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Introduction
Nosocomial infections, also known as healthcare-associated 
infections (HAIs), are those infections that are acquired during 
the process of receiving healthcare, and include occupational 
infections incurred by staff, health professionals, patients, and 
visitors.1-3 Pathogens that are responsible for nosocomial infec-
tions are termed nosocomial pathogens, and they include a wide 
range of bacterial, viral, and fungal species. These pathogens and 
their infections pose significant problems, requiring urgent 
attention worldwide.4 Critically ill patients in the intensive care 
unit (ICU) are often immunocompromised, and they are at a 
high risk for nosocomial infections than are patients in other 
areas of the hospital.5 Nosocomial infections cause significant 
morbidity and mortality in contemporary critical care medicine, 

as some nosocomial pathogens are increasingly becoming mul-
tidrug-resistant.6,7 Multidrug resistance in nosocomial infec-
tions complicates patient management, extends treatment 
duration, and heightens economic burden with excessive health-
care costs.8 Nosocomial infections have prevalence rates of 1.6% 
to 45.8% or higher in less developed countries,9,10 6.5% in the 
European Union, and 3.2% in the United States, resulting in a 
cost of more than $4.5 billion for the latter. Since the global 
burden of HAIs is uncertain due to inadequate surveillance sys-
tems, it is probable that the prevalence of nosocomial infections 
is significantly higher worldwide.11 The extent to which the 
hospital environment serves as a reservoir of nosocomial patho-
gens, however, remains a subject of debate, amidst limited 
information.12
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Inanimate objects and surfaces can serve as reservoirs of 
nosocomial pathogens in the ICU.13 Such objects are commonly 
referred to as fomites, a term defining objects that when con-
taminated with infectious agents, can transfer these agents to a 
new host.14-16 In an ICU, fomites can include medical equip-
ment, surfaces, and other inanimate objects.17-19 The role of hos-
pital fomites in the transmission of nosocomial organisms is still 
a topical issue, but there is no clear consensus on the matter.20 
Several studies have identified fomites in the ICU to harbour 
nosocomial pathogens and be a contributor to their outbreak in 
the unit.21-24 Disturbingly, several nosocomial pathogens are 
drug-resistant, and in some cases, extensively drug-resistant or 
multidrug-resistant due to their exposure to numerous antibiot-
ics in the hospital setting.25-31 Medical equipment, such as venti-
lators, catheters, faucet aerators, and dialysis machines, as well as 
other inanimate surfaces, can become contaminated with patho-
gens and serve as reservoirs for infections.5,24,32,33 Proper clean-
ing and disinfection of equipment are essential to preventing the 
spread of the infections. Surfaces such as bed rails, doorknobs, 
pens, and countertops also harbour pathogens, and must be reg-
ularly cleaned and disinfected.34,35 The ability of pathogens to 
persist on reservoirs is a significant challenge in the prevention 
and control of nosocomial infections in the ICU. Also, the per-
sistence of bacteria, viruses, and fungi on inanimate surfaces vary 
accordingly.36

As it is nearly impossible to eliminate the use of equipment 
and other fomites in the ICU, compliance with standards and 
guidelines can help reduce or manage HAIs.37 With current 
technological advancements and increased expectations for 
high-quality healthcare services, it is crucial to analyze the fre-
quency and causes of nosocomial infections, especially, in 
ICUs.4 Therefore, it is necessary to identify key inanimate res-
ervoirs in ICUs, the common pathogens they harbour, and how 
long these pathogens persist on them. This would aid in devis-
ing effective infection control programmes in hospitals and 
help develop a reliable and sustainable plan in controlling 
infections in critical care units. The lack of precise information 
on the role of fomites in the spread of nosocomial pathogens 
makes it difficult to implement control plans, resulting in 
increased costs for both healthcare systems and patients.4,38,39 
This systematic review, therefore, aimed at providing a com-
prehensive analysis on fomites and their associated pathogens, 
as well as antibiotic resistance and persistence of these patho-
gens on fomites within the ICU. Its focus encompasses the 
neonatal intensive care unit (NICU), pediatric intensive care 
unit (PICU), surgical intensive care unit (SICU), burns inten-
sive care unit (BICU), and the medical intensive care unit 
(MICU).

