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Chromosome instability (CIN) is a hallmark of cancer (Heng, 2015; Rangel et al., 2017; Machiela, 2019; 
Simonetti et al., 2019). Additionally, a number of neurodegenerative diseases (NDD) demonstrate 
CIN, which mediates neuronal cell loss and appears to be a key element of the pathogenic cascade 
(Iourov et al., 2009a; Iourov et al., 2009b; Arendt et al., 2010; Jeppesen et al., 2011; Driver, 2012; 
Bajic et al., 2015; Leija-Salazar et al., 2018; Nudelman et al., 2019). Moreover, CIN is repeatedly 
associated with aging and aging-related deterioration of the brain (Yurov et al., 2010; Kennedy 
et al., 2012; Andriani et al., 2017; Vijg et al., 2017; Zhang and Vijg, 2018). Despite numerous studies 
dedicated to CIN in NDD, there is still no clear understanding of differences between “cancerous” 
and “neurodegenerative” CINs. Here, we propose a theoretical model, which seems to highlight the 
differences between these CIN types.

Oncogenic parallels have long been observed in NDD. More specifically, CIN manifesting as 
aneuploidy (gains or losses of whole chromosomes) has been systematically identified in the brain 
of individuals with NDD. The Alzheimer’s disease brain has been found to demonstrate high rates 
of spontaneous aneuploidy (Iourov et al., 2009b; Iourov et al., 2011; Yurov et al., 2014; Bajic et al., 
2015; Arendt et al., 2017; Yurov et al., 2018). Furthermore, Alzheimer’s disease genes are involved 
in molecular pathways, alterations to which result in chromosome mis-segregation and aneuploidy 
(Granic et al., 2010). Similarly, CIN syndromes and/or mutations in genes involved in cell cycle/
mitotic checkpoint pathways exhibit brain-specific CIN associated with neurodegeneration. Thus, 
CIN has been demonstrated to underlie neurodegenerative processes (Iourov et al., 2009a; Caneus 
et al., 2018; Leija-Salazar et al., 2018). Additionally, submicroscopic CIN producing structural 
rearrangements of the APP gene (21q21.3) has been shown to be involved in neurodegenerative 
pathways to Alzheimer’s disease (Bushman et al., 2015; Lee et al., 2018). It is important to note that 
numerical CIN (aneuploidy) is shown to be implicated in the neurodegeneration pathway inasmuch 
as the neurons affected by CIN/aneuploidy are susceptible to selective cell death (Arendt et al., 
2010; Fricker et al., 2018; Iourov et al., 2019). Finally, DNA repair deficiency (Jeppesen et al., 2011) 
and DNA replication stress (Yurov et al., 2011) have been identified as possible mechanisms for 
neurodegeneration.

Another body of evidence for the contribution of CIN to neurodegeneration is provided by brain 
aging studies. Actually, CIN and related phenomena (aneuploidization, somatic mutagenesis, etc.) 
are considered to be elements of a global pathogenic cascade resulting in aging phenotypes (Kennedy 
et al., 2012; Vijg, 2014; Andriani et al., 2017). Progressive accumulation of somatic chromosomal 
mutations (aneuploidy) causing numerical CIN is suggested to be implicated in cellular senescence 
and tissue aging (Yurov et al., 2010; Zhang and Vijg, 2018; Iourov et al., 2019). For instance, rates 
of X chromosome aneuploidy increase with age in the Alzheimer’s disease brain (Yurov et al., 
2014). It is to note that X chromosome aneuploidy (loss/monosomy) is a cytogenetic biomarker 
of human aging (Vijg, 2014; Zhang and Vijg, 2018; Iourov et al., 2019). Genome instability at the 
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chromosomal level (numerical and structural CINs) has been 
determined as a conserved mechanism for aging, as a whole, 
and, more particularly, for aging of the brain, a post-mitotic 
tissue with an extremely limited potential of cell renewal (Yurov 
et al., 2010; Andriani et al., 2017; Vijg et al., 2017). It appears 
that aging-related CIN leads to aging-related deterioration of the 
brain producing phenotypes similar to NDD (Andriani et al., 
2017; Zhang and Vijg, 2018). Functionally, CIN is supposed to 
be an underlying cause of cellular (neuronal) senescence (Yurov 
et al., 2010; Arendt et al., 2017; Zhang and Vijg, 2018; Iourov et al., 
2019). The latter has been recently demonstrated to represent a 
mechanism for both brain aging and NDD (Baker and Petersen, 
2018). Therefore, one may conclude that the pathogenic pathways 
are likely to be shared by brain aging, neurodegeneration, 
and cancer.

