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Abstract

Background: Genome-wide association studies have become very popular in identifying genetic contributions to
phenotypes. Millions of SNPs are being tested for their association with diseases and traits using linear or logistic
regression models. This conceptually simple strategy encounters the following computational issues: a large number
of tests and very large genotype files (many Gigabytes) which cannot be directly loaded into the software memory.
One of the solutions applied on a grand scale is cluster computing involving large-scale resources. We show how to
speed up the computations using matrix operations in pure R code.

Results: We improve speed: computation time from 6 hours is reduced to 10-15 minutes. Our approach can handle
essentially an unlimited amount of covariates efficiently, using projections. Data files in GWAS are vast and reading
them into computer memory becomes an important issue. However, much improvement can be made if the data is
structured beforehand in a way allowing for easy access to blocks of SNPs. We propose several solutions based on the
R packages ff and ncdf.
We adapted the semi-parallel computations for logistic regression. We show that in a typical GWAS setting, where
SNP effects are very small, we do not lose any precision and our computations are few hundreds times faster than
standard procedures.

Conclusions: We provide very fast algorithms for GWAS written in pure R code. We also show how to rearrange SNP
data for fast access.

Background
For the benefit of readers who are not familiar with
genome-wide association studies we provide a brief intro-
duction to this area.

There are many ways to investigate the influence of
genes on (human) traits. One of them, genome-wide asso-
ciation studies (GWAS), exploits the fact that strings of
DNA contain many small variations, called SNPs which
may influence the level of traits or risk of having a dis-
ease. Modern micro-array technology makes it possible
to measure genotypes of a million SNPs in one go, at a
reasonable price, using only one drop of blood. In large
epidemiological studies, this has been done for large to
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very large groups of individuals, for which (many) pheno-
types have been measured too. SNPs that are found to be
influential may point to relevant genes. This approach has
been applied on a grand scale [1]. The number of results
published on GWAS is rapidly increasing. The GWAS cat-
alogue includes over 1400 papers on newly discovered
important SNPs [2].

Typically, the number of genotyped SNPs is around half
a million. However, it is possible to impute the most prob-
able genotypes for real or hypothetical SNPs using spatial
correlation on the genome. This way, the number of SNPs
analyzed in a GWAS can grow to 2.5 or even 30 million.

The statistical model used in GWAS is rather basic:
univariate linear or logistic regression of phenotype on
genotypes, for each SNP in turn, correcting for covari-
ates like age, height and gender. Large sample sizes are
required to detect very small effects at the very strict
“GWA-significance level”, namely 5 × 10−8, the common
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0.05 divided by one million (inspired by Bonferroni cor-
rection for that many tests). The goal is to find SNPs for
which the p-value will survive this conservative multiple
testing correction.

Dedicated software is available to support those ana-
lyzes. Popular examples are: GenABEL [3], PLINK [4],
Mach2qtl [5,6] and ProbABEL [7]. Computation times
are long. An example from the literature is a GWAS
with a continuous trait for 6000 individuals and 2.5 mln
SNPs, which on “a regular computer” takes around 6
hours [8]. This time will dramatically increase with larger
sample size and/or more SNPs to test. Additionally, logis-
tic regression is more computationally demanding than
linear regression. Based on the available published mate-
rials, it is actually quite difficult to assess computation
times. Usually information about available memory, num-
ber of used processors/cores, and the size of the model
(the number of covariates) are not provided.

GWAS may be computationally demanding, but the
problem is “embarrassingly parallel”, meaning that it can
be distributed over as many processors as desired, by sim-
ply splitting the work into groups of SNPs. This brute force
approach with computing clusters is now being applied
broadly, with GRIMP as an example in our institution [8].

We show that huge speed gains can be achieved by sim-
ple rearrangements of linear model computations, exploit-
ing fast matrix operations. We call this the “semi-parallel”
approach, to set it apart from parallel computation on
multiple processors. A similar idea can be found in [9], in
the framework of expression quantitative trait loci (eQTL)
analysis. That paper focuses on computing R2 statistics,
to get a first insight into a data. We are more ambi-
tious: we want to reproduce very closely the results of
“traditional” GWAS software. Present-day GWAS prac-
tice is focused on very low p-values, regardless of the
amount of variance that the SNPs actually explain. Thus,
we apply large matrix operations to compute estimates,
standard errors and p-values for GWAS with a continuous
outcome.