Method
Search strategy

The systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and 

Meta-Analysis (PRISMA) guidelines.40 Between 25th and 29th 
May 2023, we carried out an extensive exploration of electronic 
databases, including PubMed and Scopus, spanning 1990 to 
2023. In order to ensure that our search was comprehensive, 
the following search terms were used: ““intensive care unit” and 
fomite”, “fomite in intensive care unit,” “fomite and pathogen 
in intensive care unit,” “intensive care unit,” “fomite and infec-
tion,” “nosocomial infection,” “intensive care unit,” “inanimate 
surface,” and “pathogen persistence on fomites in ICU.” 
Moreover, “fomite” and “intensive care unit” were included in 
the following search queries: nosocomial infections, persis-
tence, bacteria, fungi, and viruses. Furthermore, the citations of 
each study identified during the primary search were evaluated 
for possible relevance, as were similar articles that appeared 
with the search results on PubMed.

Inclusion and exclusion criteria

Based on the research keywords, we incorporated studies that 
presented both qualitative and quantitative data on nosoco-
mial pathogens present on fomites, as well as their prevalence 
on inanimate surfaces in the ICU. The types of studies used 
included cross-sectional, longitudinal, prospective, and out-
break studies. In the case of outbreak studies, we included 
those that collected samples from patients and fomites and 
further reported on the organisms that were recovered from 
the fomites; in such instances, we only included the fomite 
part of the outbreak reports. Our selection was limited to arti-
cles that were accessible to us, available in full text, and pub-
lished in the English language. Publications excluded from the 
review were reports, case-control studies, commentaries, and 
letters to editors. Published review articles and textbooks were 
also excluded. Besides, studies that reported on pathogens that 
were not associated with fomites were excluded. Moreover, 
studies that did not specify sample size for various fomites and 
did not report on the number of positive samples were also 
excluded, as were preprints and studies whose sample sizes 
were each less than 10.

Study selection

The Scopus and PubMed searches yielded 623 articles, which 
were screened using the Zotero reference tool (Version 6.0.30, 
made by Corporate for Digital Scholarship), to identify and 
download articles that are available for free. After eliminating 
duplicates using Zotero, the resulting 507 records were exam-
ined based on their titles and abstracts in relation to the inclu-
sion criteria. Subsequently, 41 potential articles were each 
subjected to careful independent evaluations, with only articles 
published in the English language considered. Finally, 33 arti-
cles were included in this study after a systematic evaluation 
was carried out on the complete texts of the remaining 81 stud-
ies to ascertain their eligibility per the criteria specified in the 
study, as shown in Figure 1.
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Quality assessment

This study was established on the basis of previously published 
research articles with observational evidence. All duplicates were 
carefully inspected and eliminated in order to retain the quality 
of the review. The abstracts of searched articles were thoroughly 
checked and verified before analysis to ensure that quality and 
relevant information in the literature were included in the review 
process. The quality of the articles selected was evaluated inde-
pendently by authors A.-H.O., S.D. and A.O.

Data extraction

Data were extracted by A.-H.O. and E.S.D. from individual 
studies using a form and database developed for the purposes 
of this review in the Microsoft Excel 2013 software. The form 
captured data such as authors’ names, title of the study, year of 
publication, study setting, keywords, fomites assessed, sampling 
method, microbial identification method, pathogens assessed, 
prevalence of nosocomial pathogens, and the duration of path-
ogens on the fomites. For studies that reported their findings in 
percentages, the percentages were converted to whole numbers 
to ensure uniformity.

