
1. Introduction
Dust storm incidence has increased over the last several decades within the United States (U.S.), especially in the 
southwestern region due to baseline climate aridity and increasing prevalence of drought (Pu & Ginoux, 2017; 
Tong et al., 2017; Wehner et al., 2017). While the International Panel on Climate Change predicts that anthropo-
genic climate change will continue to exacerbate these underlying conditions, few population-level epidemiologic 
studies have been conducted in the U.S. on dust storms (Herrera-Molina et al., 2021; Mirzabaev et al., 2019). A 

Abstract Dust storms are increasing in frequency and correlate with adverse health outcomes but remain 
understudied in the United States (U.S.), partially due to the limited spatio-temporal coverage, resolution, 
and accuracy of current data sets. In this work, dust-related metrics from four public areal data products 
were compared to a monitor-based “gold standard” dust data set. The data products included the National 
Weather Service (NWS) storm event database, the Modern-Era Retrospective analysis for Research and 
Applications—Version 2, the EPA's Air QUAlity TimE Series (EQUATES) Project using the Community 
Multiscale Air Quality Modeling System (CMAQ), and the Copernicus Atmosphere Monitoring Service global 
reanalysis product. California, Nevada, Utah, and Arizona, which account for most dust storms reported in 
the U.S., were examined. Dichotomous and continuous metrics based on reported dust storms, particulate 
matter concentrations (PM10 and PM2.5), and aerosol-type variables were extracted or derived from the data 
products. Associations between these metrics and a validated dust storm detection method utilizing Interagency 
Monitoring of Protected Visual Environments monitors were estimated via quasi-binomial regression. In 
general, metrics from CAMS yielded the strongest associations with the “gold standard,” followed by the 
NWS storm database metric. Dust aerosol (0.9–20 μm) mixing ratio, vertically integrated mass of dust aerosol 
(9–20 μm), and dust aerosol optical depth at 550 nm from CAMS generated the highest standardized odds ratios 
among all metrics. Future work will apply machine-learning methods to the best-performing metrics to create a 
public dust storm database suitable for long-term epidemiologic studies.

Plain Language Summary Health studies of dust storms are limited by the kinds of dust data 
that are available over large areas and long periods of time. Our study compares four publicly available 
data products to determine which is most suitable for large-scale population studies of dust storms in the 
southwestern U.S. Using dust-related variables from these products, the study evaluated relationships with 
a previously validated “gold standard” data set that identifies dust storms only on certain days and at certain 
locations. The study found that the dust-related variables from the Copernicus Atmosphere Monitoring Service 
(CAMS) product had the strongest associations with the “gold standard,” followed by the National Weather 
Service storm events database, a long-term model run from one of the Environmental Protection Agency's 
air quality models (CMAQ—EQUATES), and one of the National Aeronautics and Space Administration's 
data sets (MERRA-2). Specifically, variables from CAMS that were based on daily maximum values of 
dust particles in the air performed the best. Future work will apply complex computer-based methods to the 
best-performing exposure metrics to create a public dust storm database suitable for use in long-term population 
health studies.
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key limitation for dust storm research is the dearth of data sources available at the scale and coverage necessary 
for long-term population health assessments (Crooks et al., 2016; Rublee et al., 2020; Tobías & Stafoggia, 2020).

While there is notable inconsistency in the terminology around airborne dust, dust events, and/or dust storms, 
this paper will use the term “dust event” throughout except in reference to events recorded as “dust storms” in the 
National Weather Service (NWS) Storm Events Database or when discussing dust storms in general.

The U.S. Environmental Protection Agency (EPA) recognizes windblown dust as an important factor affecting 
air quality and other atmospheric events (U.S. Environmental Protection Agency, 2022). Dust from dust storms 
consists of heterogeneous mixtures of particulate matter (PM) less than or equal to 2.5 μm in diameter (PM2.5) 
the coarse fraction of particulate matter (PM10-2.5), and larger particles, of heterogeneous composition (Rublee 
et al., 2020). PM2.5 in particular is known to have relatively high penetrance into the deeper organ and tissue 
systems causing adverse health outcomes (U.S. Environmental Protection Agency (EPA), 2019), and recent work 
has focused on the dust contribution to this size fraction (Ardon-Dryer & Kelley, 2022; Dagsson-Waldhauserova 
et al., 2016). In addition to their local impact, dust events can lift large amounts of dust high into the atmosphere 
that can then travel over inter-continental distances (Zhang et al., 2016).

