-
29 cells because it is a commonly used, solid tumor cell line

Table 1 (continued)

Cell Compound Criteria Target ⁄Mode of action

HT-29 5-Aza-20-deoxycytidine DNA methyltransferase inhibitor DNA methyltransferase

Decitabine DNA methyltransferase inhibitor DNA methyltransferase

Bortezomib† Proteasome inhibitor Proteasome

Carfilzomib Proteasome inhibitor Proteasome

MG-132† Proteasome inhibitor Proteasome

MLN-4924 Nedd8 conjugation inhibitor Nedd8 activating enzyme

17-AAG† Hsp90 inhibitor Hsp90

Geldanamycin† Hsp90 inhibitor Hsp90

PKR inhibitor RNA-dependent protein kinase inhibitor RNA-dependent protein kinase (PKR)

Ruxolitinib JAK inhibitor JAK

TX-1918 Eukaryotic elongation factor-2 kinase inhibitor Eukaryotic elongation factor-2 kinase (eEF2K)

Vismodegib Hedgehog pathway inhibitor SMO

SN-38† DNA damaging agent Topoisomerase I

Doxorubicin† DNA damaging agent DNA intercalator ⁄ Topoisomerase II

Camptothecin† DNA damaging agent Topoisomerase I inhibitor

Topotecan† DNA damaging agent Topoisomerase I inhibitor

Mitoxantrone† DNA damaging agent DNA intercalator ⁄ Topoisomerase II

Etoposide† DNA damaging agent Topoisomerase II inhibitor

Amrubicin DNA damaging agent Topoisomerase II inhibitor

Cisplatin† DNA damaging agent DNA cross-linker

Melphalan† DNA damaging agent DNA cross-linker

Oxaliplatin† DNA damaging agent DNA cross-linker

Neocarzinostatin† DNA damaging agent DNA cleavage

Bleomycin† DNA damaging agent DNA cleavage

Nimustine† DNA damaging agent DNA alkylator

Mitomycin C† DNA damaging agent DNA alkylator

5-FU† DNA damaging agent Pyrimidine

Gemicitabine† DNA damaging agent Pyrimidine

Methotrexate† DNA damaging agent DHFR

6-Mercaptopurine† DNA damaging agent Purine

Actinomycin D† DNA damaging agent DNA replication ⁄ RNA synthesis

Pemetrexed† DNA damaging agent DNA ⁄ RNA synthesis

2-Deoxyglucose† ER stress inducer Glycolysis

Tunicamycin† ER stress inducer N-glycosylation

Thapsigargin† ER stress inducer SERCA

A23187† ER stress inducer Ca2+ ionophore

†Gene expression data of these compounds were reported previously.(10) 17-AAG, 17-N-allylamino-17-demethoxygeldanamycin; AKT, protein
kinase B; ALK: anaplastic lymphoma kinase; ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; BCR-ABL,
fusion gene of breakpoint cluster region protein (BCR) and Abelson murine leukemia viral oncogene homolog (ABL); CDK4, cyclin-dependent
kinase 4; CHK, checkpoint kinase; DHFR, dihydrofolate reductase; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; FGFR,
fibroblast growth factor receptor; 5-FU, 5-fluorouracil; GSK3, glycogen synthase kinase 3; HDAC, histone deacetylase; HER2, human EGFR-related
2; Hsp90, heat shock protein 90; IGF1R, insulin-like growth factor 1 receptor; KIT, mast ⁄ stem cell growth factor receptor; MET, hepatocyte
growth factor receptor; mTOR, mammalian target of rapamycin; PDGFR, platelet-derived growth factor receptor; PI3K, phosphoinositide 3-
kinase; PKR, protein kinase RNA-activated; SERCA, sarco ⁄ endoplasmic reticulum Ca2+-ATPase; SMO, smoothened; T-cell factor (TCF); VEGFR, vas-
cular endothelial growth factor receptor.
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and we have used it in our previous analyses.(10) We obtained
transcriptomic data for all the agents in HT-29 cells with the
exception of the BCR-ABL inhibitors that did not suppress
HT-29 cell proliferation. Moreover, in the cases of drugs
whose primary targets preferentially exist in specific types of

cancer cell lines, we also used additional cell lines such as
BCR-ABL-positive K562 cells(21) for the BCR-ABL inhibitors,
mutant EGFR-expressing PC-9 cells(13) for the EGFR inhibi-
tors, EML4-ALK fusion-positive H2228 cells for the ALK
inhibitors,(22) and HER2-overexpressing SKOV3 cells(23) for