Results
Overview

In accordance with the inclusion and exclusion criteria and the 
PRISMA checklist,40 we selected 33 articles that investigated 
reservoirs of pathogens in ICUs. The studies were carried out 
across a diverse range of 17 countries, spanning various regions 
globally. Three articles were on outbreak or post-outbreak 

studies41-43; two targeted human adenoviruses/rotavirus.44,45 
Additionally, two other studies46,47 specifically targeted 
Staphylococcus aureus and SARS-CoV-2, respectively. The 
computer, computer mouse, the space bar on the computer 
keyboard, and other parts of the computer were collectively 
labeled as “Computer and its parts” for the purpose of uni-
formity in this review. Similarly, the sink, sink outlet, and drain 
were labeled as “Sink”. The total number of fomites identified 
in this study was 29, as shown in Table 1. Overall, about 40% 
of the total samples collected on these fomites yielded micro-
bial growth, and Staphylococcus was the most isolated genus of 
bacteria. S. aureus was the most predominant species identi-
fied. Of the 33 studies, 27 isolated bacteria6,19,23,32,41-43,46,48-65, 
three isolated viruses,44,45,47 and only one study examined 
fungi.66 Two studies67,68 isolated both bacteria and fungi on 
fomites in the ICU. Among the studies that reported on bac-
teria, fifteen6,19,32,43,46,49,53,56-58,60,61,63,64 reported on the antibi-
otic susceptibility profiles of the isolates. None of the studies 
assessed the longevity or persistence of nosocomial pathogens 
on a fomite in the ICU. However, the persistence of common 
nosocomial pathogens on inanimate surfaces has been studied 
and reviewed in other reports.69,70 Thus, the persistence of the 
common nosocomial pathogens in our review were inferred 
from these reports and other similar studies for discussion 
purposes.

Sampled surfaces

The sampling of surfaces designated as fomites or potential 
fomites varied extensively across the different studies. 
Furthermore, the scope presented diversity in terms of the 
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Duplicate records removed by 
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(n = 116)
Records removed for other 
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Reports assessed for eligibility
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Figure 1.  A flow diagram of our systematic review process (PRISMA guide).
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inclusion of various types of inanimate surfaces during the sam-
pling process. Among the pool of inanimate surfaces sampled, 
parenteral nutrition (PN),71 pulse oximetry,72 and curtains73 had 
relatively lower sample sizes of less than 10, and were, therefore, 
excluded from further analysis in order to ensure a higher statis-
tical power of this study.74 Overall, of the 29 fomites, the 3 most 
sampled in the ICU included mobile phones,47-49,56,57,59-62,68 
sinks,41,42,46,54 and faucets6,23,41 (Table 1).

Laboratory methods

Culture analysis was used in all the studies, except for those of 
Ganime et al.44 and Ganime et al.45 who employed molecular 
techniques. All the selected studies utilized moisturized swabs 
for collecting samples on single surfaces, except Gonçalves 
et  al.66 who used the sedimentation plate method and other 
means32,52,58,66 (Table 1). With regard to pre-culture media, nine 
studies used broths such as Letheen broth,64 thioglycollate 
broth,6,32 trypticase soy broth51,60,tryptone soya broth,58 and 
brain heart infusion broth. De Jonge et al.54 used an unspecified 
selective broth in their study. Most of the studies commonly used 
culture media such as MacConkey agar, mannitol salt agar, blood 
agar, and chocolate agar, but Sued et al.19 and Chen et al.51 did 
not clearly indicate the media used. Organisms other than bac-
teria were cultured via different means such as Vero cells, 
Dulbecco’s modified eagle’s medium, and cysteine-lactose elec-
trolyte-deficient (CLED) plates42,44,45,47 (Table 2). Reported 
incubation temperatures ranged from 18 °C to 38 °C for 15 hours 
to 168 hours. However, the majority of the studies had their 
incubation temperatures ranging between 35 °C and 38 °C. Four 
studies42,44,45,51 did not report on incubation time and tempera-
ture (Table 2).

The method for bacterial identification varied across the 
studies. All the articles reported standard microbiological tech-
niques, including colony morphology, Gram stain reaction, 
microscopic morphology, biochemical reactions, molecular 
microbial methods, and modern automated identification 
techniques such as the MALDI-TOF mass spectrometry in 
the identification of microbes (Table 1). The most common 
identification methods included biochemical tests and conven-
tional automated identification machines. Metagenomic analy-
sis was also adopted in identifying and further analyzing the 
processed samples from the fomites.19,23,41-47,58,61