There is a second challenge: reading the data quickly
enough from a disk into computer memory. A key issue
is to rearrange them in such a way that arbitrary blocks
of SNPs (containing all individuals) can be accessed very
quickly. We show how to pre-process data for this goal.

The bottom line is that a GWAS for one million SNPs
and 10k individuals can be done on an average notebook
computer within 15 minutes. This is the time needed for
pure computations. Accounting for the time needed to
load the data, the whole time of the analysis increases to
25 minutes.

Semi-parallelization of GWAS with a binary outcome is
more difficult. Parameters in logistic regression are esti-
mated via maximum likelihood, which unlike the least
squares approach is an iterative procedure. However, we

were able to find an approximate way to provide odds ratio
for the SNP effect using semi-parallel computations.

The paper is written in a tutorial-like manner. We grad-
ually extend the complexity of the problem, showing step
by step how to speed up computations using simple tricks
in R. Also the goal is not to present a package (there
is none) but to introduce a new way of thinking about
large-scale GWAS computation and to present and pro-
vide code that anyone can easily integrate into existing
systems.

Implementation
Data, real and simulated
A GWAS is based on very large numbers of SNPs, for
many thousands of individuals, leading to very large data
files. Observed genotypes generally are coded as the num-
ber of reference alleles, 0, 1 or 2. Very efficient storage is
possible, using only 2 bits per SNP (per individual). The
program PLINK uses this approach to store genotypes in
its BED file format. The package SNPstats mimics it for
storing SNPs in computer memory. This is quite attrac-
tive: 100k SNPs (we use k as shorthand for thousand) for
10k individuals can be stored in a quarter of a Gigabyte.

In large data sets one may expect some values of the
traits and/or genotypes to be missing. Typically genotypes
with a call rate (percentage of measured genotypes in the
sample) below 95% will be removed from the analysis.

The recent GWAS practice is to use genotype imputa-
tion. The commonly used MACH[5,6] program does two
things: it imputes missing SNPs within genotyped markers
and predicts untyped markers. The result of imputation
is the expected dose, a non-integer number between 0
and 2. In this case more room is needed to store the val-
ues. Actual files with imputation results are then much
larger. Those that MACH produces are ASCII-code files,
using six positions per number (with three decimals).
In principle a more compact representation is possible.
There is no need to be precise and by multiplying the
dose by 100 we can store an integer between 0 and 200
in one (unsigned) byte. This is four times larger than for
raw genotypes.

In our experience, SNP data are stored in such a way
that all SNPs for one individual form one record. We call
this structure “row per person”. It is useful for random
reading of (blocks of ) individuals, but selection of certain
(blocks of ) SNPs is time consuming. Essentially one has
to read the complete records for all persons and keep only
the required selection of SNPs. This has to be repeated for
every block of SNPs one considers.

It is much more attractive to have each record represent
one SNP, as measured for all individuals (“row per SNP”).
To achieve this, given a “row per person” organization, is
an important part of the enterprise. It would not be an
issue if all data would fit into fast random-access memory,
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but this is usually not the case, as we are talking of 10 to
100 Gb.

There is no need for real data when discussing com-
putation times. Instead we simulate genotypes as random
numbers from a uniform distribution between 0 and 2.
Phenotypes and covariates are simulated as independent
variables coming from a standard normal distribution. In
our simulations we set the sample size to a typical GWAS
scenario, namely 10K individuals. The number of simu-
lated SNPs is 1000, which is determined by the available
RAM.

Semi-parallel computations
In this section we present semi-parallel computation,
using the R programming language as the vehicle for
implementation (R version 2.15). We report computa-
tion speeds, as achieved on a single PC running Win-
dows XP on an Intel E8400 (3.00 GHz) with 3.2 GB of
RAM. We report user times provided by the R func-
tion proc.time. User time is defined as the CPU time
charged for the execution of user instructions of the call-
ing process.

A simple benchmark for comparing to other computers
is the time needed for the singular value decomposition
(SVD) of a 1000×1000 random matrix. For our computer
it is 5 seconds in R software.