Fig. 1. Hierarchical clustering analysis based on
129 gene expression datasets of cancer cells treated
with 83 anticancer drugs or related agents. For the
analysis, we selected and used 4869 probe sets as
gene signatures if the treatment-to-control ratio
was greater than 3 for upregulated genes or less
than one-third for downregulated genes and the
intensity of at least the treatment or control was
greater than 300 in at least one of the datasets.
The values in the heat map are the logarithm
values of the sample-to-control ratio of intensity
values. Orange bars indicate 16 h of treatment
samples. For agents with two treatment dosages,
the samples of higher dosage are shown with
asterisks. ER, endoplasmic reticulum; HDAC, histone
deacetylase.

Fig. 2. Principal component analysis based on
gene expression data of cancer cells treated with
subclasses of anticancer drugs. The subclasses
contained a total of 73 datasets for oncogenic
kinase inhibitors, HDAC inhibitors, proteasome
inhibitors, tubulin-binding agents, and DNA
damaging agents. In the principal component
analysis, we plotted the data in a 3-D space
consisting of three principal components.
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the HER2 inhibitor. To estimate the effect of cell type differ-
ence on the gene expression analysis, we treated the cell lines
with SN38 and doxorubicin, and obtained gene expression data
as reference data (the gene expression data will be released on
our website, http://scads.jfcr.or.jp/db/cs/).

Gene signatures reflect the target pathways of molecularly tar-

geted drugs. As summarized in Table S2, we extracted genes
whose expression was up- or downregulated by the analyzed
agents. To compare the gene expression data of the com-
pounds, we carried out a hierarchical clustering analysis with
the acquired 129 gene expression datasets for cancer cells trea-
ted with 83 agents (4869 probe sets whose expression was up-
or downregulated more than threefold in at least one of the
datasets). As shown in Figure 1, we observed that the com-
pounds targeting similar molecules or molecular pathways
were clustered together, such as DNA damaging agents,
HDAC inhibitors, proteasome inhibitors, and inhibitors of
mitosis-related molecules. These results indicate that the gene
expression signatures reflect the primary target pathways of the
drugs, as shown in our previous study.(10) Moreover, in this
study, we found that most of the inhibitors of oncogenic kinase
pathways formed a large cluster distinct from classical antitu-
mor agents or from other classes of agents. The data for the
oncogenic kinase inhibitors in K562, PC-9, and SKOV3 cells
were also clustered together with those of the oncogenic kinase
inhibitors in HT-29 cells, whereas the data for the DNA dam-
aging agents, SN-38 and doxorubicin, in multiple cancer cell
lines were clustered together. Principal component analysis
confirmed that the kinase inhibitors were clustered together
and that this cluster was distinct from those of other classes of
agents (Fig. 2). These data indicate that the kinase inhibitors
affect a shared molecular pathway in cancer cells distinct from
other classes of antitumor agents. We further extracted signa-
ture genes whose expression was commonly modified by onco-
genic kinase inhibitors (Table S3). Subsequent gene ontology
analysis with the DAVID bioinformatics database revealed that
several categories of genes, such as those involved in tran-
scriptional regulation or apoptosis, were enriched in the signa-
ture genes (Table 2).

Classification of oncogenic kinase inhibitors based on gene

expression signature. To examine whether the gene signature
analysis could further distinguish the kinase inhibitors
depending on their modes of action, we next focused on the
gene signatures in HT-29 cells. As shown in Figure 3,
within the kinome-targeted agents, drugs with similar target
pathways were clustered together, such as: (i) RAF ⁄MEK
⁄ERK pathway inhibitors; (ii) PI3K ⁄AKT ⁄mTOR pathway
inhibitors; (iii) EGFR ⁄HER2 inhibitors; (iv) multikinase
inhibitors targeting VEGFR and PDGFR (shown as “multi-
kinase inhibitors (1)” in Fig. 3); and (v) multikinase inhibi-
tors targeting VEGFR and RAF (shown as “multikinase
inhibitors (2)” in Fig. 3). Analyses of the gene expression
signatures of BEZ235, vemurafenib, and gefitinib with the
C-map algorithms further confirmed that the signatures of
these agents were significantly similar to those of other
drugs targeting the same or similar pathways in HT-29 cells
(Table 3A–C). These results indicated that the gene signature
analysis could classify the kinome-targeted agents in a target
pathway-dependent manner.
Moreover, we also evaluated the signature of gefitinib

obtained in the mutant EGFR-expressing PC-9 cells using the
C-map algorithms. The gefitinib signature of PC-9 cells
showed significant similarity to those of oncogenic kinase
inhibitors of HT-29 cells, including the gefitinib signature in