Frequency of contamination and microbial presence

A significant number of the fomites showed contamination of 
more than 40% across all studies. However, contamination 
frequency varied from study to study. Interestingly, certain 
surfaces displayed a higher percentage of contamination 
despite being sampled less frequently. For instance, the sphyg-
momanometer, although subjected to lower sampling fre-
quency, exhibited a 100% detection rate of organisms 
commonly associated with nosocomial infections, including 

E. aerogenes, S. aureus, CoNS, E. coli, and K. pneumoniae.19,53 
This was also the case for the thermometers19,43, Yankauer 
catheters and suction machines,32 and mattresses and  
pillows58 which showed a higher percentage of contamination 
with nosocomial pathogens. Mobile phones emerged as the 
fomite with the most extensive body of research, garnering 
significant attention in numerous studies. Notably, the sam-
pling frequency of mobile phones within each study was con-
sistently high and it equally yielded a significant load of 
nosocomial pathogens, revealing its substantial capacity to 
harbour nosocomial pathogens47-49,56,57,59-62,68 (Table 1).

Microorganisms that have the potential of causing nosoco-
mial infections were isolated on various surfaces in the ICU, 
with the NICU emerging as the predominant unit. Data were 
presented as a percentage of positive sampling based on the 
frequency of positive results from the number of surfaces sam-
pled in Table 1. The examined literature demonstrated a high 
prevalence of nosocomial pathogens, particularly for CoNS, S. 
aureus, and MRSA, in the ICUs (Tables 1 and 3). Though 
CoNS are considered normal flora in healthy individuals, S. 
epidermidis and S. haemolyticus (the most common species in 
CoNS) are common causes of infections associated with inva-
sive procedures, indwelling devices or implanted foreign bod-
ies, and among the immunocompromised. Infections from 
these pathogens include bacteraemia, urethritis, and endocar-
ditis, among others.75

All the ESKAPE pathogens, including Enterococcus fae-
cium, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and 
Enterobacter spp., were encountered on fomites such as 
patient files, medical charts (records books), stethoscopes, 
sphygmomanometers, bedside tables, and many more 
fomites (Table 1). These ESKAPE pathogens are a group of 
bacteria that have the ability to “escape” the effects of com-
monly used antibiotics, posing a significant challenge to 
healthcare systems worldwide. Other organisms commonly 
associated with nosocomial infections detected in various 
ICUs included E. coli, Candida sp., Enterococcus sp., S. haemo-
lyticus, and Pantoea spp. (Tables 1 and 3).

Nosocomial pathogens and their prevalence on the 
fomites

Although nosocomial pathogens were identified across all 
studies, a notable presence of specific pathogens was consist-
ently associated with certain fomites, suggesting a potential 
role of these fomites as reservoirs within the ICU. Notably, S. 
aureus was found on the majority of the fomites examined, 
emphasizing its widespread distribution. Additionally, Klebsiella 
spp. and P. aeruginosa were particularly prominent in sink and 
taps samples. Alongside Staphylococcus sp., P. aeruginosa, and K. 
pneumoniae were frequently associated with mobile phones, 
reinforcing their significance as potential carriers of these 
organisms. Furthermore, P. aeruginosa exhibited a common 
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Table 2.  Details of methodologies and geographical location of the individual studies.

Articles Media Used Broth Used Incubation 
Temperature 
and Duration

Country

Al-Beeshi et al.48 Sheep blood agar and MacConkey agar NA 37 °C for 48 h Saudi Arabia

Anupriya et al.49 Nutrient agar, blood agar and MacConkey’s agar NA 37 °C for 24 h India

Bédard et al.41 Reasoner’s 2A agar NA 22 °C for 24-48h Canada

Brown & Willms 
et al.32

Thioglycollate broth, blood agar, chocolate agar, 
colistin-nalidixic acid blood agar, and MacConkey 
agar

Thioglycollate 
broth

35 °C to 37 °C for 
24, 48, and 72 h

United States

Bures et al.6 Trypticase soy agar, blood agar MacConkey agar, 
and Columbia colistin-nalidixic acid agar

Thioglycollate 
broth

37 °C for 48 h United States

Caldwell et al.50 Trypticase soy agar with 5% sheep blood 
(Beckton, Dickinson, and Company), MacConkey 
II agar, and fluid thioglycollate medium