Epidemiologic studies performed in the United States, southern Europe, east Asia, the Middle East, and Australia 
have found adverse short-term health outcomes pertaining to dust event exposure, including cardiovascular and 
respiratory outcomes and bacterial- and fungal-related infectious disease, as well as accidental and non-accidental 
premature mortality (Achakulwisut et  al.,  2018; Al-Taiar & Thalib,  2014; Crooks et  al.,  2016; Schweitzer 
et al., 2018; Tobias et al., 2019; Tong et al., 2017). Several previous epidemiologic studies of dust storms in the 
U.S. have relied on data from the U.S. NWS Storm Event database (Crooks et al., 2016; Rublee et al., 2020), 
which collects event information based on visual reporting from trained spotters, law enforcement, and members 
of the public. The Storm Event database has advantages for use in health studies, including ostensibly complete 
spatial and temporal coverage going back to the 1990s. However, it has limitations with respect to accuracy, spatial 
resolution (limited to the Weather Forecast Zone (WFZ), roughly county-sized areal units), and consistency with 
regard to reporting, which have prompted questions about its utility (Ardon-Dryer et al., 2023; Tong et al., 2022).

To be most useful in population health studies, a dust event data set needs to encompass a complete, long-term 
time-series (a decade or longer) at daily resolution or better, have complete spatial coverage across the dustiest 
regions of the U.S., have relatively high spatial resolution, and should accurately reflect the dust content of the air 
near ground level. Several other data products produce dust-related variables that represent potential candidates for 
use in dust event epidemiology research in the U.S. These products include the Modern-Era Retrospective analysis 
for Research and Applications, Version 2 (MERRA-2) product (Gelaro et al., 2017), the Community Multiscale 
Air Quality (CMAQ)—EPA's Air QUAlity TimE Series Project (EQUATES) product (Appel et al., 2021), and the 
Copernicus Atmosphere Monitoring Service (CAMS) Global Reanalysis (EAC4) product (Inness et al., 2019). 
These publicly available products have been used in a variety of atmospheric science applications, and they 
offer better spatial resolution and consistency than NWS, though to our knowledge they have not been used in 
dust-related epidemiology research in the U.S. Each of these data products contains dust-relevant output variables 
and provides complete coverage over most of North America for over a decade at daily temporal resolution.

The aim of this study was to compare daily dust-related metrics derived from the NWS Storm Event database, 
the MERRA-2 product, the CMAQ –EQUATES product, and the CAMS EAC4 product to a “gold-standard” 
dust event data set developed using the Interagency Monitoring of Protected Visual Environments (IMPROVE) 
monitors located in U.S. National Parks and Wilderness Areas (Tong et al., 2017). While the present study does 
not highlight a specific adverse health outcome, a metric or set of metrics that strongly associate with the “gold 
standard” could be used to produce spatially- and temporally complete dust event predictions across a broad 
geographical region and long time span, aligned with the needs of future long-term population epidemiologic 
studies.

2. Methods
2.1. Data

Dust -related air pollution exposure metrics were collected across four southwestern states in the U.S. with 
high dust activity (Arizona, California, Nevada, and Utah) from four publicly available areal data sets (NWS, 
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MERRA-2, CMAQ, CAMS). These were compared against a validated empirical dust event data set based on 
the IMPROVE network. Only data covering IMPROVE sites on days when the IMPROVE monitors reported 
concentrations (generally every third day between 3rd January 2003 and 29th June 2016) were included in the 
comparison. In order to create a common set of unique exposure days across all data products for comparison, 
20 days were excluded within the date range across all data products when no data existed for any one of the data 
products out of a total 4,927 days. Data used in these analyses are available on the Open Science Framework: 
https://doi.org/10.17605/OSF.IO/TF94G.

2.1.1. Interagency Monitoring of PROtected Visual Environments (IMPROVE)

The IMPROVE monitors are operated jointly across several U.S. federal agencies to assess visibility and PM 
pollution in U.S. National Parks and Wilderness Areas, measuring 24-hr PM2.5 total mass, PM2.5 speciated mass, 
and PM10 mass. Previous work from Tong et al. (2017) identified dust events using an algorithm that combined 
IMPROVE PM size fraction concentrations, IMPROVE PM2.5 species concentrations, and ratios among them, 
which was trained on known dust events identified from satellite imagery (Tong et al., 2017). In particular, five 
factors aided in dust event identification: high concentrations of PM10 and PM2.5, low ratios of PM2.5 to PM10, 
high concentrations of certain elements found in the earth's crust (Si, Ca, K, Fe, and Ti), low concentrations 
of elements from anthropogenic components (As, Zn, Cu, Pb, sulfate, nitrate, organic carbon, and elemental 
carbon), and low concentrations of pollution elements from anthropogenic sources (Cu, Zn, Pb, and K).

While the IMPROVE network is limited in spatial coverage and temporal completeness, the fact that dust events 
have previously been identified and validated (Tong et  al.,  2017) with IMPROVE data allows us to use the 
IMPROVE-based dust product as the “gold standard” dust product against which the four areal data products 
below were compared. Specifically, the IMPROVE-derived data set will include dust storms previously detected 
during the study period.

2.1.2. United States National Weather Service (NWS) Storm Events Database

NWS data includes storm events collected and reported since the 1950s and has included “Dust Storm” as a 
specific event category since 1993 (U.S. National Weather Service (NWS), 2022). The location information is 
limited to the WFZ in which the storm was observed. WFZs are roughly county-sized geographies, though their 
boundaries do not, in general, correspond to county boundaries, especially in the western U.S. The database 
includes the start and end dates for each dust storm, though we used only the start date since the overwhelming 
majority of identified dust storms lasted less than 1 day (Crooks et al., 2016). While the spatial and temporal 
domains of the database cover our study region for the duration of the study period, inconsistencies may exist 
in the accuracy and reliability of results due to the nature of storm event reporting between or within WFZs. 
Although the NWS dust storm reports are not routinely confirmed or quality-assured, they have a history of usage 
in epidemiologic literature owing to their accessibility and the lack of higher-quality alternatives appropriate for 
long-term population studies (Comrie, 2021; Crooks et al., 2016; Jones, 2020; Rublee et al., 2020).

2.1.3. Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

MERRA-2 is an atmospheric reanalysis data product developed by the U.S. National Aeronautics and Space 
Administration with global coverage since 1980. Dust aerosol-related variables are produced via the Goddard 
Chemistry, Aerosol, Radiation, and Transport (GOCART) model integrated into the Goddard Earth Observing 
System Model, Version 5 modeling system, which incorporates meteorological and bias-corrected aerosol optical 
depth (AOD) data from satellites and ground monitors. GOCART produces estimates for surface mass concen-
trations of dust, including total dust and dust PM2.5, as well as other aerosol components (sea salt, black carbon, 
organic carbon, and sulfate). MERRA-2 has a spatial resolution of 0.5° × 0.625°. We examined the following 
variables pertaining to airborne dust: column mass density, extinction aerosol optical thickness (AOT), surface 
mass concentration, and surface wind speed. To be consistent with other data products in this work and with most 
of the air pollution epidemiology literature, we averaged the 3-hr MERRA-2 output over 24-hr periods.

2.1.4. Community Multiscale Air Quality (CMAQ)—EPA's Air QUAlity TimE Series Project 
(EQUATES)

CMAQ is an atmospheric chemical transport model developed for regulatory purposes. CMAQ produces esti-
mates of atmospheric concentrations for pollutants such as PM10, PM2.5 and their species, as well as gaseous 
pollutants like ozone (Inness et al., 2019). For EQUATES, EPA modelers ran CMAQ with consistent settings 

https://doi.org/10.17605/OSF.IO/TF94G
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over the years 2002 through 2017, covering the conterminous U.S. at 12 km horizontal grid spacing. EQUATES 
utilized the Weather Research and Forecasting model version 4.1.1 for simulating weather conditions and CMAQ 
model version 5.3.2 for air quality modeling. EQUATES does not assimilate empirical concentration data from 
ground monitors or remote sensing instruments, nor does it report dust-specific variables. However, it does report 
variables that overlap with dust, including PM10, PM2.5, PM2.5 species, and coarse PM (PM10–PM2.5), which we 
examined.

2.1.5. Copernicus Atmosphere Monitoring Service (CAMS) Global Reanalysis (EAC4)

The CAMS global reanalysis of atmospheric composition utilizes 4D-Var assimilation of the Integrated Forecast 
System by the European Centre for Medium-Range Weather Forecasts across a 12-hr window to combine model 
data with observations across the world and create an estimate of the state of the atmosphere. The current version 
spans the years 2003 through 2021 using 0.75° × 0.75° horizontal resolution with a temporal resolution of 3-hr 
increments. The following variables were utilized from the CAMS data set: PM10 and PM2.5 (from which coarse 
PM was derived), dust aerosol mixing ratio, vertically integrated masses of dust aerosol, and dust AOD. Daily 
mean and maximum values in each grid cell were derived from the 3-hr values and calculated over the same 
sampling days as the IMPROVE sites.

2.2. Dust Event Classification

Airborne dust events are naturally extreme events, so continuous metrics based on continuous concentration or 
AOT values may not effectively capture dust events as distinct meteorological phenomena. Therefore, for each of 
the areal data products, dichotomous metrics were created from the continuous variables using threshold cutoff 
values at the 95th, 98th, and 99th percentiles and the percentile at the furthest distance from the diagonal on 
the Receiver Operator Characteristic (ROC) curve with respect to the IMPROVE dust events, across the entire 
study domain. ROC curves were fitted using the pROC package (Robin et al., 2011) in R version 4.2.0 (R Core 
Team, 2022). In addition to the creation of dichotomous exposure metrics, metrics based on log transforms of 
the continuous variables were also created. Thus, the full set of dust metrics included the original continuous 
variables as well as their log-transformed and dichotomized variants. Overall, variables were selected from each 
data set if they were relevant for general aerosol detection (e.g., PM2.5, PM10, etc.) or if they contained “dust” as 
a keyword within the variable title or description (e.g., vertically integrated masses of dust aerosol). PM10 and 
PM2.5, in this instance, represent proxies for dust rather than calculated or measured dust content.

2.3. Alignment With IMPROVE Sites

Spatial and temporal intersections between the IMPROVE data and the areal data products (MERRA-2, NWS 
storm events database, CAMS, and CMAQ) were performed using the sf (Pebesma, 2018) and stars (Pebesma & 
Bivan, 2023) packages in R. Specifically, WFZs from NWS and grid cells from the other three data products of 
interest were spatially merged with IMPROVE monitor site locations, such that only WFZs and grid cells contain-
ing IMPROVE sites were used. Furthermore, only those IMPROVE sites in the four southwestern states of 
Arizona, California, Nevada, and Utah, and only those days where the IMPROVE network and all four areal data 
products reported data were kept for analysis. In particular, days were excluded when the IMPROVE data moni-
tors did not report data as well as days when any one of the areal data products had missing data, which accounted 
for a total of 20 days. In this case, the 20 missing days originated from the MERRA-2 data set and likely reflected 
an absence of recording while undergoing system updates, calibrations, or other necessary downtimes.

2.4. Statistical Analysis

2.4.1. Descriptive Analysis

Summary measures were calculated across each continuous metric for the data products of interest, including 
minimum, maximum, mean, standard deviation, median, and 25th and 75th interquartile values.

2.4.2. Statistical Models

To estimate and compare the associations between the various dust metrics and the IMPROVE “gold stand-
ard” IMPROVE dust event data, bivariate measures of association (log odds ratios) between each metric and 
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the IMPROVE dust event were estimated using quasi-binomial regression 
implemented in the gnm package in R (Turner & Firth,  2022). Graphic 
representations were created using ggplot2 (Wickham, 2016) in R. Within the 
date range for the data (January 2003–June 2016), all months were included 
whether a dust storm was detected or not.

All models treated the dust event indicator variable from the IMPROVE data 
as the outcome. Crude models included only the specific dust metric as a 
predictor, while adjusted models also included a separate intercept for each 
combination of year, month and IMPROVE site. The adjusted models thus 
accounted for space- and time-varying factors that could influence the odds 
of an IMPROVE dust event but that were not captured in the dust metrics. 
The adjusted models can generate predictions at all days in our time domain 
but only at the IMPROVE sites, while the crude models, by not adjusting 
for differences between sites, could in principle make predictions across the 
entire spatio-temporal domain. We thus present crude models for their gener-
alizability and adjusted models to evaluate the impact of spatial and temporal 
confounding. Future work will explore dust event predictive models.

Because of differences in units and variability among the continuous metrics, 
to facilitate comparisons between the continuous metrics' measures of asso-
ciation, each metric's estimated log OR and confidence interval was scaled by 
the metric's inter-quartile range.

3. Results
3.1. Descriptive Analysis

A total of 68,422 site-days (combinations of site locations across days within the study) were used in the analysis, 
covering 4,907 unique days. These numbers exclude the 20 days that had missing information for the MERRA-2 
data product, thus leaving 99.59% of the days with IMPROVE data available for analysis. Of the 4,907 days, there 
were 82 days with dust events identified by IMPROVE monitors and 4,825 days without dust events. The NWS 
data included a day with two reported dust events that overlapped with an IMPROVE storm; thus, this site-day 
was duplicated for the NWS analysis, yielding 83 storms for the NWS analysis. All data products included 50 
unique IMPROVE monitoring site locations within the ground monitoring network. Figure 1 displays a map of 
the four states included in the study, as well as the IMPROVE monitor site locations across each state. Site code 
information is provided by state in Supporting Information S1 under item 1 Table S1. Additional maps provided 
in Supporting Information S1 document detail the continuous and dichotomized variables across all data products 
over the study domain (S3).

Table  1 presents the descriptive statistics for the candidate dust exposure variables, stratified by data source 
(CAMS, CMAQ, and MERRA-2). The NWS dust storm indicator was not included in the table since the variable 
is dichotomous and would not display meaningful values for the included statistics. Notably, several of the metrics 
have extremely wide ranges, where the minimum (min) value is at or close to zero and the maximum (max) value 
is orders of magnitude larger than the median. Many of the variables also have high standard deviations and heter-
ogeneity between the mean and median values, suggestive of right skew. Expanded descriptions are provided in 
Supporting Information S1 under Item 2 Table S2 along with each data source documentation URL.