Our goal is to report computation times in a standard-
ized way, such that they can be easily recalculated for
different numbers of individuals and/or SNPs. Computa-
tion time for GWAS is linear in sample size and in the
number of investigated SNPs. We express speed in “sips”
standing for “snp-individual per second”. It is obtained by
dividing the product of the numbers of individuals and
SNPs by the time needed for a computation. Conversely,
if one divides the product of the number of individuals
and the number of SNPs by speed, one obtains the num-
ber of seconds needed for a job. One should keep in mind
that due to the imprecision of proc.time and its vari-
ability from run to run, the calculated times/speeds are
only approximate. They are provided to assess the order of
magnitude of the times gained in computations. Because
of the size of the numbers, we will exclusively use Msips,
meaning one million sips.

Regression without additional covariates
Let the (continuous) phenotype be given as a vector y of
length n and the states of m SNPs as the n × m matrix S.
A single column of S will be denoted as s. Unless stated
otherwise, we use the same symbols for the R variables. To
detect potential genetic effects on y, the linear model

y = α + βs + ε (1)

is fitted for each SNP and the size of β̂ is evaluated.
Generally the estimated effects are disappointingly low. A

culture has grown in which one searches for low (Bonfer-
roni corrected) p-values, using large to very large sample
sizes. To compute p-values we need standard errors, but
we will not consider them until the model with covariates
has been discussed. A straightforward way to fit the model
(1) is to use the function lm repeatedly:

t0 = proc.time()[1]
beta = rep(0, m)
for(i in 1 : m) {

mod = lm(y ~ S[ , i])
beta[i] = mod$coeff[2]

}
t1 = proc.time()[1]-t0
cat("Speed", 1e-6 * n * m/t1, "Msips\n")

The reported speed is 0.8 Msips, meaning that for this
sample size we can test 80 SNPs per second. For 2.5 M
SNPs we would need almost 9 hours. In the code above
we included the statements used to compute processing
times and speed. They will not be shown in the upcoming
examples. A faster alternative to lm is lsfit, recording a
speed of 5.3 Msips.

beta = rep(0, m)
for(i in 1 : m){

mod = lsfit(S[ , i], y)
beta[i] = mod$coeff[2]

}

For this simple regression problem, we know how to
compute the slope explicitly:

β̂ =
∑n

i=1(si − s̄)(yi − ȳ)∑n
i=1(si − s̄)2 . (2)

This is implemented in the following code, which
increases the speed to 26 Msips.

beta = rep(0, m)
yc = y - mean(y)
for(i in 1 : m){

sc = S[ , i] - mean(S[ , i])
beta[i] = sum(sc * yc) / (sum(sc ^ 2))

}

So far, we considered cases where the analysis is imple-
mented in a loop, for one SNP at a time. However, loops
are inefficient and it is better to vectorize the computa-
tions. That leads us to our first semi-parallel algorithm.
In the previous code fragment we took each column
of the SNP matrix, to center it and compute its inner
product with centered y, ỹ. If we center all columns at
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once using the function scale we obtain the whole vec-
tor β̂ without using loops. However, when running the
code below

yc = y - mean(y)
Sc = scale(S, scale = T)
S2 = colSums(Sc ^ 2)
b = crossprod(yc, Sc) / S2

we get an unpleasant surprise: the speed drops to 19
Msips. It turns out that scale is a very slow function.
We were able to avoid it when we did the calculations
ourselves and achieved a speed of 45 Msips.

yc = y - mean(y)
s1 = colSums(S)
e = rep(1, n)
Sc = (S - outer(e, s1 / n))
b = crossprod(yc, Sc) / colSums(Sc ^ 2)

Centering columns of the SNP matrix is actually not
necessary. We can rewrite the numerator of the Equation
(2) as

n∑
i

ỹi(si − s̄) =
n∑
i

ỹisi − s̄
n∑
i

ỹi =
n∑
i

ỹisi.

Similarly, we can show that the denominator of (2) can be
rewritten as

n∑
i

(si − s̄)2 =
n∑
i

s2
i − n(s̄)2

This leads to the following code, running at 90 Msips.

yc = y - mean(y)
s1 = colSums(S)
s2 = colSums(S ^ 2)
b = crossprod(yc, S) / (s2 - (s1 ^ 2) / n)

This means that to analyze a GWAS with 2.5 mln of SNPs
and 10k individuals around 5 minutes are needed. How-
ever, this is for an unrealistic scenario, without covariates.
Also, we have not calculated the p-values yet. We will now
discuss the needed extensions.