NA 35 to 37 °C for up 
to 48 h

United States

Chen et al.51 Sheep blood agar and eosin-methylene blue agar Trypticase soy 
broth

Not stated Taiwan

Coppry et al.52 Cetrimide agar plates NA 37 °C for 24 and 
48 h

France

Darge et al.53 Blood agar, MacConkey agar, and mannitol salt 
agar

NA 37 °C for 24 h Ethiopia

De Jonge et al.54 MacConkey agar Selective broth; 
not specified

38 °C for 15-18 h Netherland

Espinoza et al.47 Vero cells NA NA Brazil

Eiref et al.55 Trypticase soy agar and blood agar NA 35 °C for 24-72 h United States

Galazzi et al.56 Brain heart infusion agar plus 5% sheep blood NA 35 ± 2 °C for 48 h Italy

Ganime et al.44 Dulbecco’s modified eagle’s medium NA NA Brazil

Ganime et al.45 Dulbecco’s modified eagle’s medium NA NA Brazil

Gonçalves et al.66 Trypticase soy agar and Chapman agar NA 25 °C for 7 d 
(168 h)

Brazil

Guyot et al.,42 Cysteine-lactoseelectrolyte-deficient (CLED) agar NA NA United 
Kingdom

Hartmann et al.67 Blood agar NA 36 °C for 48 h Germany

Heyba et al.57 Blood agar and chocolate agar NA 37 °C for 48 h Kuwait

Hu et al.,58 Horse blood agar Tryptone soya 
broth

37 °C-37 °C for 
18-48h

United 
Kingdom

Kotris et al.59 Blood agar NA 35 °C ± 2 for 
18-24 h

Croatia

Loyola et al.60 MacConkey agar 3 mL trypticase soy 
broth

35 °C for 18-24 h Peru

Loyola et al.61 MacConkey agar, mannitol salt agar, and blood 
agar

Trypticase soy 
broth

18-24 h at 35°C Peru

Macrae et al.43 MacConkey agar agar NA Not stated United 
Kingdom

Nwankwo et al.62 MacConkey and blood agar NA 37 °C for 18-24 h Nigeria

Pilonetto et al.64 Letheen broth, MacConkey agar, XLD agar, 
cetrimide agar, and mannitol salt agar

Letheen Broth 35 °C for 48 h Brazil

(Continued)
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association with sink outlets, faucets, and aerators. Nosocomial 
pathogens were widely isolated from Yankauer catheters and 
suction machines in one study. A number of viral and fungal 
isolates were reported in some studies, but in relatively lower 
amounts compared with bacteria. Mobile phones,47 bedside 
tables,45 bed rails,45 companion chairs,44 and incubators and its 
door locks45 harboured viruses and in relatively fewer amounts. 
Twelve studies6,23,32,35,48,51,53,60,62-64,68 further provided the total 
number of bacteria isolates, making it possible to determine  
the most prevalent contaminants of fomites in the ICU. 
Staphylococcus sp., comprising mainly CoNS, S. aureus, and 
MRSA were predominant, and were detected in all the 12 
studies, except two23,60 (Table 3). Further, P. aeruginosa and 
Klebsiella sp. were randomly isolated across all studies in mod-
erate amounts.

In the studies that reported on antimicrobial susceptibility, 
mattress and pillow appeared to harbour multiple drug-resist-
ant bacteria such as MRSA, VRE, and ESBL producers.58 
Similarly, bedside table, which is often proximal to patients, 
appeared to harbour numerous drug-resistant bacteria, show-
ing 100% contamination in the study of Darge et al.53. Mobile 
phones also randomly harboured ESBL-producing E. coli, 
ESBL-producing Enterobacter sp, and ESBL-producing K. 
pneumoniae.60 The sink, outlet, and drain were contaminated 
with MDR P. aeruginosa.53