HT-29 cells, while the top hits were other EGFR inhibitors of
PC-9 cells (Table 3D). These data indicated that, for the
agents whose targets are selectively expressed in certain sub-
types of cancer, use of data obtained in specific cancer cell
lines could aid accurate evaluation of the drug target pathways
based on the signature analysis.
To observe biological differences in the signature genes

between subclasses of the kinase inhibitors, we further
extracted genes that showed significantly selective expression
in cells treated with RAF ⁄MEK ⁄ERK and PI3K ⁄AKT ⁄mTOR
pathway inhibitors (Table S4). Gene ontology analysis
revealed characteristic features of each gene set (Table 4).
Namely, the gene set specific for the RAF ⁄MEK ⁄ERK path-
way inhibitors not only contained genes related to cell prolifer-

Table 2. Gene ontology (GO) analysis of oncogenic kinase inhibitor

signature genes

GO term P-value FDR

GO:0009952 anterior ⁄ posterior
pattern formation

0.0004 0.0052

GO:0003002 regionalization 0.0013 0.0185

GO:0048806 genitalia development 0.0014 0.0204

GO:0045944 positive regulation

of transcription from RNA

polymerase II promoter

0.0019 0.0274

GO:0006355 regulation of

transcription, DNA-dependent

0.0023 0.0332

GO:0007242 intracellular

signaling cascade

0.0025 0.0353

GO:0042127 regulation of

cell proliferation

0.0025 0.0355

GO:0051252 regulation of

RNA metabolic process

0.0028 0.0397

GO:0042981 regulation of apoptosis 0.0028 0.0400

GO:0043067 regulation of

programmed cell death

0.0030 0.0422

GO:0010941 regulation of cell death 0.0030 0.0431

GO:0043065 positive regulation

of apoptosis

0.0036 0.0513

GO:0043068 positive regulation

of programmed cell death

0.0037 0.0528

GO:0010942 positive regulation

of cell death

0.0038 0.0538

GO:0007389 pattern specification process 0.0039 0.0549

GO:0010557 positive regulation of

macromolecule biosynthetic process

0.0045 0.0638

GO:0045893 positive regulation of

transcription, DNA-dependent

0.0056 0.0785

GO:0031328 positive regulation of

cellular biosynthetic process

0.0057 0.0793

GO:0051254 positive regulation of

RNA metabolic process

0.0058 0.0812

GO:0007548 sex differentiation 0.0058 0.0815

GO:0009891 positive regulation of

biosynthetic process

0.0061 0.0848

Signature probe sets whose expression changes after drug treatment
were significantly different between the oncogenic kinase inhibitors
and other agents were extracted based on the Student’s t-test (fold-
change values of more than 2 and the P-value of less than 0.05). We
carried out GO analyses using the DAVID analytical tool to extract
relevant GO terms associated with the gene signature. FDR, false dis-
covery rate.
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ation, protein kinase cascades, and cell death, but also genes
involved in phosphate metabolic processes. In contrast, the
gene set specific for the PI3K ⁄AKT ⁄mTOR pathway inhibitors
was characteristically related to erythrocyte homeostasis,
response to hypoxia, and angiogenesis, as well as cell prolifer-
ation and protein kinase cascades.