3.2. Crude Models With Dichotomous Metrics

Among the crude models with dichotomous predictors (Figure 2), the NWS dust storm indicator had the strong-
est association with IMPROVE dust events, with a log OR of 3.57 (95% CI: 2.40, 4.75; p = 2.63 × 10 −9). The 
NWS indicator was followed closely by two CAMS metrics: the maximum and mean dust aerosol (0.9–20 μm) 
mixing ratios greater than or equal to the 99th percentile, with log odds ratios of 3.55 (95% CI: 3.04, 4.05; 
p = 1.44 × 10 −43) and 3.48 (95% CI: 2.97, 3.99; p = 1.08 × 10 −40), respectively. While the log odds ratios from 
CAMS were slightly attenuated compared to NWS, their standard errors were ∼50% smaller, yielding more 

Figure 1. A map of the study area, including the US states of Arizona, 
California, Nevada, and Utah, along with the IMPROVE monitor site 
locations.
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Source Metric Units Min Max Mean Median SD 25th 75th

CAMS aermr04_max kg/kg 0.0 14.0 0.6 0.2 1.1 0.0 0.8

CAMS aermr04_mean kg/kg 0.0 6.6 0.4 0.1 0.6 0.0 0.4

CAMS aermr05_max kg/kg 0.0 34.2 1.3 0.3 2.3 0.1 1.6

CAMS aermr05_mean kg/kg 0.0 15.8 0.7 0.2 1.3 0.0 0.8

CAMS aermr06_max kg/kg 0.0 125.9 3.2 0.3 7.1 0.0 2.9

CAMS aermr06_mean kg/kg 0.0 82.3 1.4 0.1 3.3 0.0 1.1

CAMS aermssdul_max μg/m 2 0.0 188,171.0 7,216.4 1,353.6 13,978.7 262.0 7,324.9

CAMS aermssdul_mean μg/m 2 0.0 115,364.9 4,243.5 785.3 8,197.3 150.1 4,179.6

CAMS aermssdum_max μg/m 2 3.9 51,464.3 2,941.0 1,098.5 4,470.7 300.7 3,582.1

CAMS aermssdum_mean μg/m 2 2.2 42,900.4 1,994.5 674.1 3,289.9 184.6 2,244.2

CAMS duaod550_max ∼ 0.00 0.13 0.01 0.00 0.01 0.00 0.01

CAMS duaod550_mean ∼ 0.00 0.11 0.01 0.00 0.01 0.00 0.01

CAMS pm10_max μg/m 3 0.1 5,038.0 32.3 21.9 90.1 14.5 32.8

CAMS pm10_mean μg/m 3 0.0 2,495.3 18.6 13.6 41.9 8.6 20.5

CAMS pm2p5_max μg/m 3 0.0 3,649.3 22.8 15.3 65.4 10.0 23.0

CAMS pm2p5_mean μg/m 3 0.0 1,812.8 13.0 9.4 30.4 6.0 14.2

CAMS PMcoarse_max μg/m 3 0.0 1,388.7 9.7 6.7 24.8 4.4 10.0

CAMS PMcoarse_mean μg/m 3 0.0 682.5 5.6 4.1 11.5 2.6 6.2

CMAQ NH4_PM25_ratio ∼ 0.0 0.2 0.1 0.1 0.0 0.0 0.1

CMAQ OC_PM25_ratio ∼ 0.0 0.6 0.2 0.2 0.1 0.2 0.3

CMAQ PM10_AVG μg/m 3 0.0 975.0 7.6 6.1 6.8 3.9 9.6

CMAQ PM10_PM25_ratio ∼ 1.1 9.6 2.0 1.8 0.7 1.6 2.1

CMAQ PM25_AVG μg/m 3 0.0 878.7 4.0 3.3 4.7 2.0 4.9

CMAQ PM25_EC_AVG μg/m 3 0.0 35.0 0.2 0.1 0.4 0.0 0.1

CMAQ PM25_NH4_AVG μg/m 3 0.0 6.2 0.2 0.2 0.2 0.1 0.3

CMAQ PM25_NO3_AVG μg/m 3 0.0 19.7 0.2 0.1 0.6 0.1 0.2

CMAQ PM25_OC_AVG μg/m 3 0.0 522.6 0.9 0.7 2.3 0.4 1.1

CMAQ PM25_other μg/m 3 0.0 317.9 1.8 1.4 1.9 0.8 2.2

CMAQ PM25_SO4_AVG μg/m 3 0.0 4.9 0.7 0.6 0.4 0.4 0.9

CMAQ PM25other_PM25_ratio ∼ 0.1 0.8 0.4 0.4 0.1 0.4 0.5

CMAQ PMcoarse μg/m 3 0.0 96.3 3.6 2.7 3.1 1.7 4.5

MERRA-2 DUCMASS_ug μg/m 2 780.6 553,655.4 31,527.8 22,744.5 27,403.2 12,058.7 43,273.3