Regression with covariates
To handle covariates in a matrix X, we extend the model
(1) to

y = βs + Xγ + ε, (3)

where it has been assumed that X contains a column of
ones, to cater for an intercept. A straightforward applica-
tion of this model uses lm in a loop, as shown below.

for(i in 1:m){
mod = lm(y ~ S[ , i] + X - 1)

b[i] = summary(mod)$coeff[1]
}

Of course the speed will now depend on the number of
covariates. This relation is shown in Figure 1. We can also
repeatedly apply function lsfit in the following manner.

b = rep(0, m)
for(i in 1 : m){

mod = lsfit(cbind(S[ , i], X), y,
intercept = F)

b[i] = mod$coeff[1]
}

For 10 covariates, speed is equal to 1.17 Msips. It is
again faster than lm, but the whole GWA scan for 2.5 mln
SNPs and 10K individuals would still take around 6 hours
(18 hours for lm). Shabalin [9] has briefly discussed how
to deal with one covariate in an efficient way. The main
idea is to orthogonalize the response and the predictor
of interest (here the SNP) with respect to that covari-
ate. We derived it for the general case with k covariates
(Additional file 1: Appendix). The transformed variables
are given by the equations:

s∗ = s − X(XT X)−1XT s (4)

y∗ = y − X(XT X)−1XT y (5)

Assuming that the intercept was included in the matrix of
covariates, the model is now simplified to

y∗ = βs∗ + ε (6)

It is important to calculate y∗ and s∗ efficiently. If we mul-
tiply the matrices in order as they appear in (4) and (5), R
will encounter memory problems when working with n×n

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

Number of covariates

S
pe

ed
 (

M
si

ps
)

Figure 1 Speed versus number of covariates. The plot shows the
relationship between the speed of the computations using lm
function in R and the number of the covariates in the linear regression
model.
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matrix. A code fragment for well-organized calculations is
shown below.

U1 = crossprod(X, y)
U2 = solve(crossprod(X), U1)
ytr = y - X %*% U2
U3 = crossprod(X, S)
U4 = solve(crossprod(X), U3)
Str = S - X %*% U4
b = as.vector(crossprod(ytr, Str) /

colSums(Str ^ 2))

Speeds are 45, 25, 13 Msips for 2, 10 and 30 covariates
respectively, about 70 times faster than using lm.

Standard errors and p-values
The variance for the estimated β̂ in model (6) is given by

v̂ar(β̂) = σ̂ 2(s∗T s∗)−1. (7)

The error variance is estimated by

σ̂ 2 = RSS
n − k − 2

, (8)

where the residual sum of squares (RSS) is calculated as

RSS = (y∗−s∗β̂)T (y∗−s∗β̂) =
n∑
i

y∗2
i −β̂2

n∑
i

s∗2
i (9)

Note that in the degrees of freedom we have accounted
for the removed covariates, although this usually will be
of minor influence. The standard errors of β̂ and log-
arithm of the p-values can be calculated with the code
below.

Str2 = colSums(Str ^ 2)
sig =(sum(ytr ^ 2)- b ^ 2 * Str2) / (n-k-2)
err = sqrt(sig *(1/Str2))
p = 2 * pnorm(-abs(b/err))
logp = -log10(p)

The calculation of the p-values assumes, given the large
sample size, that the test statistic has a normal distribu-
tion. We used the lower tail of the normal distribution to
calculate the p-values. It is not advisable to use the text-
book definition 2 * (1-pnorm(b / err)), because
it suffers from severe rounding errors.

We make a final comparison of speed between lm,
lsfit and our fast computations. Standard errors and
p-values are not included in the lsfit function, but are
easily obtained using ls.print procedure. The results,
for different numbers of covariates, are provided in the
Table 1. We see that the standard function lm is the slow-
est, but the computational benefits of lsfit decrease for
the cases with many covariates. Using semi-parallel com-
putations, we can do a GWAS 61 times faster than with lm
for no covariates and 75 times faster for a model with 30

Table 1 Speed in Msips for linear model (estimates,
standard errors and p-values) with k covariates for the
functions ls, lsfit and semi-parallel (SP)

k lm lsfit SP

0 0.70 3.0 43.0

2 0.60 2.4 43.0

10 0.40 1.0 25.0

30 0.16 0.32 12.0

covariates. A GWA scan for 10K individuals, 2.5M SNPs
and 10 covariates can be now done within 20 minutes.