Gene signature analyses revealed potential new target path-

ways of some anticancer drugs. As described above, the anti-
cancer drugs were basically clustered in a target pathway-
dependent manner. However, we also found several agents that
were clustered in unexpected positions. As shown in Figure 1,
CDK4 inhibitor, AG1024 (IGF1R inhibitor), and FH535 (b-
catenin ⁄TCF inhibitor) unexpectedly showed similar gene
expression signatures with the ER stress inducers. Amrubicin
is an anthracycline drug that is supposed to target DNA topo-
isomerase II.(24) However, the agent was not clustered together
with other topoisomerase II inhibitors but instead with the pro-
teasome inhibitors (Fig. 1). These data suggest potential novel
modes of action for these agents. Among these drugs with
unexpected gene signatures, we focused on vismodegib, a
Hedgehog pathway inhibitor,(25) because our clustering analy-
sis suggested its possible similarity with the oncogenic kinase
inhibitors (Fig. 1). To validate whether vismodegib could
affect kinase signaling pathways, we examined its effect on
the phosphorylation of components in the MEK ⁄ERK and
AKT ⁄mTOR pathways. As shown in Figure 4, vismodegib

clearly suppressed the phosphorylation of p70S6K, a molecule
downstream of mTOR, in HT-29 cells as well as in PC3 cells
in which the AKT ⁄mTOR pathways are strongly activated. As
a positive control, we also observed inhibition of p70S6K
phosphorylation by temsirolimus, a clinically used mTOR
inhibitor. In contrast, ERK and AKT phosphorylation was not
significantly affected by vismodegib treatment, although we
observed a marginal inhibition of ERK phosphorylation in PC3
cells (Fig. 4). These data indicated that our gene signature
analysis successfully revealed a novel action of vismodegib on
the mTOR pathway.

Discussion

During anticancer drug development, the molecular target of
each candidate compound should be strictly determined with
reliable methods. In the present study, we showed that gene
signature-based analysis can classify oncogenic pathway inhib-
itors in a target pathway-dependent manner and is a powerful
tool to evaluate the molecular targets of compounds. We pre-
pared subsets of genes for the signature analysis and showed
that the signature reflected the modes of action of the agents
(Figs 1,3). These data indicated that the analysis worked well
to validate target pathways of the agents.
Overall, most inhibitors of oncogenic kinase pathways

formed a unique cluster in the hierarchical clustering

Fig. 3. Hierarchical clustering analysis of the gene
signatures of HT29 cells treated with 38 kinome-
targeted drugs. For the analysis, we selected 2458
probe sets as gene signatures if the treatment-to-
control ratio was greater than 3 for upregulated
genes or less than one-third for downregulated
genes and the intensity of at least the treatment or
control was greater than 300 in at least one of the
datasets. The values in the heat map are the
logarithm values of the sample-to-control ratio of
intensity values. Orange bar indicates 16 h of
treatment sample. For the agents with two
treatment dosages, the samples of higher dosage
are shown with asterisks. AKT, protein kinase B;
ALK, anaplastic lymphoma kinase; EGFR, epidermal
growth factor receptor; HER2, human EGFR-related
2; mTOR, mammalian target of rapamycin; PI3K,
phosphoinositide 3-kinase; RAF.
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Table 3. Compounds similar to (A) BEZ235, (B) vemurafenib, (C) gefitinib (10 lM in HT29 cells) and (D) gefitinib (0.6 lM in PC-9 cells) with

regards to gene expression changes after treatment

Rank Cell Compound Concentration Unit Score Up_score Down_score

(A)

1 HT-29 BEZ235 1.00E-06 M 1.00000 0.9979 �0.99954

2 HT-29 BKM120 3.00E-06 M 0.97648 0.97167 �0.97878

3 HT-29 AKT Inhibitor VIII 1.00E-05 M 0.89995 0.96704 �0.83055

4 HT-29 Temsirolimus 1.00E-05 M 0.87040 0.80446 �0.93412

5 HT-29 PP242 1.00E-05 M 0.85915 0.82501 �0.89109

6 HT-29 6-Mercaptopurine 1.00E-04 M 0.84061 0.70322 �0.97586

7 HT-29 Cabozantinib 3.00E-05 M 0.81859 0.77389 �0.86118

8 HT-29 Crizotinib 1.00E-05 M 0.80053 0.80713 �0.79189

9 HT-29 Lapatinib (10 lM) 1.00E-05 M 0.79923 0.64398 �0.95245

10 HT-29 ATM ⁄ATR kinase inhibitor 1.00E-05 M 0.79442 0.7299 �0.85690

11 HT-29 Methotrexate 1.00E-06 M 0.78992 0.70036 �0.87746

12 HT-29 Sorafenib 1.00E-05 M 0.77319 0.56009 �0.98431

13 HT-29 Everolimus 1.00E-05 M 0.75731 0.78196 �0.73073

14 HT-29 Vandetanib 1.00E-05 M 0.74860 0.72206 �0.77323

15 PC-9 Gefitinib (30 lM) 3.00E-05 M 0.74129 0.63593 �0.84476

(B)