Discussion
In recent years, a plethora of evidence has emerged regarding 
the colonization of nosocomial pathogens on inanimate sur-
faces within hospital settings.76,77 The literature further pro-
vides compelling evidence that microorganisms present in the 
healthcare environment are a source of nosocomial infections. 
This corresponds to the fact that patients in ICUs are vulner-
able to fomite-associated nosocomial infections and, thus, 
necessitates the need to frequently evaluate fomites in critical 

care units.78,79 A comprehensive review that quantifies the 
prevalence of these pathogens within the ICU is yet to be con-
ducted. Consequently, we undertook this systematic review to 
address that significant gap in literature. In this present study, 
we generally observed mobile phones, aerators and faucets, the 
stethoscope, and the sphygmomanometer to be the most 
potentially contaminated fomites in the ICU. The prevalence 
of the different nosocomial pathogens in the overall samples 
varied greatly, but S. aureus led the charts. The microbiological 
methods employed by all the studies for sampling and micro-
bial identification in the ICU are capable of effectively recover-
ing microbes from fomites. It is worth mentioning that the 
utilization of modern techniques, such as MALDI-TOF, would 
have been more efficient in recovering and identifying isolates 
at the species level in studies that relied only on biochemical 
tests.80

We observed that some studies focused on specific organ-
isms and utilized techniques tailored to isolate only those tar-
geted organisms. The fact that 40% of the total samples 
collected from fomites yielded high positive cultures in this 
regard suggests that the occurrence of positive cultures on 
fomites in the ICU would surpass 40% if all nosocomial patho-
gens were targeted for recovery in all the studies. The generally 
high prevalence of nosocomial pathogens in ICUs reported 
here is consistent with other findings.81,82 The observed varia-
tion of nosocomial pathogens on the fomites is also comparable 
with those in the reports of Abubakar et al.81 and Bhatta et al.83 
which noted variable pathogens in ICU and other hospital set-
tings, respectively. Such variations could be attributed to the 
fact that these pathogens persist under different conditions 
such as temperature, humidity, and the characteristics of the 
fomite they contaminate. Some microbes, such as Acinetobacter 
sp., are capable of surviving on both dry and wet surfaces for a 
long period of time (several weeks) in a wide range of tempera-
tures and pH. A study by Kramer et al.36 and others84 reported 

Articles Media Used Broth Used Incubation 
Temperature 
and Duration

Country

Panhotra et al.63 Blood agar and MacConkey agar NA 37 °C for 48 h Saudi Arabia

Sued et al.19 5% sheep blood agar and Mueller Hinton agar NA 35 °C for 48 h Brazil

Ulger et al.68 Blood agar supplemented with 5% defibrinated 
sheep blood and eosin methylene blue agar

NA 37 °C for 48 h Turkey

Veloso et al.46 Mannitol salt agar Brain Heart 
Infusion broth

35-37 °C for 24 
and 48 h

Brazil

Wang et al.23 Sheep blood agar NA 37 °C for 3-5 d Taiwan

Wolfe et al.35 10% sheep blood agar NA 35 °C for 24 h 
and 48 h

United States

Whittington 
et al.65

Blood agar and MacConkey agar NA 37 °C for 24 h United 
Kingdom

Abbreviation: NA, not available.

Table 2.  (Continued)
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that Gram-positive bacteria, such as Enterococcus spp. (includ-
ing VRE strains), S. aureus (including MRSA strains), and S. 
pyogenes survive for months on dry surfaces. The authors fur-
ther found that Gram-negative species, such as Acinetobacter 
sp., E. coli, Klebsiella sp., P. aeruginosa, Serratia marcescens, and 
Shigella sp., can thrive on inanimate surfaces over months. In 
another study that aimed at determining the longevity of path-
ogens on objects made of cotton, wool, silk, and cotton-polyes-
ter, S. aureus, E. coli, P. aeruginosa, and A. baumannii persisted 
for weeks.85

In this present study, bacteria dominated on the studied 
fomites; only a few fomites harboured viral and fungal organ-
isms. Viral infections have been associated with many infec-
tious outbreaks,86 but often receive less attention and are 
somewhat overlooked compared to bacteria, despite their sig-
nificant impact.87 Less frequent groups of organisms like 
Candida, although rare, have a high mortality rate among 
immunocompromised patients,88 and most drugs for their 
treatment have significant side effects.89