NDD (e.g., Alzheimer’s disease) have been consistently shown 
to share biological hallmarks with cancer, which are, but not 
limited to, alterations to genome stability maintenance pathways 
(mitotic checkpoint, cell-cycle regulation, DNA replication/
repair, programmed cell death, etc.) and CIN/genome instability 
(for review, see Driver, 2012, Arendt et al., 2017, Nudelman et al., 
2019). More precisely, numerical CIN (aneuploidy) leading to 
chromosomal mosaicism is a mechanism for a variety of brain 
diseases including NDD. Somatic mosaicism and increased 
rates of aneuploidy and structural CIN have been identified in 
the neurodegenerating brain (Alzheimer’s disease and ataxia 
telangiectasia), schizophrenia brain, and individuals with 
intellectual disability and autism spectrum disorders. Mutations 
of specific genes implicated in genome stability maintenance 
pathways have been associated with NDD (Iourov et al., 2009a; 
Iourov et al., 2009b; Arendt et al., 2010; Iourov et al., 2011; 
Jeppesen et al., 2011; Yurov et al., 2014; Bajic et al., 2015; Caneus 
et al., 2018; Rohrback et al., 2018; Yurov et al., 2018; Iourov 
et al., 2019). Aneuploidy is a common feature of cancer cell 
populations and is likely to influence cancer behavior (for review, 
see Simonetti et al., 2019). Moreover, chromosomal mosaicism is 
a susceptibility factor for cancer (Schick et al., 2013; Vijg, 2014; 
Machiela, 2019). Genetic alterations to the genome stability 
maintenance pathways produced by copy number and sequence 
variations of the implicated genes are observed both in cancer 
and in the neurodegenerating brain (Granic et al., 2010; Bushman 
et al., 2015; Heng, 2015; Caneus et al., 2018; Lee et al., 2018). As 
noted before, a possible mechanism of neurodegeneration is DNA 
repair deficiency (Jeppesen et al., 2011). The later commonly 
leads to CIN and karyotypic chaos in a wide spectrum of cancers 
(Driver, 2012; Heng, 2015; Rangel et al., 2017). DNA replication 
stress seems to lie at the origins of CIN in the neurodegenerating 
brain of individuals with Alzheimer’s disease (Yurov et al., 2011). 
Likewise, this phenomenon negatively impacts chromosome 
segregation producing CIN during tumorigenesis (Zhang et al., 
2019). Finally, cellular senescence is able to contribute both to 
neurodegeneration (brain aging deterioration) and to cancer 
(Yurov et al., 2010; Vijg, 2014; Baker and Petersen, 2018; Machiela, 
2019). It appears that either neurodegeneration or cancer is more 
likely to result from complex genetic-environmental interactions, 
in which CIN plays a key role in the pathogenic cascade (Iourov 
et al., 2013; Heng, 2015). However, taking into account diverse 

consequences of “neurodegenerative” and “cancerous” CINs, 
there should be a number of differences between these types 
of chromosome/genome instability. For instance, the lack of 
convincing evidence for comorbidities such as NDD and brain 
cancers suggests that brain cells affected by CIN may have at least 
two alternative fates: (i) to become malignant (i.e., cancerization) 
and (ii) to be cleared by cell death (i.e., neurodegeneration). 
Therefore, there should be a striking difference in molecular 
pathways to cancer and NDD.

Since somatic mosaicism and CIN in the brain are more likely to 
have developmental origins (Yurov et al., 2007; Rohrback et al., 2018; 
Yurov et al., 2018; Iourov et al., 2019), alterations to programmed 
cell death may be an explanation of the presence of cells with 
abnormal chromosome complements (genomes) in the diseased 
brain (Arendt et al., 2010; Yurov et al., 2010; Fricker et al., 2018; 
Iourov et al., 2019). More precisely, abnormal neural cells generated 
during the development are not cleared throughout gestation and 
antenatal period. As a result, CIN-affected (abnormal) cellular 
populations alter brain functioning after birth (for more details, see 
Yurov et al., 2007; Yurov et al., 2010; Rohrback et al., 2018; Iourov 
et al., 2019). Thus, programmed cell death acts differently in the 
neurodegenerating brain and in cancer. The former demonstrates 
excessive neuronal cell loss probably mediated by CIN, whereas the 
latter is characterized by astonishing tolerance of cell populations 
to programed cell death (Heng, 2015; Fricker et al., 2018; Iourov 
et al., 2019). Therefore, cancer cells are likely to be affected by 
abnormal cell-death checkpoint in contrast to neuronal cells 
affected by “neurodegenerative CIN,” in which the checkpoint 
probably acts to an abnormal environmental trigger. Interestingly, 
CIN/aneuploidy is usually chromosome-specific in the diseased 
brain. In the Alzheimer’s disease brain, CIN commonly involves 
chromosome 21, whereas the selectively degenerating cerebellum of 
ataxia-telangiectasia individuals exhibits CIN commonly involving 
chromosome 14 (Iourov et al., 2009a; Iourov et al., 2009b; Arendt 
et al., 2010; Granic et al., 2010). This is generally not the case for 
the overwhelming majority of cancer cells expressing genetic defect 
specific for a cancer/ tumor type, karyotypic chaos, or numerical 
and structural CINs (Heng, 2015).  The natural selection pressure 
against cells affected by non-specific CIN types and observations 
on patterns of CIN in the neurodegenerating brain suggest that 
neuronal cell populations affected by neurodegeneration possess 
primary genetic defects without progressive clonal evolution 
(Iourov et al., 2009a; Arendt et al., 2010; Yurov et al., 2011; Iourov 
et al., 2013; Arendt et al., 2017; Leija-Salazar et al., 2018). The latter, 
however, is shown to be an underlying cause of cancer (Driver, 2012; 
Heng, 2015; Rangel et al., 2017; Simonetti et al., 2019). Taking into 
consideration the aforementioned differences between cancer and 
NDD, we have proposed a theoretical model for CIN to mediate 
either cancer or neurodegeneration. Thus, “cancerous CIN” is likely 
to result from genetic-environment interactions and genetic defects, 
which render cells with unstable genomes tolerant to clearance (i.e., 
programmed cell death) and advantageous for proliferation over 
other cells. The malignancy is then achieved by clonal evolution. 
Alternatively, CIN and aneuploidy may possess a detrimental effect 
on cell growth under the normal growth conditions. In this case, 
cancerization is achieved through an adaptation of a subclone 
of cells to aneuploidy and CIN, which further evolves to a cell 
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population with a fitness advantage (Vijg, 2014; Heng, 2015; Zhang 
et al., 2019). As a result, cells tolerating CIN without the loss form a 
stable cell population causing cancer invasion and metastasis (Loeb, 
2010).