1 HT-29 Vemurafenib 3.00E-05 M 1.00000 0.99762 �0.99770

2 HT-29 Cabozantinib 3.00E-05 M 0.95797 0.96799 �0.94347

3 HT-29 U-0126 3.00E-05 M 0.93570 0.89185 �0.97516

4 HT-29 Dabrafenib 1.00E-05 M 0.87493 0.80785 �0.93791

5 HT-29 Vandetanib 1.00E-05 M 0.86775 0.86776 �0.86367

6 HT-29 Sunitinib 1.00E-05 M 0.85795 0.82050 �0.89138

7 HT-29 Sorafenib 1.00E-05 M 0.84555 0.83440 �0.85274

8 HT-29 Regorafenib 3.00E-05 M 0.81791 0.74200 �0.89000

9 HT-29 PDGF inhibitor V 1.00E-05 M 0.77796 0.83640 �0.71588

10 HT-29 Gefitinib (30 lM) 3.00E-05 M 0.77393 0.75086 �0.79339

11 HT-29 Pazopanib 3.00E-05 M 0.74890 0.69189 �0.80240

12 HT-29 Gefitinib (10 lM) 1.00E-05 M 0.74553 0.75449 �0.73308

13 HT-29 PP242 1.00E-05 M 0.73347 0.65308 �0.81042

14 HT-29 AKT inhibitor VIII 1.00E-05 M 0.72928 0.76986 �0.68529

15 HT-29 Erlotinib 3.00E-05 M 0.72384 0.70626 �0.73802

(C)

1 HT-29 Gefitinib (10 lM) 1.00E-05 M 1.00000 0.99927 �0.99945

2 HT-29 Gefitinib (30 lM) 3.00E-05 M 0.96045 0.96838 �0.95129

3 HT-29 Erlotinib 3.00E-05 M 0.94112 0.99669 �0.88435

4 HT-29 Sunitinib 1.00E-05 M 0.93169 0.99170 �0.87050

5 HT-29 Sorafenib 1.00E-05 M 0.91256 0.94111 �0.88283

6 HT-29 Pazopanib 3.00E-05 M 0.90385 0.8882 �0.91834

7 HT-29 Lapatinib (10 lM) 1.00E-05 M 0.89179 0.95223 �0.83022

8 HT-29 PDGF inhibitor V 1.00E-05 M 0.80332 0.83498 �0.77063

9 HT-29 Dasatinib 1.00E-07 M 0.76608 0.58031 �0.95086

10 HT-29 Thapsigargin 1.00E-08 M 0.74753 0.95102 �0.54308

11 HT-29 Vandetanib 1.00E-05 M 0.74082 0.89791 �0.58278

12 HT-29 AG1024 3.00E-05 M 0.73856 0.93070 �0.54548

13 HT-29 Vemurafenib 3.00E-05 M 0.72601 0.89795 �0.55314

14 PC-9 Erlotinib (30 lM) 3.00E-05 M 0.70436 0.75877 �0.64905

15 HT-29 Tunicamycin 3.00E-06 g ⁄mL 0.68796 0.88138 �0.49367

(D)

1 PC-9 Gefitinib (0.6 lM) 6.00E-07 M 1.00000 0.99652 �0.99634

2 PC-9 Erlotinib (0.6 lM) 6.00E-07 M 0.98035 0.96886 �0.98486

3 PC-9 Erlotinib (30 lM) 3.00E-05 M 0.93176 0.93554 �0.92133

4 PC-9 Gefitinib (30 lM) 3.00E-05 M 0.92112 0.92387 �0.91180

5 PC-9 Afatinib 3.00E-08 M 0.86916 0.82167 �0.91045

6 PC-9 Trametinib 1.00E-06 M 0.60445 0.45342 �0.75116

7 HT-29 U-0126 3.00E-05 M 0.60392 0.58254 �0.62100

8 HT-29 Cabozantinib 3.00E-05 M 0.59445 0.56836 �0.61630

9 HT-29 Vemurafenib 3.00E-05 M 0.58051 0.53379 �0.62308

© 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
on behalf of Japanese Cancer Association.