In 2019, the World Health Organization recognized 6 
pathogens as significant in nosocomial infections: P. aerugi-
nosa, A. baumannii, E. coli, S. pneumoniae, K. pneumoniae, and 
S. aureus.48,90,91 At least, one or more of these nosocomial 
pathogens have been isolated from at least one fomite, 
although there seems to be no record regarding their isolation 
from either of companion chairs, accompanying armchairs, 
incubators and its door locks, and cardiac monitor keyboards. 
The alarming distribution of these nosocomial pathogens 
across the fomites in this study is consistent with the findings 
of Muhammad et al.82

Out of the 29 fomites identified in this study, S. aureus, the 
most commonly isolated organism, was present on 19. 
Furthermore, studies that reported the number of isolates 
show that Staphylococcus sp., comprising mainly CoNS and 
MRSA, are the most predominant across all reported studies, 
except in the case of Loyola et al.60 and Wang et al.23 This 
observation is similar to those of a number of studies4,81,90,91 
focusing on ambulances and other parts of hospital settings. 
Some fomites were constantly 100% contaminated across all 
studies, as observed in regard to the sphygmomanometer and 
stethoscope. These are instruments commonly used in meas-
uring blood pressure and listening to internal sounds of 
patients’ bodies in hospital settings, and as a result, are highly 
exposed to multiple contacts between clinicians and 
patients.92,93 Sphygmomanometers recorded 100% contami-
nation in two studies and the isolates were MDR bacteria 
associated with nosocomial infections, especially among 
immunocompromised patients.43,94 The sphygmomanometer 
has several parts, but a notable part capable of harbouring 
organisms is the cuff, whose physical features make it might 
be highly conducive to harbouring microbes. The cuff is usu-
ally in direct contact with patients and often rubs around 
their upper arm.95 The high contamination rate in this 

present study corroborates the findings of Zargaran et  al.96 
who reported a 85% contamination rate of sphygmomanom-
eter cuffs in clinical settings. We also observed that the steth-
oscope harboured Staphylococcal species, such as S. aureus 
(MRSA) and CoNS, in all the studies alongside other noso-
comial pathogens such as E. coli and A. baumannii. Some 
fomites, such as taps, persistently harboured P. aeruginosa, 
which is reported to be effective in biofilm formation, an 
attribute that enhances their longevity in water and moist 
surfaces (including the surface of soaps and in liquid 
soap).13,97,98

ESKAPE pathogens, which are known for their ability to 
“escape” the effects of commonly used antibiotics were com-
monly distributed on many fomites. A considerable number of 
drug-resistant bacteria were reported on several fomites. 
Mattresses and pillows, which are in direct contact with hos-
pitalized patients, tend to be contaminated with pathogens 
such as MRSA, VRE, and ESBL producers. All these  
pathogens have been previously reported in outbreaks in 
ICUs.99-101 As a result, mattresses and pillows may be  
involved in the cross-transmission of pathogens among criti-
cally ill patients.102,103 Furthermore, mobile phones appeared 
to be a potential reservoir of MDR nosocomial pathogens, 
such as ESBL-producing Enterobacter sp. and ESBL-
producing Klebsiella sp. This report aligns with the predictions 
and findings of Tekerekoğlu et al.104 and Olsen et al.,105 but 
contradicts the findings of Muhammad et al82 who reported 
no MDR pathogens on mobile phones in hospitals. The 
absence of MDR pathogens in Muhammad et  al.'s82 report 
could be attributed to their strict reporting on only the health-
care workers’ mobile phones. The detection and reports of 
MDR pathogens associated with nosocomial infections on 
these commonly used inanimate surfaces in the proximity of 
immunocompromised patients need prompt attention.