We tested our codes on a another PC with Intel Xeon(R)
X5550, 2.67 GHz, 24 GB of RAM and the 64 bit ver-
sion of R. This machine was around 1.4 times faster than
our PC. However, the ratios of the speeds remained sim-
ilar. Semi-parallel approaches is 60–80 times faster than
looping function lm.

Missing genotypes
The semi-parallel algorithm does not allow missing val-
ues. A single NA in either a phenotype vector or a SNP
matrix will result in NA in the vector of estimates.

Incomplete phenotypes are easy to handle. We can
exclude those individuals from the whole analysis. Missing
genotypes are more problematic. In general missing data
can be handled using weighted least squares estimation,
taking as weights 0 and 1 for missing and available obser-
vation. However the weights will vary for different SNPs
and semi-parallel approach for the model with covariates
cannot be applied anymore.

We propose a very simple solution for the analysis of
a GWAS with incomplete SNPs by imputing the missing
SNP values with the sample mean of the observed geno-
types. Our simulations show that for large sample size
(thousands of individuals) and even 5% missing genotypes
no substantial precision is lost (Figure 2).

Logistic regression
When there is an interest in association between a binary
outcome and SNPs, logistic regression is needed. The
model without additional covariates is given by

log
(

p
1 − p

)
= β0 + β1s, (10)

with p representing probability of “success”.
No closed-form expression exists for the coefficient val-

ues. Instead, the (logarithm of the) likelihood function
is maximized using iterative procedures like Newton-
Raphson or Fisher scoring. The maximization begins with
a tentative solution which is iteratively improved until
convergence. In R the straightforward way to fit a logis-
tic model is to call a function fitting generalized linear
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Figure 2 Imputation of missing SNPs using sample mean. The plot displays the effect of the imputation of the missing SNPs using sample mean
on the estimates and the p-values. The call rate is set to 95%.

model specifying proper outcome distribution (binomial)
and link function (logit). It can be easily done using the
code:

beta = rep(0, m)
for (i in 1:m) {

mod = glm(y ~ S[,i], family = binomial
("logit"))

beta[i] = mod$coeff[2]
}

The speed is 0.2 Msips which is four times slower than
fitting a regression model to a continuous outcome.

A relation exists between maximum likelihood esti-
mation using Fisher scoring and weighted least squares
estimation [10]. Maximum likelihood equations for the
(t + 1)-th iteration can be written as

(XT W (t)X)β(t+1) = XT W (t)z(t), (11)

where z is a “working variable” given by

z(t)
i = log

(
p(t)

i

1 − p(t)
i

)
+ yi − p(t)

i

w(t)
i

(12)

and where W (t) is diagonal matrix with elements p(t)
i

(1 − p(t)
i ). Every update of β involves solving a weighted

least squares problem with updated weight matrix.

This process is called iteratively reweighted least squares.
The covariance matrix is given by

ĉov(β̂(t+1)) = (XT W (t)X)−1. (13)

In case of a model without additional covariates the
estimated SNP effect and the standard error are given by

β̂1 =
∑

i wi(zi − zw)(si − sw)∑
i wi(si − sw)2 (14)

v̂ar(β1) = 1∑
i wi(si − sw)2 , (15)

where zw and sw are weighted means defined as∑
i wizi/

∑
i wi and

∑
i wisi/

∑
i wi respectively.

It is not possible to semi-parallelize logistic regression
computations to provide an exact solution, because in
principle the weights are different for each SNP. How-
ever, effects found in GWAS are usually of modest
size, with a median odds ratio of 1.33 and only a few
odds ratios exceeding 3.00 [11]. This means that prob-
abilities predicted by a model without a SNP will not
change much once SNP is included to the model. We
can do semi-parallel computations approximately using
weights from the model without SNP (w̃) as starting val-
ues and updating the solution for β1 by one iteration.
Note that in case of no other covariates we have to
fit the model with only intercept. The predicted prob-
abilities are the same for every individual and so are
the weights. In that special case the weighted mean
is equal to the arithmetic mean and (14) reduces to
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(2). The computations can be easily done in R using
the code:

#### fit model without SNP and set weights
mod0 = glm(y ~ 1, family = binomial

("logit"))
p = mod0 $fitted
w = p * (1 - p)
### Do the computations}
z = log(p / (1 - p)) + (y - p) /

(p * (1 - p))
zc = z - mean(z)
s1 = colSums(S)
s2 = colSums(S ^ 2)
den1 = s2 - s1 ^ 2 / n
b = crossprod(zc, S) / den1
err = sqrt(1 / (w[1] * den1))
pval = 2 * pnorm(-abs(b / err))

The speed is 55 Msips which is 275 faster than using
glm.