Cancer Sci | July 2015 | vol. 106 | no. 7 | 916

Original Article
Anticancer drug-related gene signatures www.wileyonlinelibrary.com/journal/cas



analysis as well as in the principal component analysis.
These data suggested that this signature-based analysis could
predict the potential of compounds to affect oncogenic
signaling pathways. Our analysis further revealed that, of the
kinome-targeted drugs, agents with similar molecular targets
showed similar gene expression signatures. These data

indicate the gene signature analysis is effective in validat-
ing target molecules or pathways of kinome-targeted com-
pounds.
In addition to the kinase inhibitors, other compounds that

target similar molecular pathways were also clustered together.
For instance, NAE is a component of the NEDD8 conjugation

Table 3 (continued)

Rank Cell Compound Concentration Unit Score Up_score Down_score

10 HT-29 PP242 1.00E-05 M 0.54759 0.55305 �0.53822

11 HT-29 Vandetanib 1.00E-05 M 0.52336 0.54008 �0.50290

12 HT-29 Dabrafenib 1.00E-05 M 0.51811 0.40252 �0.63000

13 HT-29 Sunitinib 1.00E-05 M 0.51786 0.45561 �0.57641

14 HT-29 Gefitinib (30 lM) 3.00E-05 M 0.50888 0.5259 �0.48823

15 HT-29 PP242 1.00E-05 M 0.50778 0.5421 �0.46985

AKT, protein kinase B; ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related protein; PDGF, platelet-derived growth
factor. Compounds in our data that showed high similarity in their gene signatures to the given compounds were extracted using C-map algo-
rithms. Top 15 data among the acquired 129 datasets are shown.

Table 4. Gene ontology (GO) analysis of signature genes of (A) RAF ⁄MEK ⁄ ERK inhibitors and (B) phosphoinositide 3-kinase ⁄ protein kinase B

⁄mammalian target of rapamycin (PI3K ⁄AKT ⁄mTOR) inhibitors

GO term P-value FDR

(A)

GO:0042127 regulation of cell proliferation <0.0001 <0.0001

GO:0008285 negative regulation of cell proliferation <0.0001 0.0002

GO:0006469 negative regulation of protein kinase activity 0.0001 0.0011

GO:0033673 negative regulation of kinase activity 0.0001 0.0013

GO:0007243 protein kinase cascade 0.0001 0.0013

GO:0051348 negative regulation of transferase activity 0.0001 0.0017

GO:0043407 negative regulation of MAP kinase activity 0.0007 0.0115

GO:0008219 cell death 0.0007 0.0116

GO:0016265 death 0.0008 0.0122

GO:0006793 phosphorus metabolic process 0.0008 0.0131

GO:0006796 phosphate metabolic process 0.0008 0.0131

GO:0007242 intracellular signaling cascade 0.0010 0.0158

GO:0045321 leukocyte activation 0.0012 0.0191

GO:0044092 negative regulation of molecular function 0.0013 0.0198

GO:0010557 positive regulation of macromolecule biosynthetic process 0.0013 0.0206