MERRA-2 DUCMASS25_ug μg/m 2 367.7 144,132.4 10,305.7 7,400.1 8,570.4 4,147.9 14,330.6

MERRA-2 DUEXTT25 ∼ 0 0.19 0.01 0.01 0.01 0.01 0.02

MERRA-2 DUEXTTAU ∼ 0 0.34 0.02 0.02 0.02 0.01 0.03

MERRA-2 DUSCAT25 ∼ 0 0.18 0.01 0.01 0.01 0.01 0.02

MERRA-2 DUSCATAU ∼ 0 0.32 0.02 0.02 0.02 0.01 0.03

MERRA-2 DUSMASS_ug μg/m 3 0.0 205.2 10.4 7.4 10.7 4.1 12.9

MERRA-2 DUSMASS25_ug μg/m 3 0.0 45.6 2.7 2.0 2.4 1.2 3.4

MERRA-2 SPEEDMAX m/s 1.3 24.7 5.4 5.0 2.0 4.0 6.5

Note. Min, minimum; Max, maximum; SD, standard deviation; 25th, 25th percentile; 75th, 75th percentile. A more detailed description of each variable is provided in 
Supporting Information S1 under item 2.

Table 1 
Descriptive Statistics for Dust Exposure Metrics
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precise estimates and smaller p-values. Among the CAMS metrics, stronger associations tended to be observed at 
the more extreme dichotomization thresholds (98th and 99th percentile). CAMS metrics and the NWS dust storm 
indicator tended to out-perform MERRA-2 and CMAQ metrics.

3.3. Crude Models With Continuous Metrics

Among the crude models with continuous dust event predictors (Figure 3), the log transformed maximum dust 
aerosol (0.55–0.9 μm) mixing ratio from CAMS had the strongest association, with an IQR-standardized log OR 
of 2.30 (95% CI: 1.57, 3.03; p = 7.11 × 10 −10). Following that metric, the log transformed maximum dust aero-
sol (0.9–20 μm) mixing ratio and the log transformed maximum dust aerosol (0.03–0.55 μm) mixing ratio from 
CAMS yielded IQR-standardized log odds ratios of 2.28 (95% CI: 1.62, 2.95; p = 1.52 × 10 −11) and 2.16 (95% 
CI: 1.49, 2.83; p = 2.43 × 10 −10), respectively. Among CAMS metrics, the daily maximum metrics tended to have 
stronger associations than the daily mean metrics relative to the IMPROVE-detected dust event outcome. CAMS 
metrics tended to out-perform MERRA-2 and CMAQ metrics.

3.4. Adjusted Models With Dichotomous Metrics

Among the dichotomous metrics (Figure 4), the maximum dust aerosol (0.9–20 μm) mixing ratio from CAMS 
greater than or equal to the 99th percentile yielded the strongest association, with a log OR of 5.30 (95% CI: 5.11, 

Figure 2. Crude log odds ratios for dichotomous dust exposure metrics and IMPROVE dust events. Dust exposure metrics are listed in the rows and 
dichotomization thresholds (ROC, and 95th, 98th, and 99th percentile thresholds) in the columns for visual comparison, where the log OR are estimated with respect to 
the IMPROVE-detected dust event outcome. The log OR estimate for the NWS dust storm variable (which is innately dichotomous) is displayed under all thresholds to 
facilitate comparison. A missing log OR indicates that a particular quasi-binomial logistic regression model failed to converge. 95% confidence intervals are displayed 
for each log OR. Here, the null value is zero, and a positive association means that a particular exposure metric was positively associated with the IMPROVE-based dust 
event indicator outcome.
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5.50; p = 0.0000). This metric was followed by CAMS maximum dust AOD (550 nm) and maximum dust aerosol 
(0.9–20 μm) mixing ratio greater than or equal to the 98th percentile, with log odds ratios of 4.41 (95% CI: 4.24, 
4.57; p = 0.0000) and 4.31 (95% CI: 4.18, 4.44; p = 0.0000), respectively. Among the CAMS metrics, stronger 
associations tended to be observed at the more extreme dichotomization thresholds (98th and 99th percentile). 
CAMS metrics and the NWS dust storm indicator tended to out-perform MERRA-2 and CMAQ metrics.

3.5. Adjusted Models With Continuous Metrics

For the adjusted continuous predictors (Figure  5), the log transformed maximum dust aerosol (0.9–20  μm) 
mixing ratio from CAMS had the strongest association with an IQR-standardized log OR of 3.62 (95% CI: 3.49, 
3.76; p = 0.0000). This metric was followed by the log transformed mean dust aerosol (0.9–20 μm) mixing 
ratio and the log transformed maximum vertically integrated mass of dust aerosol (9–20  μm) from CAMS, 
with IQR-standardized log odds ratios of 3.34 (95% CI: 3.21, 3.47; p = 0.0000) and 3.11 (95% CI: 3.00, 3.22; 
p = 0.0000), respectively. Among CAMS metrics, the daily maximum metrics tended to have stronger associa-
tions than the daily mean metrics relative to the IMPROVE-detected dust event outcome. CAMS metrics tended 
to out-perform MERRA-2 and CMAQ metrics.

Figure 3. Inter-quartile range standardized crude log odds ratios for continuous dust exposure metrics and 
IMPROVE dust events. Dust exposure metrics are listed in the rows. The left column presents log OR from models using 
un-transformed variables, while the right column presents log OR from models using log-transformed variables. The log OR 
include 95% confidence intervals and represent the quasi-binomial logistic regression model with the IMPROVE-derived dust 
event indicator as the outcome, where zero represents the null value.
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4. Discussion
4.1. Summary

Among the four data products, certain CAMS metrics yielded the largest associations relative to the IMPROVE 
dust event indicator, followed by NWS, CMAQ, and MERRA-2. Among the CAMS metrics, those based on the 
maximum dust aerosol mixing ratio between 0.9 and 20 μm yielded the strongest associations. In general, the 
CAMS metrics derived from daily maximum values performed slightly better than metrics derived from daily 
means, which can be useful in situations with extreme exposure types (U.S. Environmental Protection Agency 
(EPA), 2011).

Furthermore, adjusted associations, which included an intercept term in the model for each combination of loca-
tion (site) and time (year-month), tended to be stronger and more precise than crude associations. For instance, 
the crude log transformed maximum dust aerosol (0.9–20 μm) mixing ratio from CAMS had a log OR of 2.28 
compared to the adjusted log OR of 3.62, suggesting that controlling for site location and time made the exposure 
metric better at predicting when a dust event had occurred. Along the same line, the crude 95% confidence inter-
val was 1.62–2.95 (difference of 1.33) versus the adjusted 95% confidence interval from 3.49 to 3.76 (difference 
of 0.27), so accounting for site location and year-month increased the precision, as well. This could suggest that 
the adjusted models capture more of the heterogeneity in the estimated concentrations for the exposure metrics 
that occur across time and space and aligns with previous work (Crooks et al., 2016; Yu et al., 2012).

Figure 4. Adjusted log odds ratios for dichotomous dust exposure metrics and IMPROVE dust events. Dust exposure metrics are listed in the rows and 
dichotomization thresholds (ROC, and 95th, 98th, and 99th percentile thresholds) in the columns for visual comparison, where the log OR are estimated with respect 
to the IMPROVE-detected dust event outcome. Models controlled for all combinations of year, month, and IMPROVE site location. The log OR estimate for the 
NWS dust storm variable (which is innately dichotomous) is displayed under all thresholds to facilitate comparison. Missing log OR indicate models that failed to 
converge. Zero represents the null value between the exposure metric and the IMPROVE-derived dust event outcome in a quasi-binomial logistic regression model. 95% 
confidence intervals are included with each log OR.
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However, among the dichotomous metrics from all products, the NWS dust storm indicator had the strongest 
crude associations, though, with relatively wide confidence intervals compared to the best dichotomous CAMS 
metrics. Specifically, the NWS indicator had a log OR of 3.57 with a 95% confidence interval of 2.40–4.75 
(width of 2.35) compared to the maximum dust aerosol (0.9–20 μm) mixing ratio greater than or equal to the 
99th percentile, with a log OR of 3.55 and a 95% confidence interval from 3.04 to 4.05 (width of 1.01). Thus, the 
ability to predict a dust event was slightly higher with the NWS indicator but it also had a confidence interval over 
twice as wide as that of the CAMS dust aerosol mixing ratio, implying less precision. The results of the NWS dust 
storm indicator might suggest that the NWS storm events database is still sensitive to detecting dust events, even 
with the inconsistencies in reporting and temporal and spatial coverage (Tong et al., 2023).

For all of the dichotomous exposure metrics, the higher percentile thresholds performed somewhat better than 
lower thresholds, which may relate to the extreme and relatively acute nature of dust events in general and those 
validated in the IMPROVE data set in particular (Shi et al., 2020).

Curiously, surface wind speed did not perform well at any of the percentile thresholds, despite previous work 
indicating it as an important factor in airborne dust events (Csavina et al., 2014). This could imply that wind speed 

Figure 5. Adjusted inter-quartile range standardized log odds ratios for continuous dust exposure metrics and 
IMPROVE dust events. Dust exposure metrics are listed in the rows. The left column presents log ORs from models using 
un-transformed variables, while the right column presents log ORs from models using log-transformed variables. Models 
controlled for all combinations of year, month, and IMPROVE site location. The log OR include 95% confidence intervals 
and represent the quasi-binomial logistic regression model with the IMPROVE-derived dust event indicator as the outcome, 
where zero represents the null value.
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is necessary but not sufficient on its own to accurately identify dust events. That is, a particular location could 
have high wind speed but if the top layer of soil is not dry enough, then it might not produce a dust storm (Csavina 
et al., 2014; Liu et al., 2004). In brief, Liu et al. (2004) found that wind speed was positively correlated with 
dust storm frequency, but negatively correlated with seasonal precipitation, soil moisture, and land vegetation in 
northern China. Csavina et al. (2014) noted that PM10 dust concentrations among dust events in Arizona, USA 
and Chihuahua, Mexico had the highest correlations when both wind speed (high) and relative humidity (low) 
were considered. The coarse PM exposure metric also seemed to not perform well from the CMAQ or CAMS 
data sets, which was noted in previous work (Raman et al., 2014; Rublee et al., 2020; Tong et al., 2012). Since 
the coarse PM was calculated as the arithmetic difference between the average PM10 and PM2.5 concentrations, it 
is possible that other sources of coarse mass are contained within the estimate and decreasing the sensitivity of 
the metric in this instance. Another important factor examined in previous work includes a positive correlation 
between dust storms and temperature as well as periodic climate changes, such as the El Nino-Southern Oscil-
lation, which brings changes in temperature and precipitation (Labban & Butt, 2021). Taken together, it may be 
important to consider combinations of climatic variables in addition to the metrics examined in the present study 
for the identification and prediction of dust events.

Out of the four areal data products, CAMS was unique in that it integrated ground-based observations with 
satellite-based observations along with recursive calibration for meteorological observations, which might have 
led to better performance and may suggest that combinations of these data types provide higher capacities for 
dust event detection compared to either data type alone (Lei et al., 2016). While the daily maximum variables 
tended to out-perform the daily mean variables, the differences between them were modest. Since dust events 
generally possess extreme aerosol concentrations for relatively acute periods of time, it follows that the maximum 
values might identify dust events more accurately than mean values (Ardon-Dryer & Kelley, 2022; Kelley & 
Ardon-Dryer, 2021).

4.2. Limitations

The present study had several imitations. First, the IMPROVE dust event data extended only through June 2016, 
precluding inclusion of more recent dust events. Second, within the study period, roughly 2/3 of days were 
dropped due to the observations schedule of the IMPROVE monitors, while other days were dropped due to gaps 
in the areal data product data, thus reducing power. Third, all of the areal data products had relatively low spatial 
resolution by the standards of modern air pollution epidemiology studies, with the highest resolution product 
(CMAQ-EQUATES) having a 12 km grid cell width, potentially reducing sensitivity. For instance, previous work 
in exposure epidemiology and dust modeling found that 2.5 × 2.5 km grid cells down to 1 km grid cells offered 
advantages over larger grid cells for estimating fine PM (Baxter et al., 2013; Kim et al., 2017; Kumar et al., 2013). 
Still, the data products utilized in the present study had other features (spatial and temporal completeness, daily 
temporal resolution, and long time-series) making them potential candidates for future epidemiologic work.

The results from this study agree with previous work highlighting limitations in the NWS storm event database, 
such as misclassification of dust storms, the reliance on multiple sources of input without verification, and the 
potential inconsistencies in the reports (Ardon-Dryer et al., 2023). The storm event database, however, remains 
an important tool for identifying weather-related events, including dust storms, though caution should be used 
when applying the data set to answer epidemiologic questions pertaining to airborne dust exposure and health.

4.3. Conclusion and Future Directions

The CAMS data set represents a reanalysis of meteorologic, aerosol, and emissions data. Based on the adjusted 
model results, useful in the identification of dust events on days where data collection for IMPROVE monitors 
did not occur, the maximum dust aerosol (0.9–20 μm) mixing ratio from CAMS variables was mostly strongly 
associated with the “gold standard” dust event variable derived from IMPROVE monitor observations. Similarly, 
for the crude models, the results suggested that the most extreme threshold (99th percentile) can serve as a possi-
ble dust event metric in future studies.

Thus, the results suggest that CAMS aerosol extreme values—high dichotomization thresholds, often using daily 
maximum values rather than daily average values—are most strongly associated with dust events. This may stem 
from the fact that airborne dust events represent extreme but transient confluences of high wind and dust aerosols, 
and thus averaged variables may be less sensitive to the presence of dust events.
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Subsequent studies should explore why the CAMS exposure metrics seemed to outperform metrics from 
MERRA-2 and CMAQ, including how tuning model parameters may improve or worsen the capability to detect 
dust events. Our future work will utilize those CAMS dust exposure metrics with stronger crude associations 
to build a machine learning predictive model for dust events. This model will yield spatially- and temporally 
complete dust event predictions over the full domain for use in large-scale population health studies, and could 
help to address the dearth of epidemiologic studies pertaining to dust exposure in the U.S. for acute and long-term 
adverse health outcomes.
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