Obviously, the quality of approximation of the weights
from the model without the SNP depends on the magni-
tude of β1. We conducted a small simulation experiment
exploring an effect of a true odds ratio on the accu-
racy of estimation in semi-parallel approach. We simu-
lated 1000 logistic regression models in which true OR
was a random number between 1 and 5. We calculated
the relative difference of the odds ratios estimated by
glm function and semi-parallel approach. The relative
difference is increasing monotonically and non-linearly
with the correctly estimated OR (Figure 3 and Figure 4:
Logistic OR and Logistic relative differences). The
semi-parallel approach underestimates the OR by 0.1%
for OR = 1.33, by 6% for OR = 3 and by 17% for

Figure 3 Logistic OR. The plot displays odds ratios from the
“standard analysis” with glm function (x-axis) versus corresponding
odds ratios from semi-parallel approach (y-axis).

Figure 4 Logistic Relative differences. The plot shows the relative
difference (in %) in odds ratios between glm and semi parallel
approach.

OR = 5. This result was independent from the sample
size. Additionally, the p-values in semi-parallel approach
were slightly too significant, but the difference was
observed only for the − log10(p) above 25 (for the sam-
ple size 2000, Figure 5: logistic pvalues). We do not
find those observations worrisome in a typical GWAS
scenario. However, we leave it up to the user to addi-
tionally fit the glm model to a selection of the most
promising SNPs.

Dealing with covariates in semi-parallel logistic regres-
sion follows the same reasoning as in linear regression, but
taking the weight matrix into account. The equations for
transformed SNP (s∗) and z∗ are

s∗ = s − X(XT WX)−1XT Ws, (16)

Figure 5 Logistic P values. The plot displays the -log(pval) for the
SNP effect from the ‘standard analysis’ using glm (x-axis) versus
corresponding -log(pval) from semi-parallel approach (y-axis).



Sikorska et al. BMC Bioinformatics 2013, 14:166 Page 8 of 11
http://www.biomedcentral.com/1471-2105/14/166

z∗ = z − X(XT WX)−1XT Wz, (17)

where again X is a matrix of covariates including an inter-
cept. The weight matrix W is replaced with W̃ coming
from the model without SNP. After the transformation the
solution for SNP effect and the standard error are given
then by

β̂1 =
∑

i wiz∗
i s∗i∑

i wis∗2
i

, (18)

and

v̂ar(β1) = 1∑
i wis∗2

i
. (19)

Noting that in this case weights are different for every
individual, we can compute the solution by running the
following R code:

mod0 = glm( y ~ X -1, family = binomial
("logit"))

p = mod0$fitted
w = p * (1 - p)
z = log(p / (1 - p)) + (y - p) /
(p * (1 - p))

xtw = t(X * w)
U1 = xtw %*% z
U2 = solve(xtw %*% X, U1)
ztr = z - X %*% U2
U3 = xtw %*% S
U4 = solve(xtw %*% X, U3)
Str = S - X %*% U4
Str2 = colSums(w %*% Str^2)
b = crossprod(ztr * w, Str)/Str2
err = sqrt(1/ Str2)
pval = 2 * pnorm(-abs(b / err))

Comparisons of speeds between semi-parallel approach
and glm for different number of covariates are presented
in Table 2. The speed gains are between 80 times for the
model with 30 covariates and 170 times for the model with
10 covariates, making the efficiency even larger than in
linear regression.

Organization of the SNP data
Our semi-parallel algorithms substantially reduce compu-
tation times. However before we can apply our algorithm
we need to load the data into computer memory. Of
course this always is an issue, but not really critical when
computations are slow.

We assume that we have limited memory available, say
2 to 4 Gb. With 64 bit operating systems, 64 bit R and
expensive hardware, it is possible to build a system that
can have all data in memory. We do not expect the reader
to be that lucky. Instead we assume that we will read in
blocks of SNPs of reasonable size.

Data loading entails not only CPU but also I/O times.
That is why in this section we only focus on the elapsed
time provided by proc.time. This is the clock time mea-
sured from the start of the operation until its completion.