In contrast to cancer, neurodegeneration is likely to start 
because of the interaction between environmental trigger and 
CIN/genetic defects persisting in an appreciable proportion of 
brain cells. The interactions may launch a kind of “neuroprotective 
program” for clearance of CIN-affected cells. It appears that such 
“neuroprotective program” exists in the developing mammalian 
brain, which loses the majority of cells affected by CIN throughout 
gestation. It has been hypothesized that CIN/aneuploidy serves as 
an initiator of cell death (i.e., mitotic catastrophe) under natural 
selection in the developing brain (Yurov et al., 2007; Yurov et al., 
2010; Rohrback et al., 2018; Iourov et al., 2019). Since CIN 
affects the critical number of neuronal cells (Iourov et al., 2009a), 
progressive loss of these cells would produce brain dysfunction 
leading to NDD phenotypes. Figure 1 schematically shows our 
model for CIN contribution to cancer and neurodegeneration 
according to observations on CIN in the neurodegenerating brain 
in cancers (Iourov et al., 2009a; Iourov et al., 2009b; Arendt et al., 
2010; Granic et al., 2010; Iourov et al., 2011; Jeppesen et al., 2011; 
Yurov et al., 2011; Driver, 2012; Kennedy et al., 2012; Vijg, 2014; 
Yurov et al., 2014; Bajic et al., 2015; Heng, 2015; Arendt et al., 
2017; Rangel et al., 2017; Caneus et al., 2018; Leija-Salazar et al., 
2018; Yurov et al., 2018; Machiela, 2019; Simonetti et al., 2019).

Understating the role of CIN in the neurodegeneration 
pathway is important for successful therapeutic interventions 

in NDD. Certainly, there is a need for further studies dedicated 
to analysis of the applicability of the “neurodegenerative CIN” 
model to describe molecular and cellular mechanisms for 
neurodegeneration. If the model is applicable, new opportunities 
for NDD prevention and treatments through the external control 
of CIN will be available.
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FIGURE 1 | Theoretical model for CIN mediating (A) cancer and (B) neurodegeneration. (A) Genetic defects and genetic-environmental interactions may cause 
chromosomal/genomic changes, which produce CIN; alternatively, cell populations may adapt to aneuploidy and CIN evolving to a cell population with a fitness 
advantage. Cells affected by CIN and tolerating deteriorating effects of CIN on cellular homeostasis are able to evolve clonally to produce malignancy. (B) CIN/
somatic mosaicism affecting a significant proportion of cells interacting with environmental triggers may result into progressive neuronal cell loss (neurodegeneration) 
under natural selection pressure and through the programmed cell death (N, normal neurons; CIN, neuronal cell affected by CIN). The model is based on the 
observations of CIN in the neurodegenerating brain and cancers (Iourov et al., 2009a; Iourov et al., 2009b; Arendt et al., 2010; Granic et al., 2010; Iourov et al., 
2011; Jeppesen et al., 2011; Yurov et al., 2011; Driver, 2012; Kennedy et al., 2012; Vijg, 2014; Yurov et al., 2014; Bajic et al., 2015; Heng, 2015; Arendt et al., 
2017; Rangel et al., 2017; Caneus et al., 2018; Leija-Salazar et al., 2018; Yurov et al., 2018; Machiela, 2019; Simonetti et al., 2019).
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