One goal of this study was to report fomite contamination 
based on the specific ICU types, but this information was 
available for only seven fomites. Among these fomites, the 
NICU recorded both the highest prevalence of nosocomial 
pathogens and the largest number of fomites, encompassing 
six distinct inanimate surfaces: thermometers, PN, pulse oxi-
metry, faucets and aerators, cardiac monitor keyboard, sink, 
and tap water. The high prevalence of nosocomial pathogens 
and the abundance of fomites in the NICU pose significant 
risks to neonates, especially considering their vulnerable and 
still-developing immune systems. These factors can poten-
tially compromise the health and well-being of these fragile 
infants. Clostridium diff icile is also a common nosocomial 
pathogen reportedly associated with numerous hospital-
acquired infections. It was anticipated to be reported due to its 
recognized longevity and perseverance, with the ability to sur-
vive for extended periods on inanimate surfaces.106 However, 
none of the studies reported here identified C. diff icile con-
tamination on any of the fomites in the ICU.
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Given the challenges associated with isolating or recovering 
certain clinically relevant organisms, such as viruses and C. dif-
ficile, metagenomic analysis emerges as a valuable tool for 
investigating and characterizing microbial communities pre-
sent on inanimate surfaces in the ICU. In this present study, the 
articles that implemented metagenomics in identifying bacte-
ria observed a remarkable organism recovery from the fomites 
involved which may have escaped traditional microbiological 
methods.19,41,43-45 Specifically, recovering viruses for microbio-
logical study presents a significant challenge; however, 
metagenomic analysis yielded positive results in recovering 
SARS-CoV-2 and human adenoviruses on fomites.44,45,47

The use of this approach further provided insights into the 
diversity, abundance, and potential pathogenicity of bacteria 
found on these fomites and helped in tracing a potential source 
of bacterial outbreak by analyzing the genomics of the samples 
on potential fomites and the clinical isolate.42,43,46 Likewise, 
through genome analysis, Wang et al.23 found C. meningosepti-
cum from faucet cultures to be similar to the C. meningosepticum 
isolates recovered from four different patients located in differ-
ent units. Similarly, Hu et al.58 who performed metagenomics 
and subsequent phylogenetic analysis, revealed that, closely 
related microbiomes contaminate similar categories of fomites. 
Tracking the presence of antibiotic resistance genes in bacteria 
is necessary to deduce appropriate measures to avoid their 
spread via horizontal or vertical gene transfer107-112 or other 
factors of interest; ESBL-producing bacteria isolated from 
mobile phones of healthcare workers were found to harbour bla 
genes which have long been linked to antibiotic resistance.61

The identification of these nosocomial pathogens in the 
ICUs is a pressing issue that demands swift action. Interventions 
such as the use of copper-silver alloy coats (which possess anti-
bacterial activity) on commonly touched surfaces, such as tap 
handles and door handles, could be employed.113-116 It is also 
important to develop suitable disinfection methods that will 
help to reduce or eliminate nosocomial agents in ICUs. Several 
research studies have reported the use of disinfectants, UV irra-
diation, and phages to curb infections as a result of contami-
nated fomites.117-120 Furthermore, the efficacy of disinfection 
of fomites in the ICU depends on several factors, including 
concentration of disinfectants, fomite pathogenic load, the fre-
quency of disinfection, and the type of pathogens present on 
the fomites.121-123 Hence, efficient methods for disinfection 
and elimination of nosocomial pathogens in ICU fomites are 
needed, especially those that can remediate against a broad 
range of resistant nosocomial pathogens.

This systematic review had some limitations, including the 
difference in study periods across all the articles analyzed. 
Some studies were conducted during or after an outbreak, and 
some only targeted organisms that matched the interests of the 
invstigators, and these may have introduced unintended bias in 
the results. Moreover, identification methods varied greatly, as 
some studies used highly sensitive methods in recovering and 
identifying organisms while others employed relatively fewer 

sensitive methods. Consequently, some isolates could not be 
identified and reported on to the species level. Also, the varying 
microbiological methods across the studies could not allow for 
an extensive meta-analysis.

Conclusion
Many fomites that are readily used in patient care in the ICU 
carry nosocomial pathogens. The most common fomite 
appeared to be mobile phones, sphygmomanometers, and 
stethoscope, while the most common organism harboured 
was Staphylococcus. Hence, the need for rigorous disinfection 
and sterilization protocols on fomites in the ICU cannot be 
overemphasized. Additionally, heightened awareness on the 
subject among health professionals is crucial to mitigating the 
risk and burden of nosocomial infections caused by drug-
resistant bacteria.
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