GO:0045859 regulation of protein kinase activity 0.0015 0.0238

GO:0043549 regulation of kinase activity 0.0019 0.0289

GO:0031328 positive regulation of cellular biosynthetic process 0.0019 0.0290

GO:0009891 positive regulation of biosynthetic process 0.0021 0.0322

GO:0051338 regulation of transferase activity 0.0024 0.0363

GO:0040012 regulation of locomotion 0.0026 0.0397

GO:0019220 regulation of phosphate metabolic process 0.0026 0.0402

GO:0051174 regulation of phosphorus metabolic process 0.0026 0.0402

GO:0051270 regulation of cell motion 0.0026 0.0406

GO:0001775 cell activation 0.0029 0.0446

GO:0002521 leukocyte differentiation 0.0040 0.0609

GO:0000188 inactivation of MAPK activity 0.0043 0.0655

GO:0043405 regulation of MAP kinase activity 0.0052 0.0784

GO:0045449 regulation of transcription 0.0057 0.0849

GO:0006366 transcription from RNA polymerase II promoter 0.0060 0.0896

GO:0051252 regulation of RNA metabolic process 0.0061 0.0913

GO:0030097 hemopoiesis 0.0062 0.0927

GO:0042113 B cell activation 0.0063 0.0940

GO:0045941 positive regulation of transcription 0.0065 0.0968
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pathway that regulates protein turnover upstream of the protea-
some.(20) MLN4924, a specific inhibitor of NAE, was clustered
with proteasome inhibitors (Fig. 1). Aurora kinase and Polo-
like kinase are involved in the process of mitosis.(18) Inhibitors
of these molecules (Aurora kinase inhibitor III and BI2536)
were clustered with tubulin-binding agents, the classical
inhibitors of mitosis. These results clearly indicate that the
gene expression signatures reflect the primary target pathways
of the agents.
However, we observed some kinase inhibitors that were

clustered in an unexpected way in our signature analysis, such
as ALK inhibitors that were not clustered with the majority of
the oncogenic kinase inhibitors (Fig. 1). These data potentially
suggest that these agents could affect unique downstream path-
ways; however, we should also take into account off-target

effects, because in this study we used these agents at higher
doses than the clinically relevant concentrations.
Our gene expression analysis also assigned some antitumor

drugs to unexpected modes of action. One agent was vismode-
gib, an inhibitor of the Hedgehog pathway,(25) whose gene
expression pattern showed significant similarity with those of
the oncogenic kinase inhibitors. Our “wet” experiments con-
firmed that vismodegib actually inhibits the mTOR pathway.
These data indicate that the signature-based analysis was effec-
tive in identifying novel target pathways of the drugs.
Endoplasmic reticulum stress is involved in the mode of

action of some anticancer drugs.(26,27) In this study, celecoxib,
a selective inhibitor of COX2, showed a similar gene signature
to that of ER stress inducers (Fig. 1). This result is consistent
with previous reports showing that the cytotoxic effect of cel-
ecoxib correlates with ER stress.(7,28) Additionally, we also
found several agents that were clustered together with ER
stress inducers, such as a CDK4 inhibitor, AG1024 (IGF1R
inhibitor), and FH535 (b-catenin ⁄TCF inhibitor). These results
suggest that these agents could affect ER stress pathways.
In the signature-based analysis, careful interpretation of

results was required. First, we needed to administer relatively
high doses of agents that were less cytotoxic to cancer cells.
As for the EGFR inhibitors, gefitinib and erlotinib, we tested
how the drug concentration would affect the result of the sig-
nature analysis and found that high-dose treatment (30 lM)
still showed significant similarity in gene signature to that of
low-dose treatment (0.6 lM) (Table 3D). Nevertheless, for
such high-dose treatment data, we should be careful to confirm
whether the signature reflects the physiological mode of action
of the agents. Second, as we mentioned above, gene signatures
of the agents could depend on cell context in some cases. As
we have shown, the signatures of oncogenic kinase inhibitors
in different cancer cell lines showed significant similarity
(Fig. 1). However, the target pathway-based classification was
more accurately achieved using the data of a single cancer cell
line (Fig. 3). These data would be valuable to examine the cell
context effect on the signature analysis. We further showed
that, for the agents whose targets are selectively expressed in a
certain subtype of cancer, use of data obtained in specific can-
cer cells could help accurate evaluation of drug target path-

Table 4 (continued)

GO term P-value FDR

(B)

GO:0042127 regulation of cell proliferation 0.0001 0.0015

GO:0034101 erythrocyte homeostasis 0.0001 0.0015

GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 0.0008 0.0122

GO:0048872 homeostasis of number of cells 0.0014 0.0227

GO:0007243 protein kinase cascade 0.0021 0.0333

GO:0048514 blood vessel morphogenesis 0.0036 0.0569

GO:0008284 positive regulation of cell proliferation 0.0039 0.0614

GO:0001666 response to hypoxia 0.0041 0.0643

GO:0070482 response to oxygen levels 0.0049 0.0766

GO:0001525 angiogenesis 0.0059 0.0902

GO:0007167 enzyme-linked receptor protein signaling pathway 0.0063 0.0973

Signature probe sets whose expression changes after drug treatment were significantly different between the RAF/MEK/ERK inhibitors (or PI3K/
AKT/mTOR inhibitors) and other agents in HT29 cells were extracted using the Student’s t-test (fold-change values of more than 2 and the P-
value of less than 0.05). We carried out GO analyses using the DAVID analytical tool. FDR, false discovery rate. Characteristic GOs for each signa-
ture were indicated as bold letters (phosphate metabolic process-related GOs for the RAF⁄MEK⁄ERK inhibitors and the GOs related to erythrocyte
homeostasis,response to hypoxia, and angiogenesis for the PI3K ⁄AKT⁄mTOR inhibitors).