We propose different solutions depending on the type of
the genotypes we are dealing with (observed or imputed).
We show how to efficiently deal with PLINK data for-
mats. For imputed dosage (MACH) files, we discuss what
the difficulties are when loading in the structure necessary
to apply fast computation algorithm. We describe two R
packages: ff [12], ncdf [13] which we found most useful to
tackle this problem.

Observed genotypes in PLINK format
As an example, we utilized a PLINK BED file that we
encountered at our institution. This file stores around
42000 SNPs on chromosome 1 measured for about 6000
persons. Some values were coded as missing. We can
easily read a PLINK BED file into R using the function
read.plink implemented in the package SNPstats [14].

library(SnpStats)
P = read.plink("Chrom-01.bed")
U = P$genotypes@.Data

This will store the genotypes in a SnpMatrix raw format.
It is a very efficient storage scheme, using only 2 bits for
each element of the SNP matrix. It takes around 10 sec-
onds to load the data. Of course, this can be done only if
the matrix fits in memory, but that is no problem here.
Another useful feature of the SnpMatrix object is that the
indexing operator returns a matrix. Having a SnpMatrix
object, we can extract blocks of SNPs to a floating point
matrix. The maximum allowed size of the block depends
on the available memory and the operating system.

#### Read blocks of SNPs
for (k in 0:nb) {
j1 = 1 + k * bs
j2 = min(j1 + bs - 1, m)
cat("Block", k, "of", nb, ’\n’)
if (j2 > j1) {
# Read SNPS
S = as.numeric(U[, j1 : j2]) ## returns

Table 2 Speed in Msips for logistic model (estimates,
standard errors and p-values) with k covariates for the
functions glm and semi-parallel (SP)

k glm SP

1 0.2 20.0

10 0.1 17.0

30 0.1 8.0
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a vector
ns = j2 - j1 + 1
dim(S) = c(n, ns)

}

Another problem that we have to deal with are missing
genotypes, but in the previous section we proposed a sim-
ple strategy to overcome this problem. In the code given
below we assume that the missing values are coded as 3
and that the threshold for the call rate is 5%.

# Remove bad SNPs (missing SNPs are
coded as 3)

fmis = colSums(S == 3) / n
sel = fmis < 0.05
S = S[, sel]
W = S < 3
# Impute missing SNPs
imp = colSums(W * S) / colSums(W)
Imp = outer(rep(1, n), imp)
S = W * S + (1 - W) * Imp

Once “bad” SNPs have been removed we can apply a
fast computation algorithm. We analyzed a model with
correction for 25 covariates. The association scan for our
example data file was finished within one minute.

Imputed genotypes in MACH format
MACH files are larger than PLINK files and may include
hundreds of thousands of SNPs written as “row per per-
son” in text files. On a computer without large amount
of RAM we will not be able to read into R the whole
data file. We have to work with blocks of SNPs. The
“row per person” structure is very inefficient if we want
to read only a group of SNPs (say 1000) for all indi-
viduals. Having a transpose of it, so the “row per SNP”
would make it possible for function scan to create a
matrix with a block of SNPs for all persons. But even
then, reading 1000 SNPs for 10000 individuals takes
around 13 seconds. For a genome with 2.5 mln SNPs
we would need around 9 hours just to bring the data
into R.

There are other, faster ways to deal with large data files
in R. One possibility is to work with binary files. Saving
and reading binary files is easily done using writeBin
and readBin. However, those files work on vectors. This
is not an optimal solution for us. Saving all the genotypes
for individuals sequentially will not allow us for an easy
access to the blocks of SNPs later on.

There are several packages available which deal with
array oriented binary files. We will discuss here ncdf
and ff which we found the most useful. The Network
Common Data Form (netCDF) are commonly used in
meteorology and oceanography. Recently the R package
ncdf was released to support this data format [13]. First,
the MACH data files have to be saved into a ncdf object.

Our experiments showed that it is most efficient to work
with blocks of SNPs and individuals. We will denote
bsx and bsy as block size for individuals and SNPs
respectively. Number of blocks will be denoted as nbx and
nby. We need to define dimensions and variables of the
ncdf object.