Fig. 4. Effect of vismodegib on the ERK and protein kinase B (AKT)
⁄mammalian target of rapamycin (mTOR) signaling pathways. HT-29
and PC3 cells were treated with vismodegib or temsirolimus at the
indicated concentrations for 2 h. The phosphorylation and expression
of ERK, AKT, and p70S6 kinase were analyzed by Western blotting.
Actin expression was also examined as a loading control.
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ways (Table 3D). In this aspect, our data would be valuable
because we obtained the gene signature data using multiple
specific cancer cell lines. Finally, the signature analysis could
reveal target “pathways” of each agent, but the analysis would
not be enough to completely define target “molecules” of the
agent (for example, inhibitors of mitotic pathways showed sim-
ilar gene signatures despite the direct target of each agent
being different). Considering these points, integrated
approaches with signature analysis and other methods would
be important for accurate evaluation of the molecular targets
of antitumor compounds.
There are several other publicly available databases related

to compounds’ transcriptomic data. Connectivity map (C-map)
(https://www.broadinstitute.org/cmap/) is a pioneering database
that contains genome-wide transcriptome data for more than
1000 compounds.(9) In addition, several other databases con-
taining drug-related gene expression data have recently been
established, such as the Library of Integrated Cellular Signa-
tures (http://www.lincsproject.org/) and the Cancer Cell Line
Encyclopedia (https://www.broadinstitute.org/ccle/home). These
are huge databases, but they do not focus on anticancer drugs,
nor do they cover all antitumor agents. Our database is unique
in that it is a compact database focusing on anticancer drugs
and it covers genome-wide gene expression data of most clini-
cally available anticancer compounds as well as promising
inhibitors of molecular cancer targets. Moreover, we are updat-
ing the database by adding newly approved agents’ data. Our
website (http://scads.jfcr.or.jp/db/cs/) also provides an online
analysis tool for users to easily compare the gene signature of
query compounds to those in our database. These aspects make
our database more updated and user-friendly, particularly for
oncologists, than other public databases providing gene expres-
sion data. It should also be noted that our data were obtained
using HT-29 cells as well as the specific driver oncogene-
expressing cell lines, whereas the C-map and the other data-
bases used different types of cells. Therefore, we believe that
the combination of our database and others would provide
more robust information to estimate modes of action of anti-
cancer compounds.
In conclusion, we obtained and analyzed gene expression

data for a wide variety of molecularly targeted agents. This is
a unique, comprehensive analysis of gene expression related to
the pathways of molecularly targeted anticancer drugs. Our
data will not only be beneficial in classifying antitumor agents

but could also be valuable as a reference database to evaluate
the modes of action of new candidate compounds in drug
development.
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Abbreviations

AKT protein kinase B
ALK anaplastic lymphoma kinase
ATM ataxia telangiectasia mutated
ATR ataxia telangiectasia and Rad3-related protein
BCR-ABL fusion gene of breakpoint cluster region protein (BCR)

and Abelson murine leukemia viral oncogene homolog
(ABL)

CDK4 cyclin-dependent kinase 4
CHK checkpoint kinase
C-map connectivity map
DAVID Database for Annotation, Visualization and Integrated

Discovery
EGFR epidermal growth factor receptor
EMK4-ALK fusion gene of echinoderm microtubule-associated

protein-like 4 (EMK4) and ALK
ER endoplasmic reticulum
GI50 concentration that causes 50% growth inhibition
HDAC histone deacetylase
HER2 human EGFR-related 2
IGF1R insulin-like growth factor 1 receptor
MET hepatocyte growth factor (HGF) receptor
NAE NEDD8-activating enzyme
NEDD8 neural precursor cell expressed, developmentally down-

regulated 8
mTOR mammalian target of rapamycin
PDGFR platelet-derived growth factor (PDGF) receptor
PI3K phosphoinositide 3-kinase
TCF T-cell factor
VEGFR vascular endothelial growth factor receptor
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