# Define dimensions
dimx = dim.def.ncdf("x", "units", 1:nx)
dimy = dim.def.ncdf("y", "units", 1:ny)
# Define variables
varz = var.def.ncdf("z", "nix",
dim = list(dimx, dimy),

missval = 999, prec ="short" )

For the specified variables, a netCDF file is created using

# Create the netCDF file
netf = create.ncdf(fname,vars = list(varz))

If Z is a bsx× bsy block read by the function scan, the
data can be easily stored into ncdf file

# Read blocks and store them
for(i in 1:nbx) {
k = 1 + (i - 1) * bsx
put.var.ncdf(netf, varz, vals = Z,

start = c(k, 1), count = c(bsx, ny))
cat(’Block’, i, ’\n’)

}
# Close the file
close(netf)

Saving 100000 SNPs for 6000 persons would take
around 45 minutes on our computer. To estimate the com-
plete time, we need to add the time needed for scanning
the MACH file (about 15 minutes). To read back the file
created above (with the same block sizes) we have to use
the following code

netf = open.ncdf(fname)
for (i in 1:nby) {
k = (i - 1) * bsy + 1
Z = get.var.ncdf(netf, varz,

start = c(1, k) , count = c(nx, bsy))
}
close(netf)

Reading goes very fast and is done within 30 seconds.
The package ff [12] was created to support memory effi-

cient storage of the large data files. Keeping notation from
the ncdf example, an ff object creation and data storage
are done using

FF = ff(vmode = "short", dim = c(nx,ny),
filename = fname )

for(i in 1 : nbx) {
k = 1 + (i - 1) * bsx
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FF[k:(k + bsx - 1), ] = Z
cat(’Block’, i, ’\n’)

}
close(FF)

After the object is created, the R workspace should
be saved. The data saving is faster in ff than in
ncdf. It is linear with the number of individuals’s
block for the fixed number of SNPs. We recorded
less than a minute necessary to save 100000 SNPs for
6000 persons. To read back the blocks we need to
load the saved R workspace. This workspace keeps the
pointer to the ff file. After that, data reading is very
straightforward

for (i in 1:nby) {
k = (i - 1) * bsy + 1
Z = FF[ , k : (k + bsy - 1)]
}

The elapsed times for reading are as similar to those of
ncdf.

Conclusions
Computations for GWAS were made easy. We have shown
that they can be rearranged as large matrix operations per-
forming 60–80 times faster for linear regression and up
to 300 times faster for logistic regression. The algorithms
can be written in pure R and they do not exceed 20 lines
of code.

Fast computations demand fast access to the data and
this is actually a harder problem. Not all SNP data fit in
memory at the same time. They have to be read in as
blocks containing all individuals and selections of SNPs. In
practice data are not organized in this way, but as records
that contain all SNPs for each individual. We have shown
two ways to rearrange data, in a preliminary step, to make
fast access possible. Our first solution uses the standard-
ized netCDF file format. It has the advantage that the files
can be exchanged easily between computers, operating
systems and programming languages. Our second solu-
tion uses memory mapped files, as implemented in the
package ff. It is the fastest solution and it is easy to use,
but it is less portable than netCDF.

We believe that we have presented here an attrac-
tive solution to computations for relatively large GWAS,
on modest hardware, using pure R code. Our algo-
rithms are still “embarrassingly parallel”: it is trivial to
divide the task over multiple machines, each working
on a different block of SNPs. However, using the pack-
age SNOW to exploit multiple processors in one PC,
we discovered that it takes so much time to load the
data into separate processes that it was not worth the
effort.

Discussion
Using the many processors on modern graphic cards looks
like an attractive road to explore. We feel that we are still
in a transition phase in which easily accessible libraries
for R are not yet available. At the moment of writing this
manuscript, most available packages are tied to Nvidia
GPUs and needed special installation procedures. We
have not yet explored this approach.

A more complicated case of weighting is encountered
when one corrects for correlation between individuals.
Because the relationship matrix has as many rows and
columns as the number of individuals, this poses a real
challenge. Several solutions have been proposed, see [15].
More research is needed to determine whether they can
be combined with our semi-parallel approach.

GWAS for static phenotypes is only one important
issue. Much more challenging are longitudinal data, in
which multiple measurements per individual are available.
In general the number of measurements varies between
persons, as well as the times of observation. One has to
use linear mixed models, which entail heavy computation
loads. A typical mixed model with 10K observations takes
about 1 second, implying a speed of 0.01 Msips, more
than 100 times slower than a linear model. The need for
fast computations in case of longitudinal data and few
approximate procedures have been described in [16]. We
are working on algorithms involving large matrix opera-
tions for massive fitting of linear mixed models. We have
had some successes, but a lot has still to be done. We will
report on this subject in due